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ABSTRACT In this work, we aim to classify nodes of unstructured peer-to-peer networks with commu-
nication uncertainty, such as users of decentralized social networks. Graph Neural Networks (GNNs) are
known to improve the accuracy of simple classifiers in centralized settings by leveraging naturally occurring
network links, but graph convolutional layers are challenging to implement in decentralized settings when
node neighbors are not constantly available. We address this problem by employing decoupled GNNs, where
base classifier predictions and errors are diffused through graphs after training. For these, we deploy pre-
trained and gossip-trained base classifiers and implement peer-to-peer graph diffusion under communication
uncertainty. In particular, we develop an asynchronous decentralized formulation of diffusion that converges
to centralized predictions in distribution and linearly with respect to communication rates. We experiment
on three real-world graphs with node features and labels and simulate peer-to-peer networks with uniformly
random communication frequencies; given a portion of known labels, our decentralized graph diffusion
achieves comparable accuracy to centralized GNNs with minimal communication overhead (less than 3%
of what gossip training already adds).

INDEX TERMS Decentralized computing, machine learning, network theory (graphs).

I. INTRODUCTION
The pervasive integration of mobile devices and the Internet-
of-Things in everyday life has created an expanding interest
in processing their collected data [1]–[3]. However, tradi-
tional data mining techniques require communication, stor-
age and processing resources proportional to the number
of devices and raise data control and privacy concerns.
An emerging alternative is to mine data at the devices gather-
ing them with protocols that do not require costly or untrust-
worthy central infrastructure. One such protocol is gossip
averaging [4], which averages local model parameters across
pairs of devices during training.

As an example, existing social media applications often
rely on central platforms, such as Meta (Facebook, Insta-
gram), Viber, and Telegram. However, increasing concerns
of how personal and potentially sensitive data are han-
dled by central controllers have motivated the development
of decentralized social media [5], in which user devices
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communicate directly with each other. Thus, new oppor-
tunities are created for AI-powered decentralized media
subsystems. Yet, to date, there is a lack of machine learn-
ing frameworks to support decentralized machine learning
in uncontrolled communication environments. In this work,
we make steps towards the development of such frameworks
for deployment of decentralized graph-based learning ‘‘in the
wild’’.

We tackle the specific problem of classifying points of a
shared feature space when each one is stored at the device
generating it, i.e. each device accesses only its own point but
all devices collect the same features. For example, mobile
devices of decentralized social media users could predict
user interests based on locally stored content features, such
as the bag-of-words of posted messages, and user-disclosed
interests as target labels. We further consider devices that
are nodes of peer-to-peer networks and communicate with
each other based on underlying relations, such as friendship
or proximity. In this setting, social network overlays coin-
cide with communication networks. However, social behav-
ior dynamics (e.g. users going online or offline) could prevent
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FIGURE 1. A directed ring-structured communication network (left) and
an undirected unstructured example (right) of devices D1, . . . ,D5.

devices from communicating on-demand or at regular inter-
vals. Ultimately, with who and when communication takes
place cannot be controlled by learning algorithms.

When network nodes corresponding to data points are
linked based on social relations, a lot of information is
encapsulated in their link structure in addition to data fea-
tures. For instance, social network nodes one hop away
often assume similar classification labels, a concept known
as homophily [6], [7]. Yet, existing decentralized learning
algorithms do not naturally account for information encapsu-
lated in links, as they are designed for structured networks of
artificially generated topologies. In particular, decentralized
learning often focuses on creating custom communication
topologies that optimize some aspect of learning [8] and are
thus independent from data.

Our investigation differs from the above assumption in
that we classify data points stored in decentralized devices
that form unstructured communication networks, where links
capture real-world activity (e.g. social interactions) unknown
at algorithm design time and thus of irregular structure,
as demonstrated in Fig. 1. In our setting, devices coincide
with graph nodes and we use the two terms interchangeably.

If a centralized service performed classification, Graph
Neural Networks (GNNs) could be used to improve the accu-
racy of base classifiers, such as ones trained with gossip
averaging, by accounting for link structure (Subsection II-A).
But, if we tried to implement GNNs with the same decen-
tralized protocols, connectivity constraints would prevent
devices from timely collecting latent representations from
communication neighbors, where these representations are
needed to compute graph convolutions.

