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ABSTRACT
Online Social Networks (OSNs) have been widely adopted as a means of news
dissemination, event reporting, opinion expression and discussion. As a result, news
and events are being constantly reported and discussed online through OSNs such as
Twitter. However, the variety and scale of all the information renders manual analysis
extremely cumbersome, and therefore creating a storyline for an event or news story
is an effort-intensive task. The main challenge pertains to the magnitude of data to be
analyzed. To this end, we propose a framework for ranking the resulting communities
and theirmetadata on the basis of structural, contextual and evolutionary characteristics
such as community centrality, textual entropy, persistence and stability. We apply the
proposed framework on three Twitter datasets and demonstrate that the analysis that
followed enables the extraction of new insights with respect to influential user accounts,
topics of discussion and emerging trends. These insights could primarily assist the work
of social and political analysis scientists and the work of journalists in their own story
telling, but also highlight the limitations of existing analysis methods and pose new
research questions. To our knowledge, this study is the first to investigate the ranking
of dynamic communities. In addition, our findings suggest future work regarding
the determination of the general context of the communities based on structure and
evolutionary behavior alone.

Subjects Data Mining and Machine Learning, Network Science and Online Social Networks,
Social Computing
Keywords Online social networks, Community evolution detection, Community ranking,
Data mining

INTRODUCTION
OSNs have become influential means of disseminating news, reporting events and posting
ideas as well as a medium for opinion formation (Topirceanu et al., 2016). Such networks
combined with advanced statistical tools are often seen as the best sources of real-time
information about global phenomena (Lazer et al., 2009; Aiello et al., 2013). Numerous
studies of OSNs in relation to a variety of events have been conducted based on data
from Twitter, a micro-blogging service that allows users to rapidly disseminate and
receive information within the limit of 140 characters in a direct, grouped or global
manner (Williams, Terras & Warwick, 2013; Nikolov et al., 2015). Twitter is currently one
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1According to company statistics:
http://about.twitter.com/company (last
accessed on August 2016).

of the largest OSN platforms, with 313 million monthly active users1 and as such the
vast amounts of information shared through it cannot be accessed or made use of unless
this information is somehow organized. Thus, appropriate means of filtering and sorting
are necessary to support efficient browsing, influential user discovery, and searching and
gaining an overall view of the fluctuating nature of online discussions. Existing information
browsing facilities, such as simple text queries typically result in immense amounts of posts
rendering the inquirer clueless with respect to the online topics of discussion. Since
online social networks exhibit the property of community structure, one of the more
implicit manners of grouping information and thus facilitating the browsing process
is by detecting the communities formed within the network. Research on community
detection on static networks can be found in the Lancichinetti & Fortunato (2009) survey,
as well as in the works of Granell et al. (2015), Newman (2006), Leskovec, Lang & Mahoney
(2010) and Papadopoulos et al. (2012). Real-world OSNs, however, are definitely not
static. The networks formed in services such as Twitter undergo major and rapid changes
over time, which places them in the field of dynamic networks (Asur, Parthasarathy
& Ucar, 2007; Giatsoglou & Vakali, 2013; Palla, Barabasi & Vicsek, 2007; Takaffoli et al.,
2011; Tantipathananandh, Berger-Wolf & Kempe, 2007; Roy Chowdhury & Sukumar, 2014;
Gauvin, Panisson & Cattuto, 2014; Greene, Doyle & Cunningham, 2010; Aktunc et al., 2015;
Albano, Guillaume & Le Grand, 2014). These changes are manifested as users join in or
leave one or more communities, by friends mentioning each other to attract attention or
by new users referencing a total stranger. These trivial interactions seem to have a minor
effect on the local structure of a social network. However, the network dynamics could
lead to a non-trivial transformation of the entire community structure over time, and
consequently create a need for reidentification. Particularly in OSNs, the immensely fast
and unpredictably fluctuating topological structure of the resulting dynamic networks
renders them an extremely complicated and challenging problem. Additionally, important
questions related to the origin and spread of online messages posted within these networks,
as well as the dynamics of interactions among online users and their corresponding
communities remain unanswered.

To this end, we present a framework for analyzing and ranking the community structure,
interaction and evolution in graphs. We also define a set of different evolution scenarios,
which our method can successfully identify. A community here is essentially a subgraph
which represents a set of interacting users as they tweet and mention one another.
The edges of the subgraph represent the mentions made between users. A dynamic
community is formed by a temporal array of the aforementioned communities with
the condition that they share common users (Cazabet & Amblard, 2014; Nguyen et al.,
2014). Community evolution detection has been previously used to study the temporal
structure of a network (Gauvin, Panisson & Cattuto, 2014; Greene, Doyle & Cunningham,
2010; Palla, Barabasi & Vicsek, 2007; Takaffoli et al., 2011). However, even by establishing
only the communities that sustain interest over time, the amount of communities and thus
metadata that a user has to scan through is immense. In our previous work (Konstantinidis,
Papadopoulos & Kompatsiaris, 2013), we proposed an adaptive approach to discover
communities at points in time of increasing interest, but also a size-based varying threshold
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for use in community evolution detection. Both were introduced in an attempt to discard
trivial information and to implicitly reduce the available content. Although the amount
of information was somewhat reduced, the extraction of information still remained a
tedious task. Hence, to further facilitate the browsing of information that a user has to
scan through in order to discover items of interest, we present a sorted version of the
data similarly to a search engine. The sorting of the data is performed via the ranking of
dynamic communities on the basis of seven distinct features which represent the notions
of Time, Importance, Structure, Context and Integrity (TISCI). Nonetheless, the sorting
of textual information and thus some kind of summarization is only a side-effect of the
dynamic community ranking. The main impact lies in the identification and monitoring
of persistent, consistent and diverse groups of people who are bound by a specific matter
of discussion.

The closest work to dynamic community ranking was recently presented by Lu &
Brelsford (2014) in a behavioral analysis case study and as such it is used here as a baseline
for comparison purposes. However, it should be mentioned that the ranking was not the
primary aim of their research and that the communities were separately sorted by size
thus missing the notions of importance, temporal stability and content diversity which
are employed in the proposed framework. To the best of our knowledge, this is the first
time that structural, temporal, importance and contextual features are fused in a dynamic
community ranking algorithm for a modern online social network application.

Although the overall problem is covered by the more general field of evolving network
mining, it actually breaks down in many smaller issues that need to be faced. Table 1
presents the decomposition of the problem into these issues, together with popular available
methods which can be used to overcome them, along with the techniques employed by Lu
& Brelsford (2014) and the ones proposed by the TISCI framework which is presented here.

