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Abstract

In this paper we introduce ViSiL, a Video Similarity
Learning architecture that considers fine-grained Spatio-
Temporal relations between pairs of videos – such relations
are typically lost in previous video retrieval approaches that
embed the whole frame or even the whole video into a vec-
tor descriptor before the similarity estimation. By contrast,
our Convolutional Neural Network (CNN)-based approach
is trained to calculate video-to-video similarity from refined
frame-to-frame similarity matrices, so as to consider both
intra- and inter-frame relations. In the proposed method,
pairwise frame similarity is estimated by applying Tensor
Dot (TD) followed by Chamfer Similarity (CS) on regional
CNN frame features - this avoids feature aggregation before
the similarity calculation between frames. Subsequently,
the similarity matrix between all video frames is fed to a
four-layer CNN, and then summarized using Chamfer Sim-
ilarity (CS) into a video-to-video similarity score – this
avoids feature aggregation before the similarity calculation
between videos and captures the temporal similarity pat-
terns between matching frame sequences. We train the pro-
posed network using a triplet loss scheme and evaluate it on
five public benchmark datasets on four different video re-
trieval problems where we demonstrate large improvements
in comparison to the state of the art. The implementation of
ViSiL is publicly available1.

1. Introduction

Due to the popularity of Internet-based video sharing ser-
vices, the volume of video content on the Web has reached
unprecedented scales. For instance, YouTube reports al-
most two billion users and more than one billion hours of
video viewed per day2. As a result, content-based video
retrieval, which is an essential component in applications
such as video filtering, recommendation, copyright protec-

1https://github.com/MKLab-ITI/visil
2https://www.youtube.com/yt/about/press/, accessed 21 March 2019

Figure 1. Depiction of the frame-to-frame similarity matrix and the
CNN output of the ViSiL approach for two video pair examples:
relevant videos that contain footage from the same incident (top),
unrelated videos with spurious visual similarities (bottom).

tion and verification, becomes increasingly challenging.
In this paper, we address the problem of similarity esti-

mation between pairs of videos, an issue that is central to
several video retrieval systems. A straightforward approach
to this is to aggregate/pool frame-level features into a sin-
gle video-level representation on which subsequently one
can calculate a similarity measure. Such video-level rep-
resentations include global vectors [35, 11, 21], hash codes
[30, 23, 31] and Bag-of-Words (BoW) [5, 20, 22]. However,
this disregards the spatial and the temporal structure of the
visual similarity, as aggregation of features is influenced by
clutter and irrelevant content. Other approaches attempt to
take into account the temporal sequence of frames in the
similarity computation, e.g., by using Dynamic Program-
ming [7, 24], Temporal Networks [32, 17] and Temporal
Hough Voting [8, 16]. Another line of research considers
spatio-temporal video representation and matching based
on Recurrent Neural Networks (RNN) [10, 14] or in the
Fourier domain [28, 26, 2]. Such approaches may achieve
high performance in certain tasks such as video alignment
or copy detection, but not in more general retrieval tasks.

A promising direction is exploiting better the spatial and



temporal structure of videos in the similarity calculation
[8, 16, 17]. However, recent approaches either focused
on the spatial processing of frames and completely disre-
garded temporal information [11, 21], or considered global
frame representations (essentially discarding spatial infor-
mation) and then considered the temporal alignment among
such frame representations [7, 2]. In this paper, we pro-
pose ViSiL, a video similarity learning network that consid-
ers both the spatial (intra-frame) and temporal (inter-frame)
structure of the visual similarity. We first introduce a frame-
to-frame similarity that employs Tensor Dot (TD) product
and Chamfer Similarity (CS) on region-level frame Convo-
lutional Neural Network (CNN) features weighted with an
attention mechanism. This leads to a frame-to-frame simi-
larity function that takes into consideration region-to-region
pairwise similarities, instead of calculating the similarity of
frame-level embeddings where the regional details are lost.
Then, we calculate the matrix with the similarity scores be-
tween each pair of frames between the two videos and use
it as input to a four-layer CNN, that is followed by a Cham-
fer Similarity (i.e., a mean-max filter) at its final layer. By
doing so, we learn the temporal structure of the frame-level
similarity of relevant videos, such as the presence of diag-
onal structures in Figure 1, and suppress spurious pairwise
frame similarities that might occur.

We evaluate ViSiL on several video retrieval problems,
namely Near-Duplicate Video Retrieval (NDVR), Fine-
grained Incident and Event-based Video Retrieval (FIVR,
EVR), and Action Video Retrieval (AVR) using public
benchmark datasets, where in all cases, often by a large
margin, it outperforms the state-of-the-art.

2. Related Work
Video retrieval approaches can be roughly classified into

three categories [25], namely, methods that calculate simi-
larity using global video representations, methods that ac-
count for similarities between individual video frames and
methods that employ spatio-temporal video representations.

Methods in the first category extract a global video vec-
tor and use dot product or Euclidean distance to compute
similarity between videos. Goa et al. [11] extracted a video
imprint for the entire video based on a feature alignment
procedure that exploits the temporal correlations and re-
moves feature redundancies across frames. Kordopatis et al.
created visual codebooks for features extracted from inter-
mediate CNN layers [20] and employed Deep Metric Learn-
ing (DML) to train a network using a triplet loss scheme to
learn an embedding that minimizes the distance between re-
lated videos and maximizes it between irrelevant ones [21].
A popular direction is the generation of a hash code for the
entire video combined with Hamming distance. Liong et al.
[23] employed a CNN architecture to learn binary codes for
the entire video and trained it end-to-end based on the pair-

wise distance of the generated codes and video class labels.
Song et al. [31] built a self-supervised video hashing sys-
tem, able to capture the temporal relation between frames
using an encoder-decoder scheme. These methods are typi-
cally outperformed by the ones of the other two categories.