To tackle this problem, we propose working with decou-
pled GNNs, where network convolutions are separated from
base classifier training and organized into graph diffusion
components. Given this architecture, we start from either
pre-trained base classifiers or train those with gossip proto-
cols.We then realize graph diffusion in peer-to-peer networks
by developing an algorithm, called p2pGNN, whose frag-
ments run on each node and converge at similar predictions
as graph diffusionwhile working under uncontrolled irregular
communication initiated by device users. Our analysis is sup-
ported by a novel theoretical construct, which we dub decen-
tralized graph signals, that describes decentralized diffusion

primitives in the irregular communication setting. Critically,
our algorithm supports online modification of base classifier
predictions while these are being diffused. As a result, all
components of decoupled GNN fragments run at the same
time and eventually converge to the desired results.

Our contribution is twofold. First, we establish a decen-
tralized setting for classifying peer-to-peer network devices.
To our knowledge, our approach is the first that considers
communication links themselves useful for the decentralized
learning task, i.e. in networkswhere communication topology
is retrieved from the real world instead of being imposed on it.
We also introduce the concept of decentralized graph signals
that formalize graph diffusion in this setting.

Second, we develop the p2pGNN algorithm that parses
decentralized graph signals and, given existing methods of
training or deploying base classifiers in peer-to-peer networks
under uncertain availability, approximates originally central-
ized decoupled GNN components to improve accuracy. For
this algorithm, we theoretically show fast convergence to
similar prediction quality as centralized architectures. Fur-
thermore, we experiment on simulated peer-to-peer networks
under uncertain availability, where we verify that it suc-
cessfully takes advantage of graph diffusion components to
improve base classifier accuracy, closely matches the accu-
racy of fully centralized computations, and incurs only small
communication overheads.

II. BACKGROUND
A. GRAPH NEURAL NETWORKS
Graph Neural Networks (GNNs) are a machine learning
paradigm in which links between data samples are used
to improve the predictions of base neural network mod-
els [9]. In detail, samples are linked to form graphs based
on real-world relations and information diffusion schemes
smooth (e.g. average) latent attributes across graph neighbors
before transforming them with dense layers and non-linear
activations to new representations to be smoothed again. This
is repeated either ad infinitum or for a fixed number of steps to
combine original representations with structural information.

Notably, in our setting, there is an 1-1 correspondence
between samples and devices. However, although GNN prop-
agation takes place in a decentralized-like manner, i.e. nodes
work independently, transformation parameters are shared
and learned across all nodes.

GNN architectures tend to suffer from over-smoothing
if too many (e.g. more than two) smoothing layers are
employed. However, using few layers limits architectures to
propagating information only few hops away from its original
nodes. Mitigating this issue often involves recurrent links to
the first latent representations, which lets GNNs achieve at
least the same theoretical expressiveness as graph filters [10],
[11]. In fact, it has been argued that the success of GNNs
can in large part be attributed to the use of recurrency rather
than end-to-end training of seamless architectures [12]. As a
result, recent works have introduced decoupled architectures
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that achieve the same theoretical expressive power as end-
to-end training by training base statistical models, such as
two-layer perceptrons, to make predictions, and smoothing
the latter through graph edges.

In this work, we build on the FDiff-scale prediction
smoothing proposed by Huang et al. [12], which diffuses the
base predictions and respective errors of base classifiers to all
graph nodes using a constrained personalized PageRank that
retains training node labels. Then, a linear trade-off between
errors and predictions is calculated for each node and the
outcome is again diffused with personalized PageRank to
make final predictions. This process generalizes to multi-
class predictions by replacing node values propagated by per-
sonalized PageRank with vectors holding prediction scores,
where initial predictions are trained by the base classifier to
minimize a cross-entropy loss. Architecture details and our
motivation for using it are discussed in Subsection III-C.

B. DECENTRALIZED LEARNING
Decentralized learning refers to protocols that help pools of
devices learn statistical models by accounting for each other’s
data. Conceptually, each device holds its own autonomous
version of the model and training aims to collectively make
those converge to being similar to each other and to a central-
ized training equivalent, i.e. to be able to replicate would-be
centralized predictions locally.

