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We introduce pygrank, an open source Python package to define, run and evaluate node ranking
algorithms. We provide object-oriented and extensively unit-tested algorithmic components, such
as graph filters, post-processors, measures, benchmarks, and online tuning. Computations can be
delegated to numpy, tensorflow, or pytorch backends and fit in back-propagation pipelines. Classes can
be combined to define interoperable complex algorithms. Within the context of this paper, we compare
the package with related alternatives, describe its architecture, demonstrate its flexibility and ease of
use with code examples, and discuss its impact.
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1. Motivation and significance

Representing data as graphs is popular in many domains;
this involves designating data instances as nodes and linking
the related instances through edges. Various graph analysis ap-
proaches have been developed, with node ranking algorithms
being a powerful option when scoring nodes based on link struc-
ture and prior scores. Node ranking techniques include spectral
graph filters [1], which can see use in community detection [2,3],
link prediction [4,5], and graph neural networks [6,7]. However,
most approaches employ algorithms and parameters with little
to no ablation studies, when different choices could better match
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the structure of analyzed or - in case of deployed tools — new
graphs.

To enable thorough investigation of node ranking algorithms
and variations, we developed the pygrank Python package that
implements a wide range of algorithmic components for machine
learning and data mining pipelines. These include popular graph
filters, objective enhancements (e.g., fairness-aware variations),
supervised or unsupervised measures to evaluate algorithms on
benchmark tasks, and online tuning of parameters.

Using the package is as simple as installing it by running
the command line instruction pip install --upgrade pygrank, for
example in a virtual environment, and importing it within source
code. The imported package provides interfaces to define, run,
and compare node ranking algorithms that comprise multiple
components. By default, computations are delegated to efficient
CPU-only processing with numpy for vector [8] and scipy [9] for
sparse matrix operations. Developers can switch to different code
execution backends that make use of in-built GPUs with either
code instructions or by editing a local settings file.
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Table 1
Comparison of pygrank with alternatives for node ranking algorithms.
package ad-hoc backends general postpr. tuning backpr. eval.
networkx v numpy v
igraph v custom C++ v
pygsp v numpy v
dgl v mxnet, pytorch, tensorflow v
pyg v pytorch v
tfgnn v tensorflow v
spektral v tensorflow v
pygrank v numpy, pytorch, tensorflow v v v v v

pygrank brings together a large number of node ranking lit-
erature practices (see Section 5). These can compare new and
existing graph mining algorithms, construct algorithms from mul-
tiple components, and enable applications in different fields, such
as social media or biological network analysis. The package has
supported more than 7 publications on node ranking algorithms
by the authors, whose results have been integrated in the code
base and referenced in the documentation.

2. Scientific and technological context

Typically, node ranking algorithms build on the notion of
graph signals, that is, maps between graph nodes and corre-
sponding scores (real numbers). Signal priors hold “personalized”
node information, such as probabilities that nodes are members
of metadata communities [10]. Information can be propagated
through edges with graph shift operations and graph filters ag-
gregate multi-hop shifts based on either ad-hoc assumptions in
the node space of how propagation behaves (e.g., as a stochastic
random walk with restart [11]) or the desired impact on the
adjacency matrix’s eigenvalue spectrum [1]. Non-personalized
variations are obtained when all nodes hold the same prior scores.

Most node ranking algorithms consist of base filters and post-
processing to augment their outcomes. Researchers and data
scientists select which algorithms to use based on either ad-hoc
criteria or on evaluation of competing alternatives on test graphs
with supervised or unsupervised measures. In practice, popu-
lar ad-hoc algorithms are implemented in graph management
packages, such as networkx [12] and igraph [13], or deep graph
learning packages, such as DGL [14], pyg [15], tfgnn [16], and
spektral [17]. Other implementations are parts of scientific tools,
such as textrank [18]. Finally, pygsp [19] provides many types of
graph filters, but does not support non-spectral analysis and does
not fit into machine learning pipelines.