In this work, we consider the user activity in the form of mentioning posts, the
communities to which the users belong, and most importantly, the evolutionary and
significance characteristics of these communities and use them in the ranking process. The
proposed analysis is carried out in three steps. In the first step, the Twitter API is used to
extractmentioningmessages that contain interactions between users and a sequence of time
periods is determined based on the level of activity. Then, for each of these periods, graph
snapshots are created based on user interactions and the communities of highly interacting
users are extracted using the Infomap community detection method (Rosvall & Bergstrom,
2008). During the second step, the community evolution detection process inspects whether
any communities have persisted in time over a long enough period (eight snapshots). In
the last and featured step, the evolution is studied in order to rank the communities and
their metadata (i.e., tweeted text, hashtags, URLs, etc.) with respect to the communities’
persistence, stability, centrality, size, diversity and integrity characteristics, thus creating
dynamic community containers which provide structured access to information. The
temporal (evolutional) and contextual features are also the main reason why a static
community detection method was employed instead of a dynamic method which
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Table 1 Deconstruction of the evolving network mining problem.

Subproblem Available methods Lu & Brelsford (2014) Proposed framework

Event-based
Time-based

Granularity
selection

Activity-based
Event-based Time-based

Louvain
Infomap

Community
detection

Modularity Optimization

Infomap Infomap

Jaccard
Sorensen
Euclidean

Set
similarity

Cosine

Jaccard Jaccard

Reciprocal Rank
Multi-criteria analysis

Feature
fusion

Condorcet
None

Reciprocal Rank
Fusion

Size
Centrality

Information
ranking

TISCI
Size TISCI

would aggregate the information such as the one proposed by Nguyen et al. (2014).
In order to evaluate the proposed framework it is applied on three datasets extracted

from Twitter to demonstrate that it can serve as a means of discovering newsworthy pieces
of information and real-world incidents around topics of interest. The first dataset was
collected by monitoring discussions around tweets containing vocabulary on the 2014
season of BBC’s Sherlock, the second and third contain discussions on Greece’s 2015
January and September elections, and the last one containing vocabulary regarding the
2012 presidential elections in the US (Aiello et al., 2013). Three community detection
methods are also employed to demonstrate that Infomap is the preferable scheme.

Due to the lack of ground truth datasets for the evaluation of the proposed framework,
we devised and are proposing a novel, context-based evaluation scheme which could serve
as a basis for future work. It is our belief that by studying the contents of discussions being
made in groups and the evolution of these groups we can produce a better understanding of
the users’ and communities’ behavior and can give deeper insights into unfolding large-scale
events. Consequently, our main contributions can be summed up in the following:

• a novel ranking framework for dynamic communities based on temporal and contextual
features;
• a context-based evaluation scheme aimed to overcome the absence of ground truth
datasets for the community discovery analysis;
• an empirical study on three Twitter datasets demonstrating the merits of the proposed
framework.

An additional asset of the TISCI ranking method, which is the main contribution of
this paper, is that it was created to work with any kind of community evolution detection
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method that retains discrete temporal information and that it is independent of the choice
of the community detection algorithm applied to the individual timeslots.

RELATED WORK
Mining OSN interactions is a topic that has attracted considerable interest in recent years.
Interaction analysis provides insights and solutions to a wide range of problems such
as cyber-attacks (Wei et al., 2015), recommendation systems (Kim & Shim, 2014; Gupta
et al., 2013), summarization (Schinas et al., 2015; Lin, Sundaram & Kelliher, 2008) and
information diffusion (Yang, McAuley & Leskovec, 2013).

One of the most recent attempts comes from McKelvey et al. (2012) who presented the
Truthy system for collecting and analyzing political discourse on Twitter, providing real-
time, interactive visualizations of information diffusion processes. They created interfaces
containing several key analytical components. These elements include an interactive layout
of the communication network shared among the most retweeted users of a meme and
detailed user-level metrics on activity volume, sentiment, inferred ideology, language, and
communication channel choices.

TwitInfo is another system that provides network analysis and visualizations of Twitter
data. Its content is collected by automatically identifying ‘‘bursts’’ of tweets (Marcus et
al., 2011). After calculating the top tweeted URLs in each burst, it plots each tweet on a
map, colored according to sentiment. TwitInfo focuses on specific memes, identified by
the researchers, and is thus limited in cases when arbitrary topics are of interest. Both of
the aforementioned frameworks present an abundance of statistics for individual users but
contrary to our method, they do not take into account the communities created by these
users or the evolution of these communities.

Greene, Doyle & Cunningham (2010) presented a method in which they use regular
fortnight time intervals to sample a mobile phone network in a two month period and
extract the communities created between the users of the network. Although the network
selected is quite large and the method is also very fast; the system was created in order to
be applied on a mobile phone network which renders it quite different to the networks
studied in this paper. The collected data lack the topic of discussion and the content of the
messages between users, so there is no way to discover the reason for which a community
was transformed or the effect that the transformation really had on the topic of that
community. Moreover, although the features of persistence and stability are mentioned in
the paper, no effort was made in ranking the communities. Nonetheless, due to its speed
and scalability advantages, in this paper we decided to employ and extend their method
by introducing a couple of optimization tweaks which render it suitable for large scale
applications such as the analysis of an OSN.

Finding the optimal match between communities in different timeslots was proposed
in Tantipathananandh, Berger-Wolf & Kempe (2007), where the dynamic community
detection approach was framed as a graph-coloring problem. Since the problem is NP-
hard, the authors employed a heuristic technique that involved greedily matching pairs of
node-sets in between timeslots, in descending order of similarity. Although this technique
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has shown to perform well on a number of small well-known social network datasets such
as the Southern Women dataset, as the authors state in the paper, it does not support the
identification of dynamic events such as community merging and splitting thus losing
significant information which is of utmost importance in the proposed ranking framework
which heavily relies on the content and context of the tweets.

Takaffoli et al. (2011) considered the context of the Enron (250 email addresses
in the last year from the original dataset) and DBLP (three conferences from
2004 to 2009) datasets for evaluation purposes, but similar to Greene, Doyle &
Cunningham (2010) they also studied the context independently of community
evolution. They focused on the changes in community evolution and the aver-
age topic continuation with respect to changes in the similarity threshold. The
analyzed data presented valuable information as to how to select the similarity
threshold but no insight as to important communities, their users or specific topics.

Another dynamic community detection method used to extract trends was introduced
by Cazabet et al. (2012). They created an evolving network of terms, which is an abstraction
of the complete network, and then applied a dynamic community detection algorithm on
this evolving network in order to discover emerging trends. Although the algorithm is very
effective for locating trends, it does not consider the interactions made between various
users or the evolution of the communities.

The work by Lin, Sundaram & Kelliher (2008) bears some similarities in terms of
motivation as they also want to gain insights into large-scale involving networks. They do
this via extracting themes (concepts) and associating them with users and activities (e.g.,
commenting) and then try to study their evolution. However, they provide no way of
ranking the extracted themes, which is the focus of our work.

One of the main problems in detecting influential communities in temporal networks
is that most of the time they are populated with a large amount of outliers. While tackling
the problem of dynamic network summarization, Qu et al. (2014) capture only the few
most interesting nodes or edges over time, and they address the summarization problem
by finding interestingness-driven diffusion processes.