Many decentralized learning practices have evolved from
distributed learning, which aims to speed up the time needed
to train statistical models by splitting calculations among
many available devices, called workers. Typically, workers
perform computationally heavy operations, such as gradient
estimation for subsets of training data, and send these to a
central infrastructure that orchestrates the learning process.

A well-known variation of distributed learning occurs
when data batches are split across workers a-priori, for exam-
ple because they are gathered by these, and are sensitive in the
sense that they cannot be directly presented to the orchestrat-
ing service. This paradigm is called federated learning and is
often realized with the popular federated averaging (FedAvg)
algorithm [13]. FedAvg performs several learning epochs in
each worker before sending parameter gradients to a server
that uses the average across workers to update a model and
send it back to all of them.

By definition, distributed and federated learning train one
central model that is fed back to workers to make inferences.
However, gathering gradients and sending back the model
requires a central service with significantly higher throughput
than individual workers to simultaneously communicate with
all of them and orchestrate learning. To reduce the related
infrastructure costs and remove the need for a central author-
ity, decentralized protocols have been introduced to let work-
ers directly communicate with each other.1 These require
either constant communication between workers or a rigid

1Decentralized learning is sometimes referred to as decentralized feder-
ated learning, but this is different than distributed federated learning.

(e.g. ring-like) topology and many communication rounds to
efficiently learn [14]–[16]. Most decentralized learning prac-
tices have evolved to or are variations of gossip averaging,
where devices exchange and average (parts of) their learned
parameters with random others [4], [8], [17]–[20].

III. A PEER-TO-PEER GRAPH NEURAL NETWORK
A. PROBLEM FORMULATION
We work on peer-to-peer networks whose devices are linked
based on their ability to send messages to each other, even
through channels of uncertain availability. These networks
can be described with static adjacency matrices A ∈ RN×N ,
where N is the number of nodes in the peer-to-peer network.
These matrices comprise elements:

A[u, v] = {1 if (u, v) are linked, else 0}

We further consider devices u to hold feature vectors
X [u] ∈ RF of a shared feature space, such as average word
embeddings of user text messages, where F is the number of
features and it is the same for all nodes. Finally, some training
devices in the network u ∈ Vtrain hold manually provided
class labels with one-hot encodings Y [u] ∈ RC , where C
is the number of classes and argmaxY [u] retrieves labels
from their encodings. We aim to make encoding predictions
Ŷ [u] for all devices u so that argmaxŶ [u] correspond to
true class labels with high accuracy. Importantly, to avoid
centralization, each device needs to create predictions about
itself, for instance to estimate its user’s interests among a
list of topics, while only viewing information transmitted by
communicating devices.

If our goal was to make feature-based predictions without
accounting for communication links, we would select a base
classifier Rθ : RF

→ RC of trainable parameters θ and
deploy its computational model to all devices. Then, devices
would learn their own parameters θ [u] to make predictions
Rθ [u](X [u]) that tightly approximate centralized optimization
of the computational model’s parameters on training node
labels. For example, Gossip averaging would set up an iter-
ative process performing gradient updates on local data in
training nodes while averaging parameters between commu-
nicating nodes. This would allow node predictions to account
for training data residing more than one hops away.

If we had the luxury of a central service and willingness
of training device users (only) to disclose their data to it,
we could instead perform centralized training and deploy a
common set of learned parameters through the service. This
way, non-training devices would classify themselves without
exposing local data.

In Section I we argued that communication links often
pertain to real-world relations, which GNNs can leverage
to improve classification accuracy. In a centralized setting,
this could be achieved with GNN classifiers Gθ : RF×N

×

RN×N
→ RC of parameters θ . These take two inputs: a)

tables gathering all node features X ∈ RN×F , where rows
X [u] are device u feature vectors, and b) adjacency matri-
ces A. They output prediction matrices Ŷ = Gθ (X ,A), whose
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rows Ŷ [u] are device u prediction vectors. Unfortunately,
even if parameters θ where to be learned by a centralized
service, these classifiers could not be directly deployed to
perform in-device inference, since they rely on non-local
information, such as the whole communication network’s
structure and features of nodes more than one hops away
propagated through the structure.