Table 1 compares pygrank to other packages that could run
node ranking algorithms in terms of (a) provision of ad-hoc
graph filters, (b) supported backends, (c) ability to define general-
purpose filters with no additional coding, (d) postprocessing to
improve outcomes, (e) online tuning, (f) backpropagation sup-
port, and (g) evaluation measures of algorithm quality to enable
both supervised and unsupervised evaluation depending on busi-
ness needs. We consider only base capabilities that pertain to
node ranking and are usable by non-experts without additional
development. For example, external autoML packages, such as
autogluon [20], require more coding to use in deep graph learning
setups.

Overall, pygrank introduces new functionality and combines
advantages of other packages; the latter span broader scopes
but do not adequately explore node ranking. Hence, when node
ranking is needed, our implementations can be plugged in graph
mining and machine learning applications to easily assemble al-
gorithms from novel or existing graph filters and postprocessors.
The package further simplifies writing benchmark experiments
for the selection of best algorithms and can automatically tune
parameters to fit on graphs encountered at runtime.

3. Software description
3.1. Software architecture

Fig. 1 illustrates the package’s functional components, mod-
ules and dependencies. For ease of use, all components are acces-
sible from the top level import. The core manages programming
interface abstractions of backends, defines graph signals, and
provides additional utilities, such as graph preprocessors to be
used by measures or algorithms. Measures defines supervised
and unsupervised measures that either compare posterior graph
signals to ground truth ones or assess quantitative characteris-
tics in relation to graph dynamics. Algorithms comprises graph
filters, convergence, early stopping schemes, postprocessors, and
online tuning components, which can be combined to define
a variety of interoperable node ranking algorithms. Benchmarks
provides helper methods to quickly design node ranking ex-
periments for collections of graphs, algorithms and training-test
splits under evaluation measures. Fastgraph provides a graph data
structure that re-implements networkx’s programming interfaces
while avoiding data constructs not used by our package (e.g. node
neighbor indexes), therefore fitting larger graphs in memory and
constructing them with fewer computations.

All components are curated so that, for connected undirected
graphs and often for directed ones, combinations run in log-
linear amortized times O(E logE) with respect to the number
of edges E. In particular, the shift operator of graph filters re-
peats sparse matrix-vector multiplications that only traverse the
non-zero elements of graph adjacency matrices. At worst, to
reach small numerical tolerances, repetitions grow logarithmi-
cally with the number of edges for connected undirected graphs
and are generally upper-bounded by most filters. Graph signal
element-by-element operations (e.g. addition, scalar multiplica-
tion) conclude in time proportional to the number of nodes,
which is similar or less than the number of edges. Preprocess-
ing only operates on the diagonal and non-zero elements of
graph adjacency matrices, which correspond to the number of
nodes and edges respectively. Measures involve only element-
by-element graph signal operations, sampling fixed numbers of
non-neighbors for each node, and sorting node scores; these
take up linear or log-linear time with respect to the number of
nodes - and hence edges. Finally, postprocessors and automatic
tuning employ simple graph signal operations and - sometimes
- bounded numbers of base algorithm and evaluation repetitions.
Thus, running times of component combinations are at worst log-
linear with respect to the number of edges. Large multiplicative
terms could apply, but these are scale-free and the package
remains applicable to graphs that fit in memory (e.g. with tens
of millions of edges).

In addition to the pygrank package, which can be found in
the namesake sub-directory of our code base, we also imple-
ment software engineering practices that ensure high code qual-
ity, maintainability, and extensibility. These include unit testing
of components to assert that algorithms perform as advertised,
at least on sample graphs, continuous integration that ensures
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Fig. 1. Functional components of pygrank, their modules and dependencies.

that tests pass and achieve near-100% code coverage, git hook
scripts to automatically document newly-integrated components,
extensive documentation, and comprehensive code examples.