Ferlez et al. (2008) proposed TimeFall which performs time segmentation using cut-
points, community detection and community matching across segments. Despite the fact
that they do not rank the communities, the proposed scheme could be employed to extract
and detect evolving communities which would in turn be ranked by the TISCI framework.

InMucha et al. (2010), the concept of multiplex networks is introduced via the extension
of the popular modularity function and by adapting its implicit null model to fit a layered
network. Here, each layer is represented with a slice. Each slice has an adjacency matrix
describing connections between nodes which belong to the previously considered slice.
Essentially, they perform community detection on a network of networks. Although these
frameworks technically require a network to be node-aligned (all nodes appear in all
layers/timeslots), they have been used explicitly to consider relatively small networks in
which that is not the case by using zero-padding. However, this creates a huge overhead in
OSNs since the majority of users does not appear in every timeslot. In addition, Mucha et
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al. (2010) do not provide any method for the ranking of the extracted communities, which
is the focus of this paper.

A method for ranking communities, specifically quasi-cliques, was proposed by Xiao et
al. (2007) in which they rank the respective cliques in respect to their betweeness centrality.
However, they also do not take temporal measures into consideration and apply their
method on a call graph from a telecom carrier and a collaboration network of co-authors
thus excluding the context of the messages.

The most recent work regarding the extraction of information using evolving
communities was presented in Lu & Brelsford (2014) which studied the behavior of people
discussing the 2011 Japanese earthquake and tsunami. Although they did rank the static
communities by size, the evolution regarded only the before and after periods, so no actual
dynamic community ranking was performed.

OSN ANALYSIS FRAMEWORK
OSN applications comprise a large number of users that can be associated to each other
through numerous types of interaction. Graphs provide an elegant representation of data,
containing the users as their vertices and their interactions (e.g., mentions, citations) as
edges. Edges can be of different types, such as simple, weighted, directed and multiway
(i.e., connecting more than two entities) depending on the network creation process.

Notation
In this paper, we employ the standard graph notation G= (V ,E,w), where G stands for
the whole network; V stands for the set of all vertices and E for the set of all edges. In
particular, we use lowercase letters (x) to represent scalars, bold lowercase letters (x) to
represent vectors, and uppercase letters (X) to represent matrices. A subscript n on a
variable (Xn) indicates the value of that variable at discrete time n. We use a snapshot graph
to model interactions at a discrete time interval n. In Gn, each node vi ∈Vn represents
a user and each edge eij ∈ En is associated with a directed weight wij corresponding to
the frequency of mentions between vi and vj . The interaction history is represented by
a sequence of graph snapshots 〈G1,G2,...,Gn,...〉. A community Ci,n which belongs to
the set of communities C =

{
C1,1,...,Ci,n,...

}
is defined here as a subgraph comprising

a subset Vcomm ⊆V of nodes such that connections between the nodes are denser than
connections with the rest of the network. A dynamic community Ti,n which belongs to the
set T =

{
T1,1,...,Ti,n,...,Ti,N−1

}
of time-evolving communities, is defined as a series of

subgraphs that consist of subsets of all the nodes in V and the set of interactions among
the nodes in these subsets that occur within a set of N timeslots.

Framework description
This section describes the proposed framework in three parts: community detection,
community evolution detection and ranking. Figure 1 illustrates all the steps of the
proposed framework.
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Figure 1 Block diagram of the proposed framework.

Interaction data discretization and graph creation
The tweet timestamp and a corresponding sampling frequency are used to group the
interactions into timeslots. The selection of time granularity (inverse sampling frequency)
for each network is based on the change in activity. The aim is to create clear sequential
graph snapshots of the network as presented in Fig. 2. The sampling time should be
meaningful on its own (hours, days) but individually for each case as well. For example,
for the Greek election and Sherlock series datasets, a 24-hour period was selected to detect
day-by-day changes to the flourishing discussions during the anticipation period of the
corresponding events (Election Day, episode broadcasting) and the post-event reactions.
The 24-hour period in conjunction with the deep search performed during the evolution
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(a) (b)

(c) (d)

Figure 2 Referencing frequency activity for the four networks. (A) January 2015 Greek elections, (B)
September 2015 Greek elections, (C) 2012 US elections and (D) 2014 BBC’s Sherlock series.

detection process, allows the framework to discover persistent communities over a one
week time-frame.

Every node in the resulting graphs represents a Twitter user who communicated tweets
in the datasets by mentioning or being mentioned. A mention, and thus a directed edge
between two users is formed when one of the two creates a reference to the other in his/her
posted content via use of the @ symbol. The number of mentions between them forms the
edge weight.

Community detection
Given a social network, a community can be defined as a subgraph comprising a set of
users that are typically associated through a common element of interest. This element
can be as varied as a topic, a real-world person, a place, an event, an activity or a cause
(Papadopoulos et al., 2012). We expect to discover such communities by analyzing mention
networks on Twitter. There is considerable work on the topic and a host of different
community detection approaches appear in literature (Fortunato, 2010; Papadopoulos et
al., 2012). Due to the nature of Twitter mention networks, notably their sparsity and
size, in this paper we apply the Infomap method (Rosvall & Bergstrom, 2008) to detect
the underlying community structures. Infomap optimizes the map equation (Rosvall,
Axelsson & Bergstrom, 2009), which exploits the information-theoretic duality between
the problem of compressing data, and the problem of detecting and extracting significant
patterns or structures within those data. The Infomap method is essentially built based
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Table 2 Number of detected dynamic communities with and without the timeslot delay.

Louvain Newman Infomap

Delay 1,696 1,021 4,422
US election

No delay 985 579 2,646
Delay 1,369 1,175 3,374

Sherlock
No delay 638 544 1,684
Delay 322 266 1,120Greek election

January No delay 235 191 763
Delay 219 198 639Greek election

September No delay 144 127 403

on optimizing the minimum description length of the random walk on the network. The
Infomap schemewas selected for three reasons; first, according to Lancichinetti & Fortunato
(2009) and Granell et al. (2015) and our own preliminary results, Infomap is very fast and
outperforms even the most popular of community detection methods such as Louvain
(Blondel et al., 2008) and Newman’s modularity optimization technique (Newman, 2006).
Further, the low computational complexity of O(m) (m signifies the number of edges in
a graph) encourages its use on graphs of large real networks. Last, Lu & Brelsford (2014)
used it in their experimental setup and as such it is suitable for comparative purposes.
It should be noted that the focus of the framework is to rank the dynamic communities
independently from the method used for their detection and not to perform an exhaustive
comparison of algorithms able to process dynamic networks. Nonetheless, Fig. 3 as well as
Table 2 provide support in favor of Infomap in comparison to the Louvain and Newman
methods, as Infomap detects themost communities and significantly more from themiddle
region. Figures 3, 4C and 4D show the performance of the Louvain and the modularity
optimization technique. They both seem to detect either very large or relatively small
communities, which are out of the middle section. The middle section poses the most
interest for this study as it contains reasonably populated groups for the purposes of a
discussion. In the future, it may be interesting to thoroughly investigate the sensitivity of
results with respect to the employed community detection method.