Methods in the second category typically extract frame-
level features to apply frame-to-frame similarity calcula-
tion and then aggregate them into video-level similarities.
Tan et al. [32] proposed a graph-based Temporal Network
(TN) structure generated through keypoint frame matching,
which is used for the detection of the longest shared path
between two compared videos. Several recent works have
employed modifications of this approach for the problem of
partial-copy detection, combining it with global CNN fea-
tures [17] and a CNN+RNN architecture [14]. Additionally,
other approaches employ Temporal Hough Voting [8, 16]
to align matched frames by means of a temporal Hough
transform. These are often outperformed by TN in sev-
eral related problems. Another popular solution is based
on Dynamic Programming (DP) [7, 24]. Such works calcu-
late the similarity matrix between all frame pairs, and then
extract the diagonal blocks with the largest similarity. To
increase flexibility, they also allow limited horizontal and
vertical movements. Chou et al. [7] and Liu et al. [24]
combined DP with BoW matching to measure frame sim-
ilarities. However, the proposed solutions are not capable
of capturing a large variety of temporal similarity patterns
due to their rigid aggregation approach. By contrast, ViSiL,
which belongs to this category of methods, learns the simi-
larity patterns in the CNN subnet that operates on the simi-
larity matrix between the frame pairs.

Methods in the third category extract spatio-temporal
representations based on frame-level features and use them
to calculate video similarity. A popular direction is to use
the Fourier transform in a way that accounts for the tem-
poral structure of video similarity. Revaud et al. [28]
proposed the Circulant Temporal Encoding (CTE) that en-
codes the frame features in a spatio-temporal representa-
tion with Fourier transform and thus compares videos in
the frequency domain. Poullot et al. [26] introduced the
Temporal Matching Kernel (TMK) that encodes sequences
of frames with periodic kernels that take into account the
frame descriptor and timestamp. Baraldi et al. [2] built
a deep learning layer component based on TMK and set
up a training process to learn the feature transform coef-
ficients using a triplet loss that takes into account both the
video similarity score and the temporal alignment. How-
ever, the previous methods rely on global frame representa-
tions, which disregard the spatial structure of similarity. Fi-
nally, Feng et al. [10] developed an approach based on cross
gated bilinear matching for video re-localization. They em-
ployed C3D features [34] and built a multi-layer recurrent
architecture that matches videos through attention weight-



Figure 2. Overview of the training scheme of the proposed architecture. A triplet of an anchor, positive and negative videos is provided to
a CNN to extract regional features that are PCA whitened and weighted based on an attention mechanism. Then the Tensor Dot product is
calculated for the anchor-positive and anchor-negative pairs followed by Chamfer Similarity to generate frame-to-frame similarity matrices.
The output matrices are passed to a CNN to capture temporal relations between videos and calculate video-to-video similarity by applying
Chamfer Similarity on the output. The network is trained with the triplet loss function. The double arrows indicate shared weights.

ing and factorized bilinear matching to locate related video
parts. However, even though this approach performs well
on video matching problems, it was found to be inapplica-
ble for video retrieval tasks as will be shown in Section 6.

3. Preliminaries
Tensor Dot (TD): Having two tensors A ∈ RN1×N2×K

and B ∈ RK×M1×M2 , their TD (also known as tensor con-
traction) is given by summing the two tensors over specific
axes. Following the notation in [36], TD of two tensors is

C = A • (i,j)B (1)

where C ∈ RN1×N2×M1×M2 is the TD of the tensors, and i
and j indicate the axes over which the tensors are summed.
In the given example i and j can only be 3 and 1 respec-
tively, since they are the only ones of the same size (K).

Chamfer Similarity (CS): This is the similarity counter-
part of Chamfer Distance [3]. Considering two sets of items
x and y with total number of N and M items respectively
and their similarity matrix S ∈ RN×M , CS is calculated as
the average similarity of the most similar item in set y for
each item in set x. This is formulated in Equation 2.

CS(x, y) =
1

N

N∑
i=1

max
j∈[1,M ]

S(i, j) (2)

Note that CS is not symmetric, i.e. CS(x, y) 6= CS(y, x),
however, that a symmetric variant SCS can be defined as,
SCS(x, y) = (CS(x, y) + CS(y, x))/2.

4. ViSiL description

Figure 2 illustrates the proposed approach. We first ex-
tract features from the intermediate convolution layers of a
CNN architecture by applying region pooling on the fea-
ture maps. These are further PCA-whitened and weighted
based on an attention mechanism (section 4.1). Addition-
ally, a similarity function based on TD and CS is devised
to accurately compute the similarity between frames (sec-
tion 4.2). A similarity matrix comprising all pairwise frame
similarities is then fed to a CNN to train a video-level simi-
larity model (section 4.3). This is trained with a triplet loss
scheme (section 4.4) based on selected and automatically
generated triplets from a training dataset (section 4.5).