3.2, Software functionality

In pygrank, graph signals passed to code components are com-
patible with multiple practical data structures, such as dictio-
naries between nodes and scores, or lists of nodes to assign
scores of 1 to. In both cases, omitted nodes obtain scores of
0. The package defines its own GraphSignal class to hold node
ranking outputs. Its instances can also be manually generated to
be used as inputs and behave as Python dictionaries between
nodes and scores. Internally, signals hold (retrievable) backend
primitives (e.g. numpy arrays, tensorflow tensors, pytorch tensors)
to keep track of scores and are seamlessly exchanged between
code components. This speeds up computations and makes most
algorithms backpropagate-able on GPU backends.

Graph filters are initialized based on their types and parame-
ters, and independently from data on which they run. Parameters
include symmetric vs. column-based graph adjacency matrix nor-
malization, employing the renormalization trick [21], caching
repeated computations, and following the Lanczos method [22]
for fast approximation of results. Filters or more complex algo-
rithms are used as callables that take as inputs combinations
of networkx graphs and graph signals. GraphSignal instances are
tied to specific graphs and, when passed to algorithms, the graph
argument can be omitted. Postprocessors are initialized with base
algorithms to be wrapped (e.g., filter instances) and additional pa-
rameters. Multiple postprocessors can wrap each other to create
complex algorithms, such as organization of nodes into over-
lapping or partitioned communities and rank-based link predic-
tion. Corresponding code examples are provided in the package’s
documentation.

A variety of evaluation measures are provided to assess fil-
ter outcomes. There are two types of measures: (a) supervised
ones that are instantiated with ground truth graph signals, and
(b) unsupervised measures that are instantiated with a fastgraph
or networkx graph they are applied on. Providing the graph to
unsupervised measures is optional, as long as GraphSignal in-
stances (e.g., the outcomes of algorithms) are evaluated later on
to retrieve the graph from those. The package also implements
measures that address multiple objectives, such as trading-off
between measures or assessing the outcome of more than one
community detection tasks.

The package also offers online tuning interfaces used as nor-
mal node ranking algorithm callables while wrapping either sets
of competing algorithms or parameterized algorithm definitions.
These respectively select node ranking algorithms and parame-
ters at runtime by optimizing any of provided measures. In case of
supervised measures, tuning is guided by a train-validation split
of graph signal inputs. Whether measures are optimized for high
or low values is automatically determined.

Finally, the package supports large-scale experimentation. To
this end, it includes helper methods that load graph datasets
following the SNAP format of defining edges through node pairs
and node communities as lists [23], download and parse certain
datasets from online sources, perform training-test splits on com-
munity data, and even automate graph neural network training
for node classification. Loaded graphs are by default generated
with the fastgraph module, but they can also be constructed as
networkx graphs. Methods can apply postprocessors and create
more variations of large sets of node ranking alternatives. A
benchmarking interface can compare multiple algorithms across
many datasets with many training-test split ratios and under
designated measures.

4. Illustrative examples

Algorithm definition. The following code defines a HeatKernel
filter [24] with custom parameters and creates a seed oversam-
pling variation [25] to improve metadata community recom-
mendations. Then, a helper method creates two more variations
wrapping the two algorithms with the sweep ratio [26] while
adding a “+sweep” suffix to their names. Finally, all algorithms
are wrapped with a normalization step and run on an example
graph dataset to score how much nodes relate to a community
of interest. Score-based conductance [27] assesses all outcomes
(lower is better) and we show the console output, which verifies
that there can be merit to combining multiple components.

import pygrank as pg

algorithm = pg.HeatKernel(t=5, # the number of hops

to place maximal importance on
normalization="symmetric",
renormalize=True)

algorithms = {"hk5": algorithm, "hkb5+oversampling": pg
.SeedOversampling(algorithm)}

algorithms = algorithms | pg.create_variations(
algorithms, {"+sweep": pg.Sweepl)

algorithms = pg.create_variations(algorithms, pg.
Normalize)



Emmanouil Krasanakis, Symeon Papadopoulos, loannis Kompatsiaris et al.