Community evolution detection
The problem of finding communities in static graphs has been addressed by researchers for
several years (Blondel et al., 2008; Newman, 2006; Giatsoglou, Chatzakou & Vakali, 2013).
However, the highly dynamic nature of OSNs has moved the spotlight to the subject of
dynamic graph analysis (Nguyen et al., 2014; Asur, Parthasarathy & Ucar, 2007; Giatsoglou
& Vakali, 2013; Palla, Barabasi & Vicsek, 2007; Takaffoli et al., 2011; Roy Chowdhury &
Sukumar, 2014).

In this paper, we represent a dynamic network as a sequence of graph snapshots
〈G1,G2,...,Gn,...〉. The objective is to detect and extract dynamic communities T by
identifying the communities C that are present in the network across a set of N timeslots
and create a container which includes a variety of metadata such as popular hashtags and
URLs, influential users and the posted text. A dynamic community is represented by the
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Figure 3 Community Jaccard distance (similarity) over community size. Results using the Infomap (A,
B), Newman (C, D) and Louvain (E, F) community detection algorithms for the 2014 BBC’s Sherlock se-
ries (A, C, E) and the 2012 US elections (B, D, F). The red dots signify the undetected communities which
were missed due to the absence of the time-delay search, whereas the blue-ones signify commonly detected
communities.
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(a) (b)

(c) (d)

Figure 4 Population of matching nodes per timeslot for the Sherlock dataset. (A) Infomap with a
threshold of 0.3 (TISCI), (B) Infomap with a threshold of 0.5 (Lu & Brelsford, 2014), (C) Louvain with a
threshold of 0.3 (Greene, Doyle & Cunningham, 2010) and (D) Newman with a threshold of 0.3. Every line
is essentially a dynamic community.

timeline of the communities of users that it comprises. The difference between setsC and T
is that the former contains every static community in every available timeslot, whereas the
latter contains sequences of communities that evolve through time. In both Ci,n and Ti,n

i is a counter of communities and dynamic communities respectively, while particularly
in Ti,n n represents the timeslot of birth of the dynamic community. Figure 5 presents an
example of the most frequent conditions that communities might experience: birth, death,
irregular occurrences, merging and splitting, as well as growth and decay that register
when a significant percentage of the community population is affected. In the example of
Fig. 5, the behavior of six potential dynamic communities is studied over a period of three
timeslots (n−1,n,n+1). Dynamic community T1,n−x originated from a previous timeslot
n−x which then split up into a fork formation in timeslot n. In T1,n−x , x is an integer
valued variable representing the timeslot delay which can acquire a maximum value of D
(1≤ x ≤D≤N ). The split indicates that for some reason the members of C1,n−1 broke up
into two separate smaller groups in timeslot n, which also explains the change in size. In
our case it could be that a large group of users engaged in conversation during n−1 but
split up and are not cross mentioning each other in n and n+1. Moreover, although the

Konstantinidis et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.107 12/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.107


second group (C2,n) instigated a new dynamic community T7,n, it continued its decaying
activity for one more timeslot and then dispersed (community death). Nonetheless, both
are obviously important to the evolution of the community and the separation poses a
great interest from a content point of view as to the ongoing user discussion and as to why
they actually split up. Both can be answered by using the metadata stored in the container
corresponding to the dynamic community. A dual example is that of T2,n−1 and T3,n−x

in which two communities started up as weak and small but evolved through a merger
into one very strong, large community that continues on to n+2. In this case it could be
that two different groups of people witnessed the same event and began conversing on it
separately. As time went by, connections were made between the two groups and in the
n timeslot they finally merged into one. Actually, the community continued to grow as
shown on the n+1 timeslot. T4,n−1 and Tn/a were both created (community birth) in
n−1 and both disappeared in n differentiating in that T4,n−1 reappears in n+1 (irregular
occurrence) while Tn/a does not and thus a dynamic community is not registered. This is
the main reason why a timeslot delay is introduced in the system as will be described later;
a search strictly between communities of consecutive timeslots would result in missing
such re-occurrences.

To study the various lifecycle stages of a community, the main challenge pertains to the
computational process used to identify and follow the evolution of any given community.
On the one hand, it should be able to effectively map every community to its corresponding
timeline, and on the other hand it should be as less of a computational burden as possible
to be applicable to massive networks. However, community matching techniques presume
a zero-to-one or one-to-one mapping between users in two communities, thus not
supporting the identification of the above conditions in the lifecycle of a dynamic
community. In order to overcome this predicament, we employ a heuristic by Greene,
Doyle & Cunningham (2010) relying on a user-defined threshold to determine thematching
between communities across different timeslots.

The algorithm steps are presented in more detail as follows. Initially, the first set of
communities {C11,C21,...,Ci1,...,Ck1} (i.e., the first snapshot) is extracted by applying the
Infomap community detection algorithm (Rosvall & Bergstrom, 2008) to the G1 graph. A
dynamic community marker Ti,1 (where i= [1,k]) is assigned to each community from
this snapshot. Next, the second set of communities is extracted from the G2 graph and a
matching process is performed between all the community combinations from the two
consecutive snapshots in order to determine any possible evolution from the first snapshot
to the next. The dynamic communitiesT(1,2,...,k),1 are then updated based on that evolution.
For example, if Ca1 does not appear in the second snapshot, Ta,1 is not updated; a split
is registered if the community appears twice in the new timeslot, and a merger marker is
assigned if two or more communities seem to have merged into one.

One of the problems community evolution detection processes face is the lack of
consistency in the users’ behavior. The lack of consistent and sequential behavior results
in communities being labeled dead when in fact they could just be delayed. In order to
avoid potential false positives of community deaths, a trail of several snapshots is retained;
meaning that the search covers a wider range of timeslots in total instead of just the
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Figure 5 A study of six potential dynamic communities tracked over three timeslots. The seven most
frequent conditions that communities might experience are birth (concentric circles), death (no exiting
arrow), irregular occurrences (skipped timeslot), merging and splitting, as well as growth and decay.

immediate previous one. The length of the trail depends on the selected granularity of the
discretization process, in a manner that a meaningful period is covered (i.e., if the sampling
is performed on a daily basis, the trail will consist of seven timeslots in order to provide a
week’s depth). Hence, if the evolution of a community is not detected in the immediate to
last timeslot, the system queries the D previous ones in a ‘‘last come, first served’’ order.
This means that the search progresses through the trail until a match is found, in which
case the search is terminated and the dynamic community is observed to have skipped a
timeslot. If no matching community is detected, the community is considered dead. The
proof of necessity for such a delay is shown on Table 2. The evolution detection procedure
is repeated until all graphs have been processed. It should be noted that the decision for the
delay being set to only a few timeslots instead for the whole trail, was made by considering
the computational burden of the system in conjunction to the fact that people lose interest.
If the users comprising the community do not engage in the discussion for a significant
period of time, it would be safe to say, that the community has been dismantled.