4.1. Feature extraction

Given an input video frame, we apply Regional Maxi-
mum Activation of Convolution (R-MAC) [33] on the acti-
vations of the intermediate convolutional layers [20] given
a specific granularity level LN , N ∈ {1, 2, 3, ...}. Given
a CNN architecture with a total number of K convolu-
tional layers, this process generates K feature mapsMk ∈
RN×N×Ck(k = 1, ...,K), where Ck is the number of chan-
nels of the kth convolution layer. All extracted feature
maps have the same resolution (N × N ) and are concate-
nated into a frame representation M ∈ RN×N×C , where
C = C1 + ... + CK . We also apply `2-normalization on
the channel axis of the feature maps, before and after con-
catenation. This feature extraction process is denoted as
LN -iMAC. The extracted frame features retain the spatial
information of frames at different granularities. We then



Figure 3. Illustration of frame-level similarity calculation between
two video frames. In this example, the frames are near duplicates.

employ PCA on the extracted frame descriptors to perform
whitening and/or dimensionality reduction as in [15].
`2-normalization on the extracted frame descriptors re-

sult in all region vectors being equally considered in the
similarity calculation. For instance, this would mean that
a completely dark region would have the same impact on
similarity with a region depicting a subject of interest. To
avoid this issue, we weight the frame regions based on their
saliency via a visual attention mechanism over region vec-
tors inspired by methods from different research fields, i.e.
document classification [37]. To successfully adapt it to the
needs of video retrieval, we build the following attention
mechanism: given a frame representation M with region
vector rij :M(i, j, ·) ∈ RC , where i ∈ [1, N ], j ∈ [1, N ],
we introduce a visual context unit vector u and use it to
measure the importance of each region vector. To this end,
we calculate the dot product between every rij region vec-
tor, with the internal context vector u to derive the weight
scores αij . Since all vectors are unit norm, αij will be in
the range [−1, 1]. To retain region vectors’ direction and
change their norm, we divide the weight scores αij by 2 and
add 0.5 in order to be in range [0, 1]. Equation 3 formulates
the weighting process.

αij = u>rij , s.t. ‖u‖ = 1

r′ij = (αij/2 + 0.5)rij
(3)

All functions in the weighting process are differentiable;
therefore u is learned through the training process. Unlike
the common practice in the literature, we do not apply any
normalization function on the calculated weights (e.g. soft-
max or division by sum) because we want to weight each
vector independently. Also, we empirically found that, un-
like other works, using a hidden layer in the attention mod-
ule has negative effect on the system’s performance.

4.2. Frame-to-frame similarity

Given two video frames d, b, we apply CS on their re-
gion feature maps to calculate their similarity (Figure 3).
First, the regional feature mapsMd,Mb ∈ RN×N×C are

Type Kernel size Output size Activ./ stride
Conv 3×3 / 1 X × Y× 32 ReLU
M-Pool 2×2 / 2 X/2 ×Y /2 × 32 —
Conv 3×3 / 1 X/2 ×Y /2 × 64 ReLU
M-Pool 2×2 / 2 X/4 ×Y /4 × 64 —
Conv 3×3 / 1 X/4 ×Y /4 × 128 ReLU
Conv 1×1 / 1 X/4 ×Y /4 × 1 —

Table 1. Architecture of the proposed network for video similarity
learning. For the calculation of the output size, we assume that
two videos with total number of X and Y frames are provided.

decomposed into their region vectors dij ,bkl ∈ RC . Then,
the dot product between every pair of region vectors is cal-
culated, creating the similarity matrix of the two frames,
and CS is applied on the similarity matrix to compute the
frame-to-frame similarity.

CSf (d, b) =
1

N2

N∑
i,j=1

max
k,l∈[1,N ]

d>ijbkl (4)

This process leverages the geometric information captured
by region vectors and provides some degree of spatial in-
variance. More specifically, the CNN extracts features that
correspond to mid-level visual structures, such as object
parts, and combined with CS, that by design disregards the
global structure of the region-to-region matrix, constitutes
a robust similarity calculation process against spatial trans-
formations, e.g. spatial shift. This presents a trade-off be-
tween the preservation of the frame structure and invariance
to spatial transformations.

4.3. Video-to-video similarity

To apply frame-to-frame similarity on two videos q, p
with X and Y frames respectively, we apply TD combined
with CS on the corresponding video tensors Q and P and
derive the frame-to-frame similarity matrix Sqpf ∈ RX×Y .
This is formulated in Equation 5.

Sqpf =
1

N2

N2∑
i=1

max
j∈[1,N2]

Q • (3,1)P>(·, i, j, ·) (5)

where the TD axes indicate the channel dimension of the
corresponding video tensors. In that way, we apply Equa-
tion 4 on every frame pair.

To calculate the similarity between two videos, the gen-
erated similarity matrix Sqpf derived from the previous pro-
cess is provided to a CNN network. The network is capa-
ble of learning robust patterns of within-video similarities
at segment level. Table 1 displays the architecture of the
CNN architecture of the proposed ViSiL framework.

To calculate the final video similarity, we apply the hard
tanh activation function on the values of the network output,



which clips values within range [−1, 1]. Then, we apply CS
to derive a single value as in Equation 6.

CSv(q, p) =
1

X ′

X′∑
i=1

max
j∈[1,Y ′]

Htanh(Sqpv (i, j)) (6)

where Sqpv ∈ RX′×Y ′
is the output of the CNN network,

and Htanh indicates the element-wise hard tanh function.
The output of the network has to be bounded in order to
accordingly set the margin in Equation 7.