In this work, our goal is to develop GNNs that let peer-
to-peer devices u classify themselves by running fragments
fragv(Gθ [u],X [u],A[u]) of GNN architectures Gθ . These only
account for local features X [u] and only communicate with
the fragments of linked neighbors found in A[u]. Then, frag-
ments in devices both learn parameters θ [u] that approximate
optimal ones and perform additional computations that let
them approximate centralized estimations:

Ŷ [u] ≈ fragv(Gθ[u],X [u],A[u])

B. COMMUNICATION PROTOCOL
Peer-to-peer networks often suffer from node churn, power
usage constraints, as well as virtual or physical device mobil-
ity that cumulatively make communication channels between
nodes irregularly-available. In this work, we assume that
linked nodes keep communicating over time without remov-
ing links or introducing new ones, though links can become
temporarily inactive. We expect this assumption to hold true
in social networks that evolve slowly, i.e., in which user
interactions are many times more frequent than link changes.
From the perspective of link mining, these networks can be
viewed as static relational graphs.

We stress that static relations are exhibited even when
devices rapidly switch communication patterns, as long as
they are limited within fixed sets of neighbors. In practice,
slow evolution can even be enforced by narrowing our focus
to communication between long-time social neighbors, there-
fore ignoring temporal social behavior noise.

Thus, we consider static adjacency matrices A like above
and encode uncertainty with time-evolving communica-
tion matrices Acom(t), whose non-zero elements indicate
exchanges through the corresponding links:

Acom(t)[u, v] = {1 if u, v communicate at time t, else 0}

To simplify the rest of our analysis, and without loss of
generality, we adopt a discrete notion of time t = 0, 1, 2, . . .
that orders the sequence of communication events. We stress
that real-world time intervals between consecutive times-
tamps could vary and that, for the communication adjacency
matrix A, it holds that Acom(t)[u, v] = 1⇒ A[u, v] = 1.
We now provide a framework in which peer-to-peer nodes

learn to classify themselves by exchanging information
through channels represented by time-evolving communi-
cation matrices. This waits for the infrequent timeframes
when channels become active and executes the broadly pop-
ular Send-Receive-Acknowledge communication protocol to
exchange information. In particular, devices u are equipped
with identifiers u.id and operations u.SEND, u.RECEIVE and

u.ACKNOWLEDGE that respectively implement message
generation, receiving message callbacks that generate new
messages to send back, and acknowledging that sent mes-
sages have been received while sending back the recipient’s
generated messages. Expected usage of these operations is
demonstrated in Algorithm 1.

Algorithm 1 Send-Receive-Acknowledge Protocol
Inputs: devices u ∈ V with identifiers u.id, time-evolving
Acom(t) : V × V → R
for t = 0, 1, 2, . . . do

for all (u, v) such that Acom(t)[u, v] = 1 do
message← u.send(v.id)
reply← v.receive(u.id, message)
u.acknowledge(v.id, reply)

C. GNN ARCHITECTURE
GNN architectures can be used to combine relation-based
peer-to-peer connectivity with device features to improve
classification accuracy compared to classifiers using only fea-
tures. This is achieved by incorporating graph convolutions in
multilayer parameter-based neural network transformations
to smooth latent representations across neighbor nodes.

We identify two realistic implementations of smoothing
in peer-to-peer networks under uncertain availability: either
a) the last retrieved representations are used, or b) node
features and links from many hops away are stored locally
for in-device computation of graph convolutions. In the first
case, convergence to equivalent centralized model parame-
ters is slow, since learning impacts neighbor representations
only during communication.2 In the second case, multilayer
architectures aiming to broaden node receptive fields from
many hops away end up storing most network links and node
features in each node; this violates data privacy and could be
computationally intractable given limited device capabilities.