In order to determine the matching between communities, the Jaccard coefficient is
employed (Jaccard, 1912). Following comparative preliminary results between the Jaccard
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and the Sorensen index (dice coefficient) (Sørensen, 1948), the former was selected due to its
efficiency. In fact, the Jaccard similarity is still one of the most popular similarity measures
in community matching (Yang, McAuley & Leskovec, 2013; Alvarez, Sanz-Rodríguez &
Cabrera, 2015). The similarity between a pair of consecutive communities Cin and C(i(n−td))
is calculated by use of the following formula, where timeslot delay td ∈ [1,7]:

J
(
Cin,Ci(n−td)

)
=

∣∣Cin∩Ci(n−td)
∣∣∣∣Cin∪Ci(n−td)
∣∣ . (1)

If the similarity exceeds a matching threshold φ, the pair is matched and Cin is added to
the timeline of the Ti,n dynamic community. As in Greene, Doyle & Cunningham (2010),
Takaffoli et al. (2011) and Lu & Brelsford (2014), the similarity threshold φ is a constant
threshold. Following a more extensive analysis on the impact of the threshold selection,
Greene suggested the use of 0.3 which concurs with our own results. Figure 4 illustrates
that 0.2 allows the creation of many strings of small communities, whereas 0.5 suppresses a
lot of communities from the middle region which holds most of the information required
for a fuller investigation.

Dynamic community ranking using TISCI
Although the evolution detection algorithm is efficient enough to identify which
communities are resilient to the passing of time, it does not provide a measure as to which
communities are worth looking into and which are not. A solution to this shortcoming
is presented here via the TISCI score that ranks the evolving communities on the basis
of seven distinct features which represent the notions of Time, Importance, Structure,
Context and Integrity. Specifically, we employ persistence and stability which are temporal
measures, normalized-community-centrality which is a relational importance measure,
community-size which is a structural measure, mean-textual-entropy and unique-URL
average which are contextual measures, and an integrity coefficient inspired by the ‘‘ship
of Theseus’’ paradox.

Persistence is defined as the characteristic of a dynamic community to make an
appearance in as many timeslots as possible (i.e., overall appearances/total number of
timeslots), and stability as the ability to appear in as many consecutive timeslots as possible
disregarding the total number of appearances (i.e., overall consecutive appearances/total
number of timeslots).

Persistence(Tx,y)=
∑m

n=1δ[a[n]]
m

2

Stability(Tx,y)=
∑m

n=2δ[a[n]−a[n−1]]
m−1

3

where δ is the impulse function, m represents the total number of timeslots, x,y are the
labels of the oldest community in Tx,y and

a[n] =

{
1 ∀Ci,n ∈Tx,y

0 otherwise

}
. (4)
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We expect consistent dynamic communities to be both persistent and stable as the
combination of these features shows either a continuous interest in a subject or its evolution
to something new. As suchwe combine the two features into one viamultiplication. Figure 4
shows how stable and how persistent the communities are with respect to the actual number
of persistent users. Moreover, it shows the number of people who persist in time within a
community in respect with the community’s persistence and stability for the Infomap as
well as for the Louvain and Newman methods.

Google’s PageRank (Brin & Page, 1998) is used as the centrality feature which measures
the number and quality of links to a community in order to determine an estimate of
how important that community is. The same measure is also applied to the users from
every dynamic community, ranking them according to their own centrality and thus
providing the most influential users per timeslot. There is however a difference between
the two in how the final centrality values are extracted, since different timeslots create
different populations between the static graphs. Although this does not affect the users’
centralities as they are compared to each other within the timeslot, it does however influence
the communities’ centrality measures due to the difference in populations. In order to
compare centrality measures from different timeslots, we employ the normalized PageRank
solution as proposed in Berberich et al. (2007). The Mean Centrality as it is used here is
defined as:

MC(Tx,y)=
∑m

n=1
∑k

i=1normPR(Cin ∈Tx,y)∑m
n=1

∑k
i=1a[in]

(5)

where k is the number of communities per timeslot.
One of the measures that provides a sense of popularity is virality which in the case

of Twitter datasets translates into multiple bursts of mentions in a short time. This can
happen either due to an event or because an influential user (e.g., major newspaper account)
posted something of interest. On the other hand, Lu and Berlsford used the lack of increased
community size as an indication of disruption in the telecommunication services. For this
reason we consider the increased size of a dynamic community as a feature that requires
attention. Here, the feature of size is defined as the average size of the static communities
that comprise it.

The integrity measure employed is an extension of the ship of Theseus coefficient.
The ship of Theseus, also known as Theseus’s paradox, is a thought experiment that
raises the question of whether an object which has had all its components replaced
remains fundamentally the same object (Rea, 1995). We apply this theory to find out
the transformation sustained by the dynamic community by calculating the number of
consistent nodes within the communities which represents the integrity and consistency of
the dynamic community.

Twitter datasets differ quite a lot to other online social networks since the user is
restricted to 140 characters of text. Given this restriction, we assume that it is safe to say
that there is a connection between the entropy of tweeted words used in a community
(discarding URLs, mentions, hashtags and stopwords), the effort the users put into posting
those tweets, and the diversity of its content. Whether there is a discussion between the
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users or a presentation of different events, high textual entropy implies a broader range of
information and therefore more useful results. An added bonus to this feature is that spam
and empty tweets containing only hashtags or mentions, as is the case in URL attention
seeking tweets, rank even lower than communities containing normal retweets. For the
ranking we employ the mean textual diversity of the dynamic community. The textual
diversity in a community Ci is measured by Shannon’s entropyH of the text resulting from
the tweets that appear in that community as follows:

H (Ci)=
k∑

m=1

−p(Wm)log2(p(Wm)) (6)

where p(Wm) is the probability of a word Wm appearing in a community containing M
words and is computed as follows:

p(Wm)= (freq(Wm))/(M ). (7)

The second contextual feature to be employed regards the references cited by the users
via URLs in order for them to point out something they consider important or interesting.
In fact, the URLs hold a lot more information than the single tweet and as such we also
consider it useful for discovering content-rich communities. The ranking in this case is
performed by simply computing the average of unique URLs in each dynamic community
over time.

Since we have an array of six features, we have to combine them into a single value in
order to rank the dynamic communities. The final ranking measure for every dynamic
community is extracted by employing the Reciprocal Rank Fusion (RRF) (Cormack, Clarke
& Buettcher, 2009) method; a preference aggregation method which essentially provides
the sum of the reciprocals ranks of all extracted aforementioned features Q:

RRF =
|Q|∑
q=1

1
α+ rankq

(8)

where α is a constant which is used to mitigate the impact of high rankings by outlier
systems. Cormack, Clarke & Buettcher (2009) set the constant to 60 according to their
needs although the choice, as they state, is not critical and thus we prefer a lower score
equal to the number of dynamic communities to be considered.

