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Abstract—This paper investigates the feasibility of estimating
current air quality conditions in cities without official air quality
monitoring stations based on a statistical analysis of Twitter
activity. For this purpose, a framework for collecting and geotag-
ging air quality-related Twitter posts is developed and transfer
learning is applied to enable estimations for unmonitored cities
using data from monitored nearby cities. Experiments carried
out on five cities in the UK and five cities in the US suggest
that while Twitter-based estimates exhibit very high accuracy,
they are outperformed on average by simple spatial interpolation.
However, we find that a meta-model that combines estimates from
spatial interpolation with Twitter-based ones increases accuracy
in distantly located cities, highlighting the merits of Twitter-based
air quality estimation and motivating further work on the topic.

I. INTRODUCTION

Air pollution is a major environmental issue that occurs

as a result of human activity (e.g. carbon emissions from

cars) or natural processes (e.g. volcanic eruptions) and its

implications range from damages to food crops and buildings

to diseases in animals and humans. According to the World

Health Organization (WHO), air pollution is responsible for

an estimated 11.6% of all global deaths in 2012, while

92% of world’s population live in places where air pollution

exceeds WHO guideline limits. Although the problem is more

prominent in countries such as China, a large proportion of

European populations and ecosystems are also exposed to air

pollution levels that exceed the WHO air quality guidelines

according to a 2017 report on air quality in Europe from the

European Environmental Agency (EEA) [1].
One of the main areas for action to battle the adverse effects

of air pollution is raising people’s awareness with respect to air

quality and providing them access to real-time air quality in-

formation [2], [3]. However, the high costs of installation (e5-

30K per monitoring device [4]), maintenance and calibration

of reference stations result in sparse monitoring networks that

provide measurements only in few locations of large cities. As

a result, citizens of smaller urban areas and underdeveloped

regions, lack accessibility to air quality information. While

low-cost sensors provide a promising alternative means of air

quality monitoring in such areas, they are characterized by low

robustness and measurement repeatability [4] and, despite low,

their cost is not negligible.
In the past, several researchers have tried to address the

problems of estimating current air quality in unmonitored

locations (spatial prediction) and short-term air quality fore-

casting (temporal prediction) using statistical approaches that

model the relationships between air pollutants and various

explanatory variables such as lagged pollutant observations,

wind speed, solar radiation, cloud coverage, air temperature,

traffic, etc. (see [5] for a detailed review of such methods).

More recently, the rise of online social networks (OSNs) and

the wealth of almost real-time information that they provide

about a variety of real-world events and phenomena, has

motivated the development of air quality prediction methods

that are based on a statistical analysis of the publicly available

OSN content. That line of work, is based on the view of OSN

users acting as “social sensors” [6] and builds upon previous

successes on detecting and tracking real-world events (e.g. flu

outbreak detection and tracking [7], earthquake detection [8],

wildlife roadkill monitoring [9], etc.) based on a statistical

analysis of the content posted on these platforms. Methods of

this type have so far been applied for the estimation of city-

level air quality in China by analyzing content posted in Sina

Weibo (a Chinese microblogging website) with encouraging

results [10], [11], [12], [13].

In this paper we present the first, to the best of our knowl-

edge, attempt to perform OSN-based city-level air quality

estimations outside China. In particular, our study focuses on

cities in the UK and the US that exhibit important differences

compared to Chinese cities: a) high air pollution events

are less frequent and pronounced, b) their population and,

consequently, the volume of OSN content they generate is

considerably smaller. In addition, our work is the first to use

Twitter as data source for air quality estimation. Although this

imposes the development of a Twitter-oriented data collection

and mining pipeline, it makes the proposed method applicable

worldwide. Besides that, previous works consider only 24-

hour temporal bins, while in our work we also consider 6-hour

and 12-hour ones. While a 24-hour granularity is useful for a

post-hoc analysis, finer-grained estimates provide actionable

information and it is therefore important to evaluate the

accuracy under this setting. Moreover, with the exception of

[10], all previous related works build and evaluate estimation

models on the same city, while we adopt a more realistic setup

where models are evaluated only on cities that have not been

used for training.