To avoid these shortcomings, we build on existing decou-
pled GNNs outlined in Subsection II-A, which in our setting
separate the challenges of training base classifiers with lever-
aging network links to improve predictions. In particular, they
consider base classifiers that can parse features matrices X
to output matrices Rθ (X ) with rows holding the predictions
of respective feature rows Rθ (X )[u] = Rθ (X [u]). If base
classifiers are trained on the features and labels of node
sets Vtrain, we build on the FDiff-scale decoupled GNN’s
description [12], whose predictions we transcribe as:

Ŷ = (I − βD−0.5AD−0.5)−1Pβ
(
Rθ (X )

+ (1− β)s(I − AmaskD−1)−1P1(Y − Rθ (X ))
)

(1)

where I is the unit matrix, D = diag([
∑

v A[u, v]]u) is a
diagonal matrix of node degrees, masked adjacency matrices

2Porting decentralized learning protocols designed for constant device
availability in our setting requires waiting for other devices to send repre-
sentations before running local computations. The option of using the last
retrieved representations relaxes this scheme by progressing computations
even when some neighbors take too long to communicate.
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prevent diffusion from affecting training nodes with elements

Amask [u, v] = {A[u, v] if u = v or v 6∈ Vtrain, else 0},

and a diagonal matrix is used to control the injection of
personalized node information in the diffusion scheme per:

Pγ = 1
1−β diag({1− β if u ∈ Vtrain, else 1− γ }u)

The values β ∈ [0, 1) (symbol chosen for clarity), s ∈ R are
hyperparameters, whereas γ is a variable that helps express
the two versions of Pγ with one formula.
In terms of our problem formulation, (1) effectively imple-

ments a GNN architecture

Gθ (X ,A) = diff(Rθ ,X ,Y ,A)

that diffuses predictions Rθ (X ) through the graph with an
operation diff(. . . ). This comprises two sub-operations of the
following form:

π∞ = (I − aD−dAmaskDd−1)−1Pγπ0 (2)

where a, d are again helper variables to express both
sub-operations with one formula.

The sub-operation performed first, i.e. the one inside the
largest parenthesis block in (1), is identical to (2) for d =
0, a = 1, γ = 1. The last value makes it so that only
the personalization π0[u] of training nodes u ∈ Vtrain is
diffused through the graph. The second sub-operation sets
d = 0.5, a = β, γ = β and is equivalent to constraining the
personalized PageRank scheme [21], [22] with normalized
communication matrix D−dADd−1 so that it preserves origi-
nal node predictionsπn[u] = π0[u] assigned to training nodes
v ∈ Vtrain. Effectively, it is equivalent to restoring training
node scores after each power method iteration

πn+1 = βD−dADd−1πn + (1− β)π0

where each iteration step is a specific type of graph con-
volution. The representations to be diffused by the two
sub-operations are training node errors and a trade-off
between diffused errors and node predictions respectively.

We stress that, although the above-described architecture
exists in the literature, supporting its diffusion operation in
peer-to-peer networks under uncertain availability requires
the analysis we present in the rest of this section.

D. PEER-TO-PEER PERSONALIZED PageRank
If matrix row additions are atomic node operations, imple-
menting the graph diffusion of (1) in peer-to-peer networks
with uncertain availability is reduced to implementing the
two versions of (2)’s constrained personalized PageRank pre-
sented above.

Previous works have computed non-personalized (for
which π0 columns are normalized vectors of ones) or per-
sonalized PageRank in peer-to-peer networks by letting peers
hold fragments of the network spanning multiple nodes and
merging these when peers communicate [23]–[26]. Our set-
ting is different in that peers coincide with nodes and merging

network fragments requires untenable bandwidths propor-
tional to network size to exchange merged sub-networks.
Instead, we devise a new computational scheme that is
lightweight in terms of communication.

On the surface, iterative synchronized convolutions require
node neighbor representations at intermediate steps. How-
ever, an early work by Lubachevsky and Mitra [27] showed
that, for non-personalized PageRank, decentralized schemes
holding local estimations of earlier-computed node scores (or,
in the case of graph diffusion, vectors) converge to the same
point as centralized ones as long as communication intervals
are bounded.

This motivates us to similarly iterate personalized PageR-
ank by using the last communicated neighbor representations
to update local nodes. In this subsection we mathematically
describe this scheme and show that it converges in prob-
ability to the same point as its centralized equivalent with
linear rate (which corresponds to an exponentially degrading
error) and even if personalization evolves over time but still
converges with linear rate. Notably, keeping older represen-
tations to calculate graph convolutions was not viable when
these were entangled with representation transformations, but
employing decoupled GNNs lets us separate learning from
diffusion.

To set up a decentralized implementation of personal-
ized PageRank, we introduce a theoretical construct we
dub decentralized graph signals that describes decentralized
operations in peer-to-peer networks while accounting for
personalization updates over time, in case these are trained
while being diffused. Our structure is defined as matrices S ∈(
RC
)N×N with multidimensional vector elements S[u, v] ∈

RC (in our case C is the number of classes) that hold in
devices u the estimate of device v representations. Rows S[u]
are stored on devices u and only cross-column operations are
impacted by communication constraints.

We now consider a scheme that updates decentralized
graph signals S(t) at times t per the rules:

S(t)[u, v] = S(t − 1)[u, v]

+Acom(t)[u, v]
( S(t−1)[v][v]

D[u,u]d − S(t − 1)[u, v]
)

S(t)[u, u] = Pγ [u, u]S0(t)[u]+ a
∑
v

Amask [u,v]
D[u,u]1−d

S(t)[v][v]

(3)

where S0(t)[u] ∈ RC are time-evolving representations of
nodes u. The first of the above equations describes node
representation exchanges between devices based on the com-
munication matrix, whereas the second one performs a local
update of personalized PageRank estimation given the last
updated neighbor estimation that involves only data stored on
devices u. Then, Theorem 1 shows that the main diagonal of
the decentralized graph signal deviates from the desired node
representations with an error that converges to zero mean
with linear rate. This weak convergence may not perfectly
match centralized diffusion. However, it still guarantees that
the outcomes of the two correlate in large part.
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Theorem 1: Let limt→∞ S0(t)[u] = π0[u] be bounded and
converge in distribution with linear rate, the elements of Acom
be independent discrete random variables with fixed means
with at least one of them less than 1, d ∈ {0, 0.5}, and
either a ∈ [0, 1) or a = 1, d = 0. Then limt→∞ S(t)[u, u]
converges in distribution to π∞[u] of (2) with linear rate.

Proof: Without loss of generality, we assumeVtrain = ∅,
for which Amask = A. More training nodes only add con-
straints to the diffusion scheme that force it to converge faster.

Let s(t) and s0(t) be vectors with elements s(t)[u] =
E{S(t)[u, u]} and s0(t)[u] = E{Pγ [u, u]S0(t)[u]}, where E{·}
is the expected value operation. Since the communication rate
mean is fixed for each edge, it holds that:

s(∞) = s0(∞)(1− a)+ aD−dADd−1s(∞)

which, for a communication matrix A and a ∈ [0, 1) yields
the solution s(∞) = (1 − a)(I − aD−dADd−1)−1s0(∞).
For eigenvalues λ of D−dADd−1 when d ∈ {0, 0.5} it holds
that |λ| ≤ 1 (from the properties of doubly stochastic and
Markovian matrices) and the corresponding eigenvalues of
D−dADd−1 become 1 − aλ > 0, which makes it invertible.
Hence, the solution is unique and coincides with π∞. For
a = 1 and d = 0, s0(∞) = π∞ as the convergence point
of the same irreducible Markov chain.

For the same quantities, the convergence rate would be
the same or faster if all communications took place with
probability pcom = minu,v E{Acom[u, v]} < 1 where Acom
is the communication matrix. Thus, we consider a commu-
nication matrix Acom whose non-zero elements are sampled
from Awith probability pcom and analyse the latter to find the
slowest possible convergence rate. In this setting, we obtain
the recursive formula:

s(t) = s0(t)(1− a)+ aWs(t − 1)

where W = E{D−dAcomDd−1} = pcomD−dADd−1. Thus,
denoting as σ = pcomσA the spectral radius ofW , where σA ≤
1 is the spectral radius of the matrix D−dADd−1 it holds that:

‖s(t)− s(∞)‖

= ‖(1− a)(s0(t)− s0(∞))+ aW (s(t − 1)− s(∞))‖

≤ (1− a)‖s0(t)− s0(∞)‖ + aσ‖s(t − 1)− s(∞)‖

≤ (1− a)r t0‖s0(0)− s0(∞)‖ + aσ‖s(t − 1)− s(∞)‖

where r0 < 1 is the linear convergence rate of s0(t). Thus, for
σ ≤ pcom < 1, a ≤ 1, we calculate the behavior as t → ∞
to obtain the linear convergence rate limt→∞

‖s(t)−s(∞)‖
‖s(t−1)−s(∞)‖ ≤

aσ < 1. �
Algorithm 2, which we call p2pGNN, realizes (1) as

decentralized algorithm fragments. These run on peer-to-peer
network nodes u and communicate with social neighbors
v under the Send-Receive-Acknowledge protocol to refine
feature-based predictions based social communication links,
as shown in Fig. 2. We implement the protocol’s operations,
node initialization given prediction vectors and target labels,
and the ability to update predictions. Nodes are initialized per
u.INITIALIZE(Rθ[u](X [u]), Y [u]), where the last argument is

a vector of zeroes for non-training nodes. The first argument
is base classifier estimations from (locally) trained parame-
ters θ [u] that can also be updated later on, for example after
gossip averaging updates, by calling u.UPDATE(Rθ (X [u])).
We implement graph diffusion with decentralized graph

signals predictions and errors, where the former uses
the outcome of the latter. Diffusion fragment predic-
tions -that is, the main diagonal of the decentralized
graph signal predictions- are stored in u.prediction=
fragv(Gθ [u],X [u],A[u]), where Gθ is the FDiff-scale archi-
tecture. There are two hyper-parameters to be selected before
deployment: β ∈ [0, 1) that determines the diffusion rate
and s that trades-off errors and predictions. Importantly, given
linear or faster convergence rates for base classifier updates,
Theorem 1 yields linear convergence in distribution for errors
and hence for the in-code variable combined of each node.
Therefore, from the same theorem, predictions also converges
linearly in distribution.

Algorithm 2 p2pGNN Operations at Devices u
procedure initialize(base_prediction, target)

u.predictions←Map()
u.errors←Map()
u.target← target
u.update(base_prediction)

procedure update(base_prediction)
u.base_prediction← base_prediction
u.prediction← prediction
if ‖u.target‖ 6= 0 then

u.error← (prediction − target)
procedure receive(v.id, message)

message← u.send(v.id)
u.acknowledge(v.id, message)
return message

procedure send(v.id)
return u.prediction

|u.predictons|0.5
, u.error
|u.errors|

procedure acknowledge(v.id, message)
prediction, error← message
u.predictions[u.id]← u.prediction
u.errors[u.id]← u.error
u.predictions[v.id]← prediction
u.errors[v.id]← error
if ‖u.target‖ = 0 then

u.error←
∑
u.errors.values()

combined← u.base_prediction+s · u.error
else

combined← u.base_prediction
u.prediction← (1− β)·combined
+

β

|u.predictions|0.5
∑
u.predictions.values()

IV. EXPERIMENTS
A. DATASETS AND SIMULATION
To compare the ability of peer-to-peer learning algorithms to
make accurate predictions, we experiment on three datasets
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FIGURE 2. p2pGNN helps peer-to-peer devices classify themselves by improving local feature-based classifiers with fragments of
decentralized graph diffusion that approximate the FDiff-scale decoupled GNN.

TABLE 1. Dataset details.

that are often used to assess the quality of GNNs [28]; the
Citeseer [29], Cora [30] and Pubmed [29] social graphs.
Pre-processed versions of these are retrieved from the pro-
gramming interface of the publicly available Deep Graph
Library [31] and comprise node features and class labels.
They also come along training-validation-test sets commonly
used in GNN literature experiments and which we also use.

The selected datasets comprise social links between their
nodes and textual node feature data. We consider them rep-
resentative samples of complex social networks with node
features, even if they comprise document instead of human
or sensor nodes. Their quantitative characteristics are sum-
marized in Table 1. In practice, the class labels of training
and validation nodes would have been manually provided by
respective devices (e.g. submitted by their users) and would
form the ground truth to train base models.