Despite its simplicity, the RRF has proven to perform better than many other methods
such as the Condorset Fuse or the well established CombMNZ (Cormack, Clarke &
Buettcher, 2009) and is considered one of the best baseline consensus methods (Volkovs,
Larochelle & Zemel, 2012). In addition, it requires no special voting algorithm or global
information and the ranks may be computed and summed one system at a time, thus
avoiding the necessity of keeping all the rankings in memory. However, this preference
aggregation method is not without flaws, as it could potentially hide correlations between
feature ranks. Although, in other applications this could pose a problem, as shown in
Table 3 the lack of correlation between the features’ ranks encourages us to employ this
simple but useful method. The correlation was measured using the Spearman rank-order
correlation coefficient.

Konstantinidis et al. (2017), PeerJ Comput. Sci., DOI 10.7717/peerj-cs.107 17/34

https://peerj.com
http://dx.doi.org/10.7717/peerj-cs.107


Table 3 Feature ranking similarity comparison using Spearman’s rank correlation coefficient averaged across all three datasets.

Centrality Perstability Size Textdiversity Theseus Urldiversity TISCI

Centrality 1.0 0.046 0.051 0.032 −0.021 0.006 0.021
Perstability 0.046 1.0 0.032 0.154 0.015 0.047 0.029
Size 0.051 0.032 1.0 0.156 0.005 0.002 0.011
Textdiversity 0.032 0.154 0.156 1.0 0.034 0.055 0.029
Theseus −0.021 0.015 0.005 0.034 1.0 −0.008 0.016
Urldiversity 0.006 0.047 0.002 0.055 −0.008 1.0 −0.01
TISCI 0.021 0.029 0.011 0.029 0.016 −0.01 1.0

Complexity and scalability
When it comes to temporal interaction analysis, scalability is always an issue. The cost of
the TISCI framework isO(m+k2+c ·w) wherem are the number of edges for the Infomap
method, k is the number of communities of each row in the evolution detection scheme,
and c and w are the numbers of dynamic communities and words in each community
in the ranking stage. Although currently, the framework would not scale well due to the
squared complexity of the evolution detection process, future work will involve the use of
Local Sensitivity Hashing to speed up the operation.

EXPERIMENTAL STUDY
Despite the proliferation of dynamic community detection methods, there is still a lack of
benchmark ground truth datasets that could be used for the framework’s testing purposes.
Instead, the results presented in this paper were attained by applying our framework on
three Twitter interaction network datasets as described in the following section.

Datasets
The tweets related to the US election of 2012 were collected using a set of filter keywords
and hashtags chosen by experts (Aiello et al., 2013). Keywords and hashtags in Greek and
English containing all the Greek party names as well as their leaders’ were used for the Greek
elections of 2015. Last, variations of the names ‘Sherlock’ and ‘Watson’ were used for the
Sherlock series dataset. We chose these three datasets as they all share a number of useful
features but also have significant differences as one may deduce from the data description
and the basic network characteristics which are presented in Table 4. On the one hand
all of the datasets regard major events that generate a large volume of communication
and are mostly dominated by English-language contributors, making analysis simpler for
the majority of researchers. On the other hand, the US election (including voting, vote
counting, speculation about results and subsequent analysis) lasted two days, whereas
the Greek elections and the Sherlock frenzy lasted 10 days and two weeks, respectively.
Similarly, in an event focused discussion such as theUS election, almost all the focus is either
on specific events/announcements or specific people associated with the events, whereas
topics in a general discussion regarding a fictitious character tend to be more spread out
over time and to overlap with other topics while becomingmore active when specific events
take place. These differences help us understand the ways that social networks are used in
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Table 4 Dataset statistics.

Sherlock US Election GR Election Jan GR Election Sep

# of tweets 2,904,321 4,148,782 2,748,613 1,084,304
# of tweets with mentions 1,412,358 2,967,779 1,836,296 622,590
# of hashtags 643,132 4,286,418 1,399,109 482,376
# of URLs 139,663 675,862 581,823 215,530
# of unique users 542,254 2,013,301 555,859 166,807
# of edges 1,595,435 4,190,883 2,368,396 744,824
# of communities 186,045 416,181 108,532 31,518
# reduced communities 37,106 73,170 32,231 11,681
# of evolution steps 9,211 8,843 4,336 1,610
# of dynamic communities 3,457 3,936 1,758 639
Sampling time 24 h 3 h 24 h 24 h

very different circumstances as well as that the variation in temporal structure depends
heavily on the query itself.

Sherlock Holmes dataset
This real-world dataset is a collection of mentioning posts acquired by a crawler that
collected tweets containing keywords and hashtags which are variations of the names
‘Sherlock’ and ‘Watson.’ The crawler ran over a period of two weeks; from the 31st of
December 2013 to the 14th of January 2014, extracting messages containing mentions. The
evolution detection process discovered 9,211 dynamic communities comprising 178,361
snapshot communities. The information we sought pertained to the various communities
created between people who interact via mentions and are interested in the BBC’s Sherlock
series, people who are influenced by these communities and any news that might give us
more insight on this world wide phenomenon.

The dynamic community structure resulting from this dataset is totally different from
the two election ones in more ways than one. Initially, there are many diverse and smaller
communities which persist over time that seem to be fairly detached from the rest. This
means that the interest here is widely spread and the groups of people discussing the
imminent or last episode of the series are smaller indicating that in most cases we are
looking into friends chatting online. Nonetheless, the user can still acquire a variety of
information such as the general feeling of the viewers, several spoilers regarding each
episode, a reminder about when each episode starts and on what day, and also statistics on
the viewership of the series. The latter was extracted from one of the largest communities
which informed us that not only was the first episode viewed by an average of 9.2 million
viewers but also that Chinese fans relish the series and especially the love theory between
the two main characters (http://www.bbc.com/news/blogs-china-blog-25550426). Other
typical topics of conversation include the anticipation of the series, commentary regarding
the quality of the episode, commentary regarding the character and many more typical
lines of discussion. A short list of findings is presented on Table 5. What is interesting
enough is that conversations and opinions regarding the bad habits or the sexuality of the
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Table 5 Key findings from the Sherlock dataset.

Finding URL (if available)

1 Creators reveal they already have series four mapped out https://goo.gl/5ZDCMt
2 Cumberbatch’s parents make Sherlock cameo https://goo.gl/qPgtAj
3 Chinese fans relish new sherlock gay love theory as fans

relish new series
4 Episode scores highest timeshifted audience in UK TV

history
https://goo.gl/PkfHJs

5 January 6th is Sherlock’s birthday

character are pretty high in the rankings and that there are plenty of non-English speaking
communities. One last remark concerns the DyCCo (ranked #9) which contains a plethora
of shopping labels. Usually, consecutive shop labels are an indication of spam as they
are usually consistent, stable and contain URLs with the sole purpose to lure a potential
customer. However, in this case the shopping labeled communities contain references to
books, movies and the original series of Sherlock Holmes sold by major retailers, thus
classifying the DyCCo as one that a Sherlock enthusiast would actually be interested in.

US election dataset
The United States presidential election of 2012 was held on November 6th in 2012. The
respective dataset was collected by using a set of filter keywords and hashtags chosen by
experts (Aiello et al., 2013). Despite retrieving tweets for specific keywords only, the data
collected was still too large for a single user to organize and index in order to extract useful
information.