Our approach collects air quality-related tweets from the

Twitter API using a set of air quality-related keywords and

then estimates the location to which they refer using a state-

of-the-art location estimation method [14]. In the sequel, all

tweets falling in a particular spatiotemporal bin are pooled

together to form a single textual document that is represented

using a Bag-of-Words (BoW) scheme. This representation

forms the basis for the developed air-quality estimation mod-

els. Compared to simpler types of features such as the number
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of tweets in each spatiotemporal bin and their polarity (i.e.

whether they refer to bad or good air quality) that were used

in previous works [11], [12], [13] we found that BoW features

lead to better results. Finally, our work is the first that rec-

ognizes the multi-task nature of spatial air quality prediction

and uses multi-task learning techniques (data pooling, joint

feature selection and sample weighting) to build a robust, city-

invariant model.
Traditional approaches for spatial air quality prediction

include spatial interpolation (e.g. Inverse Distance Weighting

(IDW) and variations of Kriging [15]), dispersion models

[16] and Land Use Regression (LUR) variants [17]. Among

these methods, dispersion and LUR are known to generate

robust long-term intra-city predictions (when enough data are

available) but spatial interpolation is usually preferred for

spatially coarser short-term estimations [5]. Therefore, in our

study we compare our city-level Twitter-based estimates with

those generated by a spatial interpolation method (IDW). Our

experiments show that models based only on Twitter infor-

mation provide fairly accurate estimates but perform worse

than spatial interpolation. However, when spatial interpolation

estimates are carefully combined with Twitter-based ones,

better accuracy can be obtained.

II. METHODOLOGY

Our work aims at producing accurate estimates of current air

quality conditions for cities without air quality monitoring in-

frastructure based on Twitter activity and measurements from

nearby cities. To simplify our analysis, we focus on estimating

PM2.5 but it is straightforward to extend the approach to

other pollutants. The developed framework consists of three

main components: a) data collection, b) feature extraction,

c) multi-task learning. Data collection and feature extraction

are described in sections II-B and II-C, respectively, while

section II-A gives the problem formulation and presents our

multi-task learning approach.

A. Problem formulation and transfer learning approach
Spatial prediction deals with the problem of estimating a

quantity of interest in a set of locations on which the quantity

is not measured, based on measurements of the quantity in

another set of monitored locations. In this context, the quantity

of interest is city-wise average PM2.5 and CM /CU correspond

to monitored/unmonitored cities. Due to the high correlation

between PM2.5 values in nearby locations, the problem can

be tackled using simple spatial interpolation techniques such

as IDW, which estimates PM2.5 in an unmonitored city as a

weighted average of the observed PM2.5 in nearby cities.
In this paper we follow a model-based approach. For each

city cj ∈ CM we construct a set of N training examples

Dcj = {(x1, y1), . . . , (xN , yN )} where xi ∈ Rd is a d di-

mensional input vector that provides an informative summary

of the tweets referring to cj during the i-th temporal bin (see

section II-C) and yi ∈ R is the average PM2.5 concentration

in cj during the same temporal bin. For cities cq ∈ CU , only

xi are available and our aim is to build a model hcq : X → Y
for each cq ∈ CU in order to estimate the unknown yi.

The problem at hand can be considered as a special type of

transfer learning [18] where there are multiple target learning

tasks hcq , cq ∈ CU (as in multi-task learning [19]) for which

labeled data are completely unavailable (i.e. unmonitored

cities) while there are plenty of training data for a number of

auxiliary tasks (nearby cities with air quality measurements)

hcj , cj ∈ CM that are related to the target tasks.
Transfer learning approach: Assuming that air pollution

exhibits a similar statistical dependence with Twitter activity

in cities that share common characteristics (i.e. P (Y cj |Xcj ) ≈
P (Y ci |Xci) as sim(cj , ci) ≈ 11), we follow a data pooling

approach and train a regression model h on D =
⋃

cj∈CM
Dcj

that learns to simultaneously minimize the prediction error on

all monitored cities and we therefore expect it to yield accurate

predictions for the unmonitored cities as well.
Besides data pooling, we also apply explicit feature selec-

tion to ensure that the learned model will be constrained to a

subset of the Twitter-based features that are highly correlated

with PM2.5 in all cities. To this end, we compute the Pearson
correlation coefficient between each feature Xi and the target

Y and keep the k features that exhibit the highest correlation.