We use these datasets to simulate peer-to-peer networks
with the same nodes and links as in the dataset graphs
and fixed probabilities for communication through links at
each time step, uniformly sampled from the range [0, 0.1].
To speed up experiments, we further force nodes to engage
in only one communication at each time step by randomly
determining which edges to ignore when conflicts arise; we
thus use threading to parallelize experiments by distributing
time step computations between available CPUs (this is inde-
pendent of our decentralized setting and its only purpose is to
speed-up simulations).

Finally, we measure classification accuracy of test labels
after 1000 time steps (all algorithms converge well within
that number) and report its average across five experiment
repetitions. Similar results are obtained for communication

rates sampled from different range intervals. Experiments are
available online3 and were conducted on a machine running
Python 3.6 with 64GB RAM (they require at least 12GB
available to run) and 32× 1.80GHz CPUs.

B. BASE CLASSIFIERS
Experiments span the following three base classifiers. These
cover a wide breadth ofmachine learning sophistication, from
no learning to neural networks. Hence, we expect usage of
other base classifiers to exhibit similar qualitative outcomes
to those we report later on.

• MLP – A multilayer perceptron is often employed by
GNNs [10], [12]. This consists of a dense two-layer
architecture starting from a transformation of node
features into 64-dimensional representations activating
ReLU outputs and a dense transformation of the latter
whose softmax aims to predict one-hot encodings of
labels.

• LR – A simple multilabel logistic regression classifier
whose softmax aims to predict one-hot encodings of
classification labels.

• Label – Classification that repeats training node labels.
If no diffusion is performed, this outputs random predic-
tions for test nodes.

MLP and LR are trained towards minimizing the
cross-entropy loss of known node labels with Adam opti-
mizers [32], [33]. We set learning rates to 0.01, which is
a value often used for training on similarly-sized datasets,
and maintain the default momentum parameters proposed
by the optimizer’s original publication. For MLP, we use
50% dropout for the dense layer to improve robustness and
for all classifies we L2-regularize dense layer weights with
0.0005 penalty.

We do not perform hyperparameter tuning, as in practice
further protocols would be needed tomake peer-to-peer nodes

3https://github.com/MKLab-ITI/decentralized-gnn
Apache License 2.0.
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TABLE 2. Comparing the accuracy of different types and training schemes of base algorithms and their combination with the diffusion of p2pGNN.
Accuracy is computed after 1000 time steps and averaged across 5 peer-to-peer simulation runs.

learn a common architecture optimal for a set of validation
nodes. Instead, the above-described parameter values are
commonly used defaults. For FDiff-scale hyperparameters,
we select a personalized PageRank restart probability often
used for graphs of several thousand nodes 1 − β = 0.1 and
error scale parameter s = 1, where the latter is selected so that
it theoretically satisfies a heuristic requirement of perfectly
reconstructing the class labels of training nodes.

C. COMPARED APPROACHES
We experiment with the following two versions of MLP and
LR classifiers, which differ with respect to whether they
are pre-trained and deployed to nodes or learned via gossip
averaging. In total, experiments span 2 MLP + 2 LR +
Label = 7 base classifiers.
Pre-trained – Training classifier parameters in a central-

ized architecture over 3000 epochs, where parameter updates
of the Adam optimizer aim to maximize the cross-entropy
loss of the training node set. We select the parameters at the
epoch maximizing the validation node set loss, effectively
tuning the number of epochs. For faster training, we perform
early stopping if the validation node set loss has not decreased
for 100 epochs, which happens well within the designated
maximum number of epochs, i.e. there would be no benefit
or change to training time if more maximum epochs were
considered.

We remind that, in practice, pre-trained classifiers can
take the form of a service (e.g. a web service) that trains
parameters θ based on sample data submitted by some (but
not by necessarily many) devices and hosts the result. In this
case, all devices u query the service to obtain identical copies
of the pre-trained parameters θ [u] = θ and use these for
in-device predictions and potential improvement of the latter
with peer-to-peer graph diffusion. Only data of training and
validation nodes are shared with the centralized service and
the rest retain privacy — hence we consider this approach
partially decentralized. For ease of understanding, we assume
that training has been completed before the first time step
of simulated peer-to-peer communication, but in practice
our approach allows linear rate