Here, the granularity selection of three hours was made based on the fact that there
is a discrete but not wild change in activity. By employing a coarser granularity instead
of an hourly one serves to reduce the time zone effect. Moreover, since all four political
debates in 2012 lasted for an hour and a half, then twice the span of a debate seemed like a
reasonable selection for Twitter users to engage in a political discussion.

Studying the top 20 DyCCos provides a variety of stories which does not only contain
mainstream news but other smaller pieces of information that journalists seek out. The
first one for example, which is also the most heavily populated, regards a movement of
motivating women into voicing their opinion by urging them to post photos of their ‘‘best
voting looks’’ but also pleading for Tony Rocha (radio producer) to use his influence for
one of the nominees. The first static community alone includes 2,774 people, some of
which are @KaliHawk, @lenadunham, @AmmaAsante, @marieclaire and others.

Overall, during Election Day people are mostly trying to collect votes for their candidate
of choice by either trying to inspire themselves or ask from a celebrity to do so; whereas after
the fact, everyone is either posting victory or hate posts, or commenting onwhat the election
will bring the following day, whether or not the election was falsified/rigged. At all times
people are referencing a number of journalists, bloggers and politicians (Herman Cain, Pat
Dollard) as well as various newspapers, TV channels and famous blogs. Other examples
include comments on racism stopping due to the reelection, a book on President Obama,
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Table 6 Key findings from the US election dataset.

Finding URL (if available)

1 Women’s voting motivational movement on Instagram https://goo.gl/OKs17u
2 President Obama hoops with S. Pippen on Election Day https://goo.gl/Ybg83Z
3 Iran and Russia among countries with messages for Obama https://goo.gl/hgiaaN
4 Mainstream media tipped the scales in favor of Obama foxNews(removed)
5 Anti-Obama protests escalate at university WashPost(removed)

Table 7 Key findings from the Greek elections datasets.

Finding URL (if available)

1 Euro hits an 11-year low following the Syriza party victory (removed)
2 Candidate slapped pollster over bad numbers

announcement
(removed)

3 Tsipras regains slim lead hours ahead of Greek vote https://goo.gl/fZA0UX
4 Vandalisms at Syriza and New Democracy polling centers https://goo.gl/3YEfRP
5 Far-right party is the most voted by the unemployed https://goo.gl/Ydzd8R

posts by a number of parishes and many more which unfortunately cannot be illustrated in
this manuscript due to space restrictions. However, a short list of non-mainstream findings
is presented on Table 6.

One of the main anticipated characteristics of this particular set is that the news
media, political analysts, politicians, even celebrities are heavily mentioned in the event of
an election.

Greek election datasets
The two Greek elections of 2015 were held on January 25th and on September 20th and the
collection of corresponding tweets was made using Greek and English keywords, hashtags
and user accounts of all major running parties and their leaders.

Although participation in the second election was almost cut in half with regard to the
first, there are a few similarities in the dynamic communities that are of interest. The top
20 DyCCos of both datasets surfaced groups of an extremely wide and diverse background.
Groups fromTurkey, Italy, Spain andEngland anticipated Syriza’s (center-left anti-austerity
party) potential wins in both elections and joined in to comment on all matters such as
the Grexit, the future of the Greek people, how the Euro hit an 11 year low following the
victory of the anti-austerity party but also that the markets managed to shake off the initial
tremors created by it. Conspiracy tweets were also posted within a community mentioning
operation Gladio; a NATO stay-behind operation during the Cold War that sought to
ensure Communism was never able to gain a foothold in Europe, which then evolved into
sending warnings to the Syriza party as Greece was supposedly being framed as an emerging
hub for terrorists. A short list of non-mainstream findings is presented on Table 7.

Although there were a lot of interesting international pieces of commentary such as
the above, the framework did not miss the local communities where a strong presence
was achieved by the far-left supporters, the Independent Greeks supporters, and a slightly
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milder presence from the right wing and extreme-right wing supporters all of whom were
rooting for their party and pointing out the mistakes of the opposing ones.

One of the similarities between the two election datasets which is rather impressive lies
in the almost identical structure of the two evolutions as shown by the respective heatmaps
in the Evaluation section. It is also worth mentioning that many influential users (e.g.,
@avgerinosx, @freedybruna) and politicians (e.g., @panoskammenos, @niknikolopoulos)
who were extremely active in the first election, were also present in the second one.

Data processing
Prior to the framework application, the network data is preprocessed as follows. Initially, all
interaction data is filtered by discarding any corrupt messages, tweets which do not contain
any interaction information and all self-loops (self-mentions) since they most frequently
correspond to accounts who are trying to manipulate their influence score on Twitter. The
filtered data is then sampled resulting in a sequence of activity-based snapshots. Figure 2
displays the mentioning activity of the four twitter networks.

The process which puts the greatest computational burden on the framework involves
the evolution detection. In order to speed up the searching operation, instead of using
strings, the users’ names are hashed resulting in communities comprising sets of hashes.
Moreover, we discard all the users’ hashes which appear strictly in a single timeslot since
they are considered temporal outliers. However, they are not discarded from the metadata
container as they may provide useful information. Two additional acceleration measures
are: the discarding of communities with a population of less than three users, and, similarly
to the scheme proposed by Arasu, Ganti & Kaushik (2006), a size comparison check prior
to the Jaccard similarity calculation (i.e., if the size difference between the communities
disallows a threshold overcome, there is no point in measuring their similarity).

Every community in every timeslot is used as a query in a maximum of D older
timeslots, essentially searching for similar communities in a D+ 1 timeslot window.
Whenever a similar community is found the search is halted and two possible scenarios
take place. Either a new dynamic community is initiated or the query is added to an already
active dynamic community. Each of these dynamic communities contains information
such as text, hashtags, URLs, user centralities and edges which are all stored in a Dynamic
Community Container (DyCCo).

Following the formation of these DyCCos, a TF-IDF procedure is applied in order to
extract valuable keywords and bigrams that will pose as a DyCCo guideline for the potential
user that might interest him/er more. The corpus of the dataset (IDF) is created by using the
unique set of words contained in each timeslot of every available dynamic community and
the term frequency is computed by using the unique set of tweets within the community
(i.e., only one of the repetitions is used in the case that the sentence was retweeted). For
the purposes of better illustration and easier browsing, the products of the framework as
seen in Fig. 6 consist of:

• a word cloud per dynamic community containing the most popular: (a) hashtags, (b)
keywords, (c) bigrams, (d) domains and (e) text items;
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(a)

(b) (c)

Figure 6 DyCCo structure and content illustration for the Sherlock Twitter dataset. (A) A color
heatmap displaying the evolution of the top 20 dynamic communities of BBC’s 2014 Sherlock TV series
dataset. Each evolution series contains a characterization of the community based on the contained URLs.
The background color varies between shades of blue and is an indication of the logged size of the specific
community. The population increases as the shade darkens (the numbers on the right represent the
label of each dynamic community). (B) Wordclouds of the most popular keywords, bigrams, hashtags,
tweets and URLs acquired from community6, timeslot 3. (C) The corresponding graphical illustration of
community6, timeslot 3 under study.
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Figure 7 Color heatmap displaying the evolution of the top 20 dynamic communities of the 2012 US
election dataset. Each evolution series contains a characterization of the community based on the con-
tained URLs. The background color varies between shades of blue and is an indication of the logged size of
the specific community. The population increases as the shade darkens.