This lower dimensional feature representation is expected to

facilitate learning a more robust, city-invariant model.
Finally, under the assumption that the smaller the distance

d(cj , ci) between two cities, the higher the similarity of their

conditional distributions, we develop a weighted data pooling

variant where each training example gets a weight that is

inversely proportional to the distance between the city it

belongs to and the target city.

B. Data collection
Twitter data: Twitter provides a free API2 that offers real-

time access to a sample of its public data. There are two main

methods to retrieve tweets using the API. The “location-based”

method, allows retrieval of geotagged tweets around an area

of interest while the “keyword-based” method retrieves tweets

containing specific keywords regardless of location. Some of

the previous works that used Sina Weibo as the source OSN,

used the location-based method. In Twitter, however, only a

tiny fraction of the posts are geotagged (1.5% according to

[20]), which significantly limits the number of tweets about

air quality that can be collected3.
Therefore, we applied a data collection approach that com-

bines keyword-based search with location inference. Con-

cretely, we track a list4 of 120 English air quality-related key-

words that was composed with the help of air quality experts

and store all the returned tweets. Since the vast majority of

the collected tweets are not geotagged, tweet location should

somehow be inferred in order to identify tweets related to a

city of interest. To this end, previous works simply use the

account’s declared location as the post’s location, assuming

that the two locations will coincide in most cases. Here,

1Here we assume that sim(cj , ci) = 1 if cj , ci belong to the same country.
2https://dev.twitter.com/streaming
3In preliminary experiments we found that, e.g., only about 10 air quality-

related tweets per day are retrieved in London.
4https://goo.gl/FwB5od



TABLE I
DATA COLLECTION STATISTICS

Cntr. City Pop. #stations avg. PM2.5 #tweets per day
UK London 8.8M 9 11.8 3972
UK Liverpool 0.5M 2 7.6 108
UK Manchester 0.5M 3 9.2 321
UK Birmingham 1.1M 2 10.2 198
UK Leeds 0.75M 2 10.1 112
US New York 8.5M 10 7.9 2564
US Boston 0.7M 4 8.1 574
US Philadelphia 1.6M 3 10.0 478
US Baltimore 0.6M 2 8.5 394
US Pittsburgh 0.3M 2 10.7 169

we follow a more elaborate approach that employs a recent

state-of-the-art location estimation method [14]. This method

works by dividing the earth surface into rectangular cells, and

then computing the probabilities of each term occurring in

each cell, using a very large training corpus of geotagged

items. Given an item with unknown location, a probability

is computed for each cell based on the item’s terms and the

center of the most likely cell is used as the item’s estimated

location. Experiments conducted in [21] (section 2.1.2) show

that when the confidence of the method for an item’s estimated

location is higher than 0.6, this location lies within 10 km of

the actual location 94% of the time.
In our task, the location estimation method of [14] is applied

as follows. Since we are actually interested in the location that

the tweet refers to instead of the upload location, we first

check if a location can be estimated with high confidence

(≥ 0.8) based on the tweet content and in case it does we

use it as the tweet location. Otherwise, similarly to previous

works, we use the account’s declared location as the tweet

location. However, instead of relying on simple text matching

(which would preclude location recovery in case of location

descriptions referring to, e.g., well-known city districts), we

again perform location estimation using the account’s location

description as input. The number of tweets assigned daily to

each city using this approach is shown in Table I.
Air quality data: To collect ground truth PM2.5 mea-

surements for the selected cities we use the OpenAQ API5

and retrieve hourly historical measurements from all stations

located within each city’s bounding box6. The number of

stations measuring PM2.5 in each city is shown in Table I.

To calculate a single hourly PM2.5 value for each city, we

average the measurements of the respective stations.