_, graph, community = next(pg.
load_datasets_one_community (["EUCore"]))

personalization = {node: 1. for node in communityl} #
missing scores considered zero

measure = pg.Conductance() # smaller means tightly-
knit stochastic community

for algorithm_name, algorithm in algorithms.items():
scores = algorithm(graph, personalization) #

returns a dict-like pg.GraphSignal

pg.benchmark_print_line(algorithm_name, measure (

scores), tabs=[20, 5]) # pretty
hk5 9.53
hkbS+oversampling 9.11
hkb5+sweep 9.18
hk5+oversampling+sweep 8.84

Benchmarks. The following code demonstrates benchmark ex-
periments on two datasets with community node labels to rec-
ommend new members by using half of the nodes for training
and the rest for testing. Assuming that graphs are immutable,
experiments are sped up by caching the outcomes of a shared
graph preprocessor. Console outputs by running the code (could
be formatted as latex too) on a random split assert the usefulness
of online tuning. This tends to exhibit similar or better AUC than
individual algorithms, where best algorithms could be different
for different graphs.

import pygrank as pg

datasets = ["CiteSeer", "EUCore"]
pre = pg.preprocessor (assume_immutability=True,
normalization="symmetric") # shared
algs = {"ppr.85": pg.PageRank (.85, preprocessor=pre),
"ppr.99": pg.PageRank (.99, preprocessor=pre,
max_iters=1000),
"hk3": pg.HeatKernel(3, preprocessor=pre),
"hk5": pg.HeatKernel(5, preprocessor=pre),
"tuned": pg.ParameterTuner (preprocessor=pre)’}
loader = pg.load_datasets_one_community(datasets)
pg.benchmark_print (pg.benchmark (algs, loader, pg.AUC,
fraction_of_training=.5))

ppr .85 ppr .99 hk3 hkb tuned
CiteSeer .87 .87 .87 .87 .87
EUCore .83 .48 .89 .87 .91

Defining graph neural networks. pygrank can help set up graph
neural network architectures employing node ranking algorithms.
For example, the following code implements the predict-then-
propagate architecture [6] for node classification; a multilayer
perceptron is defined with the keras package [28], pygrank prop-
agates perceptron prediction columns through the graph with
a namesake method, and outcomes pass through a softmax ac-
tivation. We start from a graph with node features, create a
seeded 60-20-20 training-validation-test split of nodes and train
the model with a helper method gnn_train. The tensorflow back-
end (similar implementations can be achieved for pytorch) lets
backpropagation pass through node ranking. Training would be
the same if test labels were masked to zeros. Notably, graph filter
propagation provided by the package takes up only two lines of
code to define and run.

import pygrank as pg

import tensorflow as tf

from tensorflow.keras.layers import Dropout, Dense
from tensorflow.keras.regularizers import L2

class APPNP(tf.keras.Sequential):
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def __init_ (self, num_inputs, num_outputs, hidden
=64) :
super (). _init__ ([
Dropout (0.5, input_shape=(num_inputs,)),
Dense(hidden, activation="relu",
kernel_regularizer=L2(0.005)),
Dropout (0.5),
Dense (num_outputs)])
self .ranker = pg.PageRank (0.9, renormalize=
True, assume_immutability=True,
use_quotient=False, error_type="iters",
max_iters=10) # 10 iterations

def call(self, features, graph, training=False):
# can call with tensor graph
predict = super().call(features, training=
training)
propagate = self.ranker.propagate(graph,
predict, graph_dropout=0.5*training)
return tf.nn.softmax(propagate, axis=1)

graph, features, labels = pg.load_feature_dataset ("
citeseer")
training, test = pg.split(list(range(len(graph))),
0.8, seed=5) # seeded split
training, validation = pg.split(training, 1 - 0.2 /
0.8)
model = APPNP(features.shape[1], labels.shapel[1])
with pg.Backend("tensorflow"): # pygrank with
tensorflow backend
pg.gnn_train(model, features, graph, labels,
training, validation,
optimizer=tf.optimizers.Adam(
learning_rate=0.01), verbose=
True)
print ("Accuracy", pg.gnn_accuracy(labels, model(
features, graph), test))