• the ten most influential users from each community which could provide the potential
journalist/analyst with new users who are worth following

The color heatmap in the figure represents community size but can be adjusted to
also give a comparative measure of centrality or density. By using this DyCCo containing
framework, the user is provided with a more meaningful view of the most important
communities as well as an insight to the evolving reaction of the public with respect to
various events. The respective color heatmaps for the US election and the Greek election
datasets are presented in Figs. 7–9.

Evaluation
While executing preliminary experiments it was concluded that the framework can
undoubtedly provide the user with some useful information whether the query regarded
politics, television series, specific events or even specific people/celebrities. Unfortunately,
there is no known method to which we can compare the performance of our framework.
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Figure 8 Color heatmap displaying the evolution of the top 20 dynamic communities of the January,
2015 Greek election dataset. Each evolution series contains a characterization of the community based
on the contained URLs. The background color varies between shades of blue and is an indication of the
logged size of the specific community. The population increases as the shade darkens.

Due to this predicament, we took the opportunity to introduce a content-based
evaluation scheme through which we may compare the effectiveness of the proposed
framework to the size-grounded ranking baseline method used in Lu & Brelsford (2014).

Since it is immensely difficult to evaluate community importance based on the tweets
themselves, we employed Amazon’s Alexa service and the contained URLs of each static
community to extract the category to which it belonged. Alexa requires a domain as
input and returns a string of categories in a variety of languages to which it belongs. In
order to avoid duplicates, categories in a language other than English were translated
automatically using Google’s translating service. Unfortunately, most of the domains, even
popular ones, either returned a vary vague category (e.g., internet) or none at all. Hence,
manual domain categorization was also necessary in order to include the most popular of
domains. Specifically, the URLs we categorized using the following labels: television, video,
photo, news, social networking, blog, conspiracy, personal sites, politics, shop, arts and
spam. The dynamic communities of the three Twitter datasets combined contained 78,499
URLs which were reduced to 8,761 unique domains. A mere 2,987 of these domains were
categorized either by Alexa or manually, but the overall sample of categorized URLs was
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Figure 9 Color heatmap displaying the evolution of the top 20 dynamic communities of the Septem-
ber, 2015 Greek election dataset. Each evolution series contains a characterization of the community
based on the contained URLs. The background color varies between shades of blue and is an indication of
the logged size of the specific community. The population increases as the shade darkens.

significant enough to be used in the categorization process. The result of the most popular
category for each community is shown in the color heatmaps displayed in Figs. 6A and 7–9
for each dataset. Besides the labeling, the heatmap also provides information regarding the
size of the community. The darker the colors get, the larger the community. By combining
the two, the user is provided with a relatively good idea of where to begin his/er search.

The premise on which the evaluation is based is that the content of the top 10–20
dynamic communities’ content should match the category of the query similarly to a
search engine, since most users will not go past these many results. For example, if the
queried event concerns an election, the content of the top communities should match that
of news, politics, conspiracies, etc. On the other hand, if it concerns a television series,
it should contain videos, television and other opinion references (social networks), art
(photos), shops where the series is available, etc. The content comparison as represented
by the sum of all categories (where available) in the dynamic communities between the
proposed and the baseline ranking methods is shown in Fig. 10. The TISCI method seems
to either surpass or tie the baseline method in the categories of interest. The single centrality
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(a) (b)

(c)

Figure 10 Content comparison between the proposed and the baseline ranking methods. Results for
the (A) 2014 Sherlock series, (B) 2012 US election and (C) January 2015 Greek election datasets.

rankingmethod is used here as an indication to the fact that the proposedmethod performs
well as a whole even when independent features do not.

The secondary evaluation scheme explores the diversity fluctuation. Greater diversity
implies more infomation and therefore more useful results. Employing the entropy feature
described in the community ranking section but substituting bigrams for single words
in order to increase the sense of diversity, we compute the mean bigram entropy for all
timeslots in the top 20 communities and compare the result of the proposed method to
that of the baseline. Figures 11–13 show the comparison between the two methods for all
three datasets in which the proposed method seems to retrieve more diverse communities
in most timeslots. Table 8 presents the total bigram entropy for all the timeslots for each
dataset. With the exception of the Greek election dataset in which the difference is quite
small, the proposed method performs definitely better compared to the baseline.
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Figure 11 Mean bigram entropy. Comparison between the proposed and the Lu & Brelsford (2014) (size)
ranking methods for the Sherlock dataset.

Figure 12 Mean bigram entropy. Comparison between the proposed and the Lu & Brelsford (2014) (size)
ranking methods for the US election dataset.
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Figure 13 Mean bigram entropy. Comparison between the proposed and the Lu & Brelsford (2014) (size)
ranking methods for the Greek election dataset (January 2016).

Table 8 Total bigram entropy resulting from the proposed and baseline methods for all three datasets.

Sherlock US election Greek election

TISCI 33.63 18.23 26.98
Lu and Brelsford 29.87 14.62 26.23

CONCLUSIONS
The paper presented a framework for the extraction of useful information from OSN
interactions. The basis of the framework is the study of the temporal structure and
the monitoring of the evolution that the OSN communities undergo over time. The
contribution of the proposed method lies in the ranking of the detected dynamic
communities in respect to structural, evolutionary and importance features. By ranking
the communities, the corresponding metadata containers (DyCCos) are also ranked, thus
providing the user with popular URLs, tweets and wordclouds of keywords and bigrams.
The experimental analysis was based on three evolutionary networks extracted from user
interactions in Twitter. When applied on these networks, the framework uncovered a
large number of dynamic communities with a variety of evolutionary characteristics.
Unfortunately, it also uncovered a lack in a groundtruth evaluation scheme. In order to fill
this need, we proposed a content-based evaluation process which hopefully will motivate
more research into this direction. The conducted experiments highlighted the potential of
the proposed framework for discovering persistent, interesting users, newsworthy pieces
of information and real-world incidents around topics of interest as well as a means to
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follow a story over consecutive, or even non-consecutive, time-lapses. They also revealed
the complexity of the analysis and evaluation processes due to the large scale of data to be
analyzed and the absence of real ground truth data which the area of dynamic community
detection and ranking clearly lacks. Future work will involve fitting the framework with
a community detection method that allows overlapping, the implementation of a better
means of presentation than wordclouds and heatmaps, the discovery of a non-heuristic
way of selecting the sampling time and the employing of local sensitivity hashing to further
speed up the evolution detection procedure.
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