C. Feature extraction
To generate a descriptive representation of the tweets as-

signed to a city c during a temporal bin t (i.e. spatiotemporal

bin (c, t)), we use a BoW scheme. First, all tweets are prepro-

cessed by applying tokenization, lowercasing and stopword

removal. Then, we create a vocabulary W = {w1, . . . , wn}
that consists of the n=10,000 most frequently occurring words

in a random 1 million sample of the collected tweets. Using

this vocabulary, a BoW vector x = [x1, . . . , xn] is generated to

represent all tweets in (c, t), where xi denotes the number of

tweets containing wi divided by the total number of tweets in

(c, t). In addition to this ‘current’ BoW representation, we also

5https://docs.openaq.org/
6Bounding boxes were obtained from Flickr: https://www.flickr.com/places

Fig. 1. Scatter plot of distances and Pearson r between average daily PM2.5

concentrations for all distinct city pairs in UK and US.

generate lagged BoW representations (denoted as BoW−j),

where instead of considering only the tweets posted during

the current temporal bin t we also consider the tweets of the j
previous bins. Lagged BoW representations aim at capturing

dependencies between Twitter-posts and air pollution that

extend beyond the current temporal bin.

III. EXPERIMENTS

A. Experimental setup
To simulate the spatial air quality prediction task, we

collected data for five cities in the UK and five cities in the

US (see Table I) for a time period spanning almost a whole

year (8/2/2017-18/1/2018). Each city is in turn treated as the

test city (hypothetically without air quality measurements) and

all the remaining neighboring cities are used for training.

For each city, we train and evaluate models able to perform

predictions at three different temporal granularities: 6, 12 and

24 hours. This is accomplished by grouping the hourly PM2.5

observations into correspondingly sized temporal bins and

calculating a single ground truth PM2.5 value for each bin as

the average of the hourly values. Prediction accuracy for each

city and temporal granularity is measured in terms of Root
Mean Squared Error (RMSE) and macro averaging is applied

to calculate country-wise or overall performance (denoted as

aRMSE). In all our experiments we use Gradient Tree Boosting
[22] as the regression algorithm, since it is recognized as one

of the best off-the-shelf supervised learning algorithms [23]

and was found to perform equally good or better compared to

other algorithms in a set of preliminary experiments.

B. Baseline performance
Figure 1 shows a scatter plot of the distances and the

Pearson r between average daily PM2.5 concentrations for

all distinct city pairs in UK and US. Clearly, the smaller the

distance between two cities, the higher the correlation between

their average daily PM2.5 concentrations. Given this high

spatial dependence, it is not surprising that spatial interpolation

methods such as IDW yield highly accurate estimates as shown

in Table II. Moreover, we see that a baseline that always

predicts the mean PM2.5 value per city has a relatively small

error which is due to the fact that PM2.5 levels in the studied

cities are generally low and exhibit small variability.

C. Within-city predictions
Before evaluating spatial PM2.5 prediction using our transfer

learning approach, we first evaluate the predictability of PM2.5



TABLE II
ARMSE OF BASELINE METHODS

UK US Overall
6h 12h 24h 6h 12h 24h 6h 12h 24h

IDW 3.79 3.34 3.09 4.12 3.73 3.41 3.96 3.54 3.25
mean 7.00 6.64 6.36 4.60 4.26 4.02 5.80 5.46 5.19

TABLE III
ARMSE OF DIFFERENT TWITTER FEATURES

#tw #aqs #high all BoW BoW−1 BoW−2

6h 5.96 5.93 5.98 5.84 5.15 4.99 4.97
12h 6.17 5.98 6.02 5.77 4.96 4.84 5.16
24h 5.83 6.11 5.82 5.52 4.65 4.96 5.16

in each city using a model trained on Twitter and ground

truth data of the city. As already discussed, this represents

an unrealistic setup because ground truth data is not available

for unmonitored cities. However, it is suitable for assessing

the effectiveness of different Twitter features. In this set of

experiments, data from each city is split based on time, using

odd months for training and even months for testing.
Table III shows the results obtained using models trained

on ‘current’ and lagged BoW features, as well as four simpler

Twitter features that we extracted7: ‘#tw’ (total number of

tweets in each spatiotemporal bin), ‘#aqs’ (number of tweets

that provide information on current air quality), ‘#high’ (num-

ber of tweets that refer to high air pollution levels) and ‘all’

(the concatenation of ‘#tw’, ‘#aqs’ and ‘#high’). We notice

that for all temporal granularities, ‘all’ leads to better accuracy

than ‘#tw’, ‘#aqs’ and ‘#high’, suggesting that these features

capture complementary information about current air quality.