Online tuning also fits into machine learning pipelines. For
example, the following code lets APPNP’s ranker automatically
determine the diffusion parameter (par[0]e [0.5, 1]) per propa-
gated dimension of a “manual” PageRank definition. Tuning each
propagation improves the test accuracy score averaged across
code runs for seed = 0, 1, ...,9 from 76.2% to 77.5%. Parameter
selection is made to run on the numpy backend; as of writing, this
is several times faster than GPU backends (tensorflow, torch) for
graph signal shifts. The package spends most of its time on this
operation, due to frequent repetition and a running time propor-
tional to the number of graph edges. Other backend operations
do not create bottlenecks, as they are applied either infrequently
or element-by-element on node scores. After selecting param-
eters, computations return to the tensorflow backend, which is
backpropagate-able and could run further computations in the
GPU.

pre = pg.preprocessor (renormalize=True,
assume_immutability=True)
self.ranker = pg.ParameterTuner (
lambda par: pg.GenericGraphFilter ([par[0]
** i for i in range(int(10))],
preprocessor=pre, error_type="iters",
max_iters=10),
max_vals=[1], min_vals=[0.5], verbose=
False,
measure=pg.Mabs, deviation_tol=0.01,
tuning_backend="numpy")

5. Impact

pygrank brings together a variety of node ranking algorithm
tools. First, it has supported and integrates approaches validated
on many algorithms and variations. These range from works on
postprocessors (e.g. [25]) to early stopping criteria, and unsuper-
vised evaluation of ranking quality [27]. Second, it implements
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third-party research, including but not limited to PageRank [29],
HeatKernel [24] and absorbing random walk [30] graph filters,
custom adjacency matrix normalizations, including potential ren-
ormalization [21], sweep postprocessors for community detection
[26], caching and approximate Arnoldi space [31] speed-ups,
and tuning in the non-convex space of graph filter parameters
with a mixture of divided rectangles [32] and coordinate descent
optimization [33]. Usage of these features is simplified thanks to
interoperable interfaces.

We recognize four prospective applications of the package,
each achieved with only a few lines of code: (i) defining and run-
ning node ranking algorithms based on ad-hoc criteria,
(ii) defining multiple promising algorithms and selecting the best
with experiments on domain-related graph datasets, (iii) adjust-
ing algorithm parameters at runtime with online tuning, and
(iv) integrating algorithms in machine learning pipelines, such as
graph neural networks. These applications can help researchers
answer questions pertaining to which algorithms to use for differ-
ent graph domains, for instance by comparing multiple promising
algorithms on benchmark graph mining tasks and selecting the
best.

Moreover, pygrank enables principled exploration of new node
ranking algorithmic components or evaluation practices by com-
paring them to a variety of existing alternatives under scien-
tifically rigorous settings. For multi-component algorithms, the
same process also simplifies ablation studies. Overall, the package
reduces the development load of re-implementing code scattered
throughout the literature and promotes faster and on-the-point
research. These features have aided the authors in their work, and
could therefore also prove useful to other researchers working on
node ranking.

Finally, high-level programming interface abstractions define
and run algorithms with few lines of code and encourage use
of state-of-the-art practices, even by non-experts. In practice,
algorithm implementations are both scalable and come alongside
popular speed-ups that let them run fast, even on large graphs
with millions of edges. These characteristics make the package
ideal for integrating technologically-ready solutions with minimal
engineering costs.

6. Conclusions

We have developed a Python package, called pygrank, that
provides comprehensive and interoperable implementations of
graph node ranking algorithmic components, as well as tuning,
evaluation and benchmarking capabilities. The current version
comprises 7 types of highly parameterized base graph filters, 17
types of postprocessors (each featuring multiple variations), three
types of online parameter tuning strategies, and 30 algorithm
evaluation measures. In addition to parsing programming inputs,
it can automatically download and parse 15 web resources to
conduct out-of-the-box experiments. Algorithms have been op-
timized in terms of computational complexity, allocated memory
and speed-up techniques, and support backpropagation by GPU
backends.

In the future, we plan to integrate even more existing and
novel literature components in the code base. Researchers are
also encouraged to contribute implementations of their work.
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