Similar to the frame-to-frame similarity calculation, this
process is a trade-off between respecting video-level struc-
ture and being invariant to some temporal differences. As a
result, different temporal similarity structures in the frame-
to-frame similarity matrix can be captured, e.g. strong di-
agonals or diagonal parts (i.e. contained sequences).

4.4. Loss function

The target video similarity score CSv(q, p) should be
higher for relevant videos and lower for irrelevant ones. To
train our network we organize our video collection in video
triplets (v, v+, v−), where v, v+, v− stand for an anchor, a
positive (i.e. relevant), and a negative (i.e. irrelevant) video
respectively. To force the network to assign higher similar-
ity scores to positive video pairs and lower to negative ones,
we use the ‘triplet loss’, that is

Ltr = max{0,CSv(v, v
−)− CSv(v, v

+) + γ} (7)

where γ is a margin parameter.
In addition, we define a similarity regularization func-

tion that penalizes high values in the input of hard tanh that
would lead to saturated outputs. This is an effective mech-
anism to drive the network to generate output matrices Sv
with values in the range [−1, 1], which is the clipping range
of hard tanh. To calculate the regularization loss, we sim-
ply sum all values in the output similarity matrices that fall
outside the clipping range (Equation 8).

Lreg =

X′∑
i=1

Y ′∑
j=1

|max{0,Sqpv (i, j)− 1}|+

+|min{0,Sqpv (i, j) + 1}|
(8)

Finally, the total loss function is given in Equation 9.

L = Ltr + r ∗ Lreg (9)

where r is a regularization hyperparameter that tunes the
contribution of the similarity regularization to the total loss.

4.5. Training ViSiL

Training the ViSiL architecture requires a training
dataset with ground truth annotations at segment level. Us-
ing such annotations, we extract video pairs with related

visual content to serve as anchor-positive pairs during train-
ing. Additionally, we artificially generate positive videos by
applying a number of transformations on arbitrary videos.
We consider three categories of transformation: (i) colour,
including conversion to grayscale, brightness, contrast, hue,
and saturation adjustment, (ii) geometric, including hori-
zontal or vertical flip, crop, rotation, resize and rescale, and
(iii) temporal, including slow motion, fast forward, frame
insertion, video pause or reversion. During training, one
transformation from each category is randomly selected and
applied on the selected video.

We construct two video pools that consist of positive
pairs. For each positive pair we then generate hard triplets,
i.e. construct negative videos (hard negatives) with similar-
ity to the anchor that is greater than the one between the
anchor and positive videos. In what follows, we use a BoW
approach [20] to calculate similarities between videos.

The first pool derives from the annotated videos in the
training dataset. Two videos with at least five second over-
lap constitute a positive pair. Let s be the similarity of
the corresponding video segments. Videos with similar-
ity (BoW-based [20]) larger than s with either of the seg-
ments in the positive pair, constitute hard negatives. The
second pool derives from arbitrary videos from the training
dataset that are used to artificially generate positive pairs.
Videos that are similar with the initial videos (similarity
> 0.1) are considered hard negatives. To avoid potential
near-duplicates, we exclude videos with similarity > 0.5
from the hard negative sets.

At each training epoch, we sample T triplets from each
video pool. Due to GPU memory limitations, we do not
feed the entire videos to the network. Instead, we select
a random video snippet with total size of W frames from
each video in the triplet, assuring that there are at least five
seconds overlap between the anchor and the positive videos.

5. Evaluation setup
The proposed approach is evaluated on four retrieval

tasks, namely Near-Duplicate Video Retrieval (NDVR),
Fine-grained Incident Video Retrieval (FIVR), Event Video
Retrieval (EVR), and Action Video Retrieval (AVR). In all
cases, we report the mean Average Precision (mAP).

5.1. Datasets

VCDB [16] is used as the training dataset to generate
triplets for training our models. It consists of 528 videos
with 9,000 pairs of copied segments in the core dataset, and
also a subset of 100,000 distractor videos.

CC WEB VIDEO [35] simulates the NDVR problem.
It consists of 24 query sets and 13,129 videos. We found
several quality issues with the annotations, e.g. numerous
positives mislabeled as negatives. Hence, we provide results
on a ‘cleaned’ version of the annotations. We also use two



evaluation settings, one measuring performance only on the
query sets, and a second on the entire dataset.

FIVR-200K is used for the FIVR task [19]. It consists
of 225,960 videos and 100 queries. It includes three dif-
ferent retrieval tasks: a) the Duplicate Scene Video Re-
trieval (DSVR), b) the Complementary Scene Video Re-
trieval (CSVR), and c) the Incident Scene Video Retrieval
(ISVR). For quick comparison of the different variants, we
use FIVR-5K, a subset of FIVR-200K by selecting the 50
most difficult queries in the DSVR task (using [20] to mea-
sure difficulty), and for each one randomly picking the 30%
of annotated videos per label category.

EVVE [28] was designed for the EVR problem. It con-
sists of 2,375 videos, and 620 queries. However, we man-
aged to download and process only 1897 videos and 503
queries (≈80% of the initial dataset) due to the unavailabil-
ity of the remaining ones.

Finally, ActivityNet [4], reorganized based on [10], is
used for the AVR task. It consists of 3,791 training, 444 val-
idation and 494 test videos. The annotations contain the ex-
act video segments that correspond to specific actions. For
evaluation, we consider any pair of videos with at least one
common label as related.

5.2. Implementation details

We extract one frame per second for each video. For all
retrieval problems except for AVR, we are using the fea-
ture extraction scheme of Section 4.1 based on ResNet-50
[13], but for efficiency purposes only extract intermediate
features from the output maps of the four residual blocks.
Additionally, the PCA for the whitening layer is learned
from 1M region vectors sampled from videos in VCDB.
For AVR, we extract features from the last 3D convolutional
layer of the I3D architecture [6] by max-pooling on the spa-
tial dimensions. We also tested I3D features for the other re-
trieval problems, but without any significant improvements.

For training, we feed the network with only one video
triplet at a time due to GPU memory limitations. We em-
ploy Adam optimization [18] with learning rate l = 10−5.
For each epoch, T=1000 triplets are selected per pool. The
model is trained for 100 epochs, i.e. 200K iterations, and
the best network is selected based on mean Average Preci-
sion (mAP) on a validation set. Other parameters are set to
γ = 0.5, r = 0.1 and W = 64. The weights of the feature
extraction CNN and whitening layer remain fixed.

6. Experiments
In this section, we first compare the proposed frame-to-

frame similarity calculation scheme with several global fea-
tures with dot product similarity (Section 6.1). We also pro-
vide an ablation study to evaluate the proposed approach un-
der different configurations (Section 6.2). Finally, we com-
pare the “full” proposed approach (denoted as ViSiLv) with

Features
MAC [33]
SPoC [1]
R-MAC [33]
GeM [12]
iMAC [20]
L2-iMAC
L2-iMAC
L3-iMAC
L3-iMAC

Dims.
2048
2048
2048
2048
3840

4x3840
4x512

9x3840
9x256

DSVR CSVR ISVR
0.747 0.730 0.684
0.735 0.722 0.669
0.777 0.764 0.707
0.776 0.768 0.711
0.755 0.749 0.689
0.814 0.810 0.738
0.804 0.802 0.727
0.838 0.832 0.739
0.823 0.818 0.738

Table 2. mAP comparison of proposed feature extraction and sim-
ilarity calculation against state-of-the-art feature descriptors with
dot product for similarity calculation on FIVR-5K. Video similar-
ity is computed based on CS on the derived similarity matrix.

the best performing methods in the state-of-the-art (to the
best of our knowledge) in each problem (Section 6.3). We
have re-implemented two popular approaches that employ
similarity calculation on frame-level representations, i.e.
DP [7] and TN [32]. However, both of them were originally
proposed in combination with hand-crafted features, which
is an outdated practice. Hence, we combine them with the
proposed feature extraction scheme and our frame-to-frame
similarity calculation. We also implemented a naive adapta-
tion of the publicly available Video re-localization (VReL)
method [10] to a retrieval setting, where we rank videos
based on the probability of the predicted segment (Equation
12 in the original paper).

6.1. Frame-to-frame similarity comparison

This section presents a comparison on FIVR-5K of the
proposed feature extraction scheme against several global
pooling schemes proposed in the literature. Dot product is
used for similarity calculation. Video-level similarity for
all runs is calculated with the application of the raw CS on
the generated similarity matrices. The benchmarked fea-
ture extraction methods include the Maximum Activations
of Convolutions (MAC) [33], Sum-Pooled Convolutional
features (SPoC) [1], Regional Maximum Activation of Con-
volutions (R-MAC) [33], Generalized Mean (GeM) pooling
[27] (with initial p = 3 (cf. Table 1 in [27]) and interme-
diate Maximum Activation of Convolutions (iMAC) [20],
which is equivalent to the proposed feature extraction for
N = 1. Additionally, we evaluate the proposed scheme
with region levels LN , N = 2, 3, and with two different
region vector sizes for each region level. We use PCA to
reduce region vectors’ size, without applying whitening.

Table 2 presents the results of the comparison on FIVR-
5K. The proposed scheme withN = 3 (L3-iMAC) achieves
the best results on all evaluation tasks by a large mar-
gin. Furthermore, it is noteworthy that the reduced features
achieve competitive performance especially compared with



the global descriptors of similar dimensionality. Hence, in
settings where there is insufficient storage space, the re-
duced ViSiL features offer an excellent trade-off between
retrieval performance and storage cost. We also tried to
combine the proposed scheme with other pooling schemes,
e.g. GeM pooling, but this had no noteworthy impact on the
system’s performance. Next, we will consider the best per-
forming scheme (L3-iMAC without dimensionality reduc-
tion) as the base frame-to-frame similarity scheme ViSiLf .

6.2. Ablation study

We first evaluate the impact of each individual module
of the architecture on the retrieval performance of ViSiL.
Table 3 presents the results of four runs with different con-
figuration settings on FIVR-5K. The attention mechanism
in the third run is trained using the main training process.
The addition of each component offers additional boost to
the performance of the system. The biggest improvement
for the DSVR and CSVR tasks, 0.024 and 0.021 of mAP
respectively, is due to employing a CNN model for refined
video-level similarity calculation in ViSiLv . Also, consid-
erable gains on the ISVR task (0.018 mAP) are due to the
application of the attention mechanism. We also report re-
sults when the Symmetric Chamfer Distance (SCS) is used
for both frame-to-frame and video-to-video similarity cal-
culation (ViSiLsym). Apparently, the non symmetric ver-
sion of the CS works significantly better in this problem.

Task DSVR CSVR ISVR
ViSiLf 0.838 0.832 0.739
ViSiLf+W 0.844 0.837 0.750
ViSiLf+W+A 0.856 0.848 0.768
ViSiLsym 0.830 0.823 0.731
ViSiLv 0.880 0.869 0.777

Table 3. Ablation studies on FIVR-5K. W and A stand for whiten-
ing and attention mechanism respectively.

Additionally, we evaluate the impact of the similarity
regularization loss Lreg of Equation 8. This appears to have
notable impact on the retrieval performance of the system.
The mAP increases for all three tasks reaching an improve-
ment of more than 0.02 mAP on DSVR and ISVR tasks.

Lreg DSVR CSVR ISVR
7 0.859 0.842 0.756
X 0.880 0.869 0.777

Table 4. Impact of similarity regularization on the performance of
the proposed method on FIVR-5K.

In the supplementary material we assess the performance
of similarity functions other than CS, the impact of differ-
ent values of hyperparameters γ, W and r, and the compu-
tational complexity of the method.

6.3. Comparison against state-of-the-art

6.3.1 Near-duplicate video retrieval

We first compare the performance of ViSiL against state-of-
the-art approaches on several versions of CC WEB VIDEO
[35]. The proposed approach is compared with the pub-
licly available implementation of Deep Metric Learning
(DML) [21], the Circulant Temporal Encoding (CTE) [28]
(we report the results of the original paper) and our two re-
implementations based on Dynamic Programming (DP) [7]
and Temporal Networks (TN) [32]. The ViSiLv approach
achieves the best performance compared to all competing
systems in all cases except in the case where the origi-
nal annotations are used (where CTE performs best). In
that case, there were several erroneous annotations as ex-
plained above. When tested on the ‘cleaned’ version, ViSiL
achieves almost perfect results in both evaluation settings.
Moreover, it is noteworthy that our re-implementations of
the state-of-the-art methods lead to considerably better re-
sults than the ones reported in the original papers, meaning
that direct comparison with the originally reported results
would be much more favourable for ViSiL.

Method cc web cc web∗ cc webc cc web∗c
DML [21] 0.971 0.941 0.979 0.959
CTE [28] 0.996 — — —
DP [7] 0.975 0.958 0.990 0.982
TN [32] 0.978 0.965 0.991 0.987
ViSiLf 0.984 0.969 0.993 0.987
ViSiLsym 0.982 0.969 0.991 0.988
ViSiLv 0.985 0.971 0.996 0.993

Table 5. mAP of three ViSiL setups and SoA methods on four
different versions of CC WEB VIDEO. (∗) denotes evaluation on
the entire dataset, and subscript c that the cleaned version of the
annotations was used.

6.3.2 Fine-grained incident video retrieval

Here, we evaluate the performance of ViSiL against the
state-of-the-art approaches on FIVR-200K [19]. We com-
pare with the best performing method reported in the orig-
inal paper, i.e. Layer Bag-of-Words (LBoW) [20] imple-
mented with iMAC features from VGG [29] and our two
re-implementations of DP [7] and TN [32]. Furthermore,
we tested our adaptation of VReL [10], but with no success
(neither when training on VCDB nor on ActivityNet). As
shown in Table 6, ViSiLv outperforms all competing sys-
tems, including DP and TN. Its performance is considerably
higher on the DSVR task achieving almost 0.9 mAP. When
conducting manual inspection of the erroneous results, we
came across some interesting cases (among the top ranked
irrelevant videos), which should actually be considered as
positive results but were not labelled as such (Figure 4).



Method
LAMV[2]
LAMV+QE [2]
ViSiLf

ViSiLsym

ViSiLv

mAP
0.536
0.587
0.589
0.610
0.631

per event class
0.715 0.383 0.158 0.461 0.387 0.277 0.247 0.138 0.222 0.273 0.273 0.908 0.691
0.837 0.500 0.126 0.588 0.455 0.343 0.267 0.142 0.230 0.293 0.216 0.950 0.776
0.889 0.570 0.169 0.432 0.345 0.393 0.297 0.181 0.479 0.564 0.369 0.885 0.799
0.864 0.704 0.357 0.440 0.363 0.295 0.370 0.214 0.577 0.389 0.266 0.943 0.702
0.918 0.724 0.227 0.446 0.390 0.405 0.308 0.223 0.604 0.578 0.399 0.916 0.855

Table 7. mAP comparison of three ViSiL setups with the LAMV [2] on EVVE. The ordering of events is the same as in [28]. Our results
are reported on a subset of the videos (≈80% of the original dataset) due to unavailability of the full original dataset.

Figure 4. Examples of challenging cases of related videos that
were mistakenly not labelled as positives in FIVR-200K.

6.3.3 Event video retrieval

For EVR, we compare ViSiL with the state-of-the-art ap-
proach Learning to Align and Match Videos (LAMV) [2].
ViSiL performs well on the EVR problem, even with-
out applying any query expansion technique, i.e. Average
Query Expansion (AQE) [9]. As shown in Table 7, ViSiLv

achieves the best results on the majority of the events in the
dataset. However, due to the fact that some of the videos
are no longer available, we report results on the currently
available ones that account for≈80% of the original EVVE
dataset.

6.3.4 Action video retrieval

We also assess the performance of the proposed approach
on ActivityNet [4] reorganized based on [10]. We com-
pare with the publicly available DML approach [21], our
re-implementations of DP [7] and TN [32], and the adapted
VReL [10]. For all runs, we extracted features from I3D
[6]. The proposed approach with the symmetric similarity
calculation ViSiLsym outperforms all other approaches by
a considerable margin (0.035 mAP) to the second best.

Run DSVR CSVR ISVR
LBoW [20] 0.710 0.675 0.572
DP [7] 0.775 0.740 0.632
TN [32] 0.724 0.699 0.589
ViSiLf 0.843 0.797 0.660
ViSiLsym 0.833 0.792 0.654
ViSiLv 0.892 0.841 0.702

Table 6. mAP comparison of three ViSiL setups and state-of-the-
art methods on the three tasks of FIVR-200K.

Method mAP
DML [21] 0.705
VReL [10] 0.209
DP [7] 0.621
TN [32] 0.648

Method mAP
ViSiLf 0.652
ViSiLsym 0.745
ViSiLv 0.710

Table 8. mAP comparison of three ViSiL setups and four publicly
available retrieval methods on ActivityNet based on the reorgani-
zation from [10].

7. Conclusions
In this paper, we proposed a network that learns to com-

pute similarity between pairs of videos. The key contri-
butions of ViSiL are a) a frame-to-frame similarity com-
putation scheme that captures similarities at regional level
and b) a supervised video-to-video similarity computation
scheme that analyzes the frame-to-frame similarity matrix
to robustly establish high similarities between video seg-
ments of the compared videos. Combined, they lead to a
video similarity computation method that is accounting for
both the fine-grained spatial and temporal aspects of video
similarity. The proposed method has been applied to a num-
ber of content-based video retrieval problems, where it im-
proved the state-of-art consistently and, in several cases,
by a large margin. For future work, we plan to investigate
ways of reducing the computational complexity and apply
the proposed scheme for the corresponding detection prob-
lems (e.g. video copy detection, re-localization).
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[9] Matthijs Douze, Jérôme Revaud, Cordelia Schmid, and
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Hervé Jégou. Event retrieval in large video collections with
circulant temporal encoding. In Proceedings of the IEEE
Conference on Computer Vision and Pattern Recognition,
pages 2459–2466, 2013.

[29] Karen Simonyan and Andrew Zisserman. Very deep convo-
lutional networks for large-scale image recognition. arXiv
preprint arXiv:1409.1556, 2014.

[30] Jingkuan Song, Yi Yang, Zi Huang, Heng Tao Shen, and
Richang Hong. Multiple feature hashing for real-time large
scale near-duplicate video retrieval. In Proceedings of the
19th ACM international conference on Multimedia, pages
423–432. ACM, 2011.

[31] Jingkuan Song, Hanwang Zhang, Xiangpeng Li, Lianli Gao,
Meng Wang, and Richang Hong. Self-supervised video
hashing with hierarchical binary auto-encoder. IEEE Trans-
actions on Image Processing, 27(7):3210–3221, 2018.

[32] Hung-Khoon Tan, Chong-Wah Ngo, Richard Hong, and Tat-
Seng Chua. Scalable detection of partial near-duplicate
videos by visual-temporal consistency. In Proceedings of the
17th ACM international conference on Multimedia, pages
145–154. ACM, 2009.

[33] Giorgos Tolias, Ronan Sicre, and Hervé Jégou. Particular
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Supplementary materials

A. Additional Results
A.1. Different similarity calculation functions

In this section, we compare the impact of different func-
tions, other than CS, on the frame-to-frame (F2F) and
video-to-video (V2V) similarity calculation. In general,
CS can be considered to be equivalent to a Max-Pooling
(MP) function followed by Average-Pooling (AP). A differ-
ent combination could be the application of two AP func-
tions. Table 9 illustrates the results for different combina-
tions of the core similarity functions of the proposed system
on FIVR-5K. It is evident that the use of two AP functions
for V2V does not work at all. The run with the two AP for
F2F and CS for V2V achieves competitive mAP, but still
lower than the run with CS in both functions as proposed.

F2F V2V DSVR CSVR ISVR
MP-AP MP-AP 0.880 0.869 0.777
AP-AP MP-AP 0.769 0.748 0.682
MP-AP AP-AP 0.640 0.652 0.623
AP-AP AP-AP 0.439 0.436 0.341

Table 9. mAP comparison of four pooling combinations for frame-
to-frame and video-to-video similarity calculation on FIVR-5K.
MP stands for Max-Pooling and AP for Average-Pooling.

A.2. Impact of hyperparameter values

In this section, we compare the impact of different val-
ues of hyperparameter γ, r and W , on the performance of
the proposed system. As default values, we use the values
reported in the original paper, i.e. γ = 0.5, r = 0.1 and
W = 64, and change one at a time.

We first assess the impact of the margin parameter γ on
the retrieval performance of the proposed approach. Figure
5(a) illustrates the performance of the method trained with
different margins on the three tasks of FIVR-5K. Regarding
the DSVR task, one may notice that that the performance
of the model improves as the margin parameter increases.
However, this is not the case for the ISVR task. The ap-
proach reports high performance (mAP greater than 0.775)
for small values of γ, i.e. within range [0.25, 0.5], but per-
formance drops as γ increases.

Additionally, we assess the impact of the regularization
parameter r on the retrieval performance of the proposed
approach. Figure 5(b) illustrates the performance of the
method trained with different regularization parameters on
the three tasks of FIVR-5K. On DSVR and CSVR tasks,
the proposed approach achieves the best results for r = 1.0
with considerable margin from the second best, approxi-

mately 0.003 mAP. However, on the ISVR task, the perfor-
mance significantly dropped in comparison to the default
value (r = 0.1). For values lower than the default, the pro-
posed approach does not report competitive results on any
evaluation task.

Finally, we assess the impact of the size of video snippet
W on the retrieval performance of the proposed approach.
Figure 5(c) depicts the mAP of the method with different
values of W on the three tasks of FIVR-5K dataset. Re-
garding the DSVR and CSVR tasks, it is evident that the
larger the size of video snippets W the better the perfor-
mance of the proposed methods. The run with W = 96
yields the best results on both tasks with 0.880 and 0.870
mAP, respectively. However, the system’s performance on
the ISVR task is independent of the size of video snippets
used for training, since all runs report approximately the
same mAP.

A.3. Computational complexity

In this section, we compare the computational complex-
ity of different setups of the proposed approach. The pro-
posed method can be split in two distinct processes, an of-
fline and an online. The offline process comprises the fea-
ture extraction from video frames, whereas the online one
the similarity calculation between two videos.

In Table 10, we compare the MAC and iMAC runs (cf.
Table 2 of the paper) with the ViSiLf and ViSiLv in terms of
execution time and performance. In that way, we assess the
trade-off between the performance gain from the introduc-
tion of each component of the method, and the associated
computational cost. The average length of videos in FIVR-
5K is 103 seconds. All the experiments were executed on a
machine with an Intel i7-4770K CPU and a GTX1070 GPU.

For the offline process, all runs need approximately the
same time to extract frame features. The use of interme-
diate convolutional layer does not slow down the feature
extraction process, since both MAC and iMAC needs 950
ms for feature extraction. The extraction of regional vectors
(ViSiLf ) has minor impact on the speed, approximately 1%
increase of the total extraction time. Also, the application
of whitening and attention-based weighting does not signif-
icantly increases the extraction time; ViSiLv needs 80 ms
more than ViSiLf per video.

Regarding the online process, the complexity of calcu-
lating the frame-to-frame similarity matrix between videos
of M frames each, is O(M2N2), where N is the number
of regions per frame. This is to be compared to O(M2)
of frame-to-frame methods such as iMAC (where N = 1).
Based on our experiments, the MAC and iMAC runs need
less than 2.5 ms to calculate video similarity. The com-
putation of the proposed frame-to-frame similarity matrix
increases the execution time by 3.7 ms, which is more than
a 150% increase (comparing iMAC and ViSiLf ). Finally, in
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Figure 5. Impact of the margin hyperparameter γ, the regularization parameter r and video snippet size W on the performance of the
proposed method on FIVR-5K.

Run

MAC
iMAC
ViSiLf

ViSiLv

Comp. Time
Offline Online
0.95s 2.0ms
0.95s 2.3ms
0.96s 6.0ms
1.04s 9.5ms

FIVR-5K
DSVR CSVR ISVR
0.747 0.730 0.684
0.755 0.749 0.689
0.838 0.832 0.739
0.880 0.869 0.777

Table 10. mAP and execution time comparison of four versions of
the proposed approach on FIVR-5K. The execution time of the of-
fline process refers to the average feature extraction time per video.
The execution time of the online process refers to the average time
for the calculation of video similarity of video pairs.

ViSiLv , the second-stage CNN on the frame-to-frame sim-
ilarity matrix takes 40% of the execution time, and further
increasing it approximately by 3.5 ms but for a significant
performance gain.

B. Visual Examples

This section presents some visual examples of the out-
puts of the system components.

Figure 6 illustrates three visual examples of video frames
coloured based on the attention weights of their regions
vectors. Apparently, the proposed attention mechanism
weights the frame regions independently based on their
saliency. It assigns high weight values on the information-
rich regions (e.g. the concert stage, the Mandalay Bay
building); whereas, it assigns low values on regions that
contain no meaningful object (e.g. solid dark regions).

Additionally, Figure 7 illustrates examples of the input
frame-to-frame similarity matrix, the network output and
the calculated video similarity of two compared videos for
three video categories. The network is able to extract tem-
poral patterns from the input frame-to-frame similarity ma-
trices (e.g. strong diagonals, consistent parts with high sim-

ilarity) and suppress the noisy (i.e. small inconsistent parts
with high similarity values), in order to calculate the final
video-to-video similarity precisely. Also, sampled frames
from the compared videos are depicted for the better under-
standing of the different video relation types.



Figure 6. Examples of the attention weighting on arbitrary video frames: sampled video frames from the same video (top), attention maps
of the corresponding frames (bottom). Red colour indicates high attention weights, whereas blue indicates low ones.

Figure 7. Visual examples of the input and output of ViSiL for three different video relation types. Two sampled frames of the compared
videos are depicted on top, then the input frame-to-frame similarity matrix and the ViSiL output are displayed, and the final video-to-video
similarity is reported. In the similarity matrices, red colour indicates a high similarity score, whereas blue indicates low similarity.