However, we see that the best performance for each temporal

granularity is obtained by a BoW variant and, interestingly, we

notice that for finer temporal granularities it is beneficial to

use lagged BoW features (BoW−2 and BoW−1 for the 6- and

the 12-hour temporal granularity, respectively). Based on these

results, subsequent experiments employ the best performing

BoW representation for each temporal granularity.

D. Cross-city predictions
We now turn into the main focus of our paper, i.e. spatial

PM2.5 prediction, and evaluate our transfer learning approach

according to the setup described in section III-A. Table IV

shows the results obtained when using full-dimensional BoW

vectors (‘full’ column) as well as vectors where only the

top-k most correlated features are kept, with (w=1) and

without (w=0) sample weighting. First, we observe that the

performance of full-dimensional BoW is considerably worse

compared to the within-city setup. As expected, the absence

of city-specific training data makes the learning task more

difficult. With respect to the different transfer learning se-

tups, we see that joint feature selection results in important

performance gains in all temporal granularities, with the best

results obtained when the top 50 or 100 features are used.

Sample weighting, on the other hand, has a less pronounced

but consistently positive effect.
Comparing the performance of our Twitter-based estimates

with those of IDW, we notice that they do not perform on

7‘#aqs’ and ‘#high’ were obtained by applying specialized tweet classifiers
whose details can be found in [21], section 4.3.

TABLE IV
CROSS-CITY ARMSE WITH DIFFERENT TRANSFER LEARNING SETUPS

full k=10 k=20 k=50 k=100 k=200 k=500

w
=

0 6h 5.36 5.48 5.28 5.21* 5.24 5.29 5.31
12h 5.21 5.29 5.18 5.12 5.09 5.11 5.15
24h 4.97 4.89 4.78 4.78 4.75 4.79 4.86

w
=

1 6h 5.35 5.47 5.27 5.21* 5.24 5.29 5.30
12h 5.21 5.26 5.18 5.11 5.08* 5.11 5.16
24h 4.95 4.85 4.77 4.76 4.73* 4.77 4.84

par. We believe that this result should be largely attributed to

the fact that the studied cities exhibited very good air quality

conditions for an overwhelming part of the studied period

which makes it less likely for people to express their feelings

about air quality on Twitter. Our findings match those reported

in [10] where IDW was also found more accurate than the

proposed approach under good air quality conditions.
Despite that, we notice that Twitter-based estimates carry

considerable predictive power as they manage to obtain sig-

nificantly lower error than the mean baseline. Motivated by

that, we evaluated a late fusion scheme that combines our

Twitter-based estimates with the IDW estimates by learning a

meta-model that uses two features: a) IDW estimates for the

training cities, b) Twitter-based estimates for the training cities

(obtained through inner cross-validation). This model obtains

an aRMSE of 4.15, 4.00 and 3.63 for the temporal granularities

of 6, 12 and 24 hours respectively. Although its performance

is still worse on average compared to IDW, it performs

better than IDW in 3 out of 10 cities8: Boston, London and

Pittsburgh. We notice that these cities are the most distant (on

average) to the rest of the studied cities in each country, thus

limiting the accuracy of spatial interpolation. This shows that

exploiting Twitter information can be beneficial for improving

air quality estimates even in cities with good average air

quality conditions when they lie far from monitored cities.

IV. CONCLUSION AND FUTURE WORK

We presented a methodology for performing Twitter-based

air quality estimations on cities that lack monitoring infras-

tructure. Our approach was found to provide fairly accurate

estimates on a case study involving cities in the UK and the

US. Although these estimates are less accurate than estimates

obtained through spatial interpolation, we found that by com-

bining the two types of estimates it is possible to improve

accuracy in certain cities. In the future, we would like to extend

our empirical study to additional air pollutants and to a larger

and more diverse (in terms of population, country, air quality

levels) set of cities. Moreover, we would like to experiment

with more sophisticated textual representations (e.g. [24]) and

transfer learning methods. Finally, it would be interesting to

study whether better accuracy could be obtained by exploiting

the image content of tweets using image-based air quality

estimation approaches (e.g. [25]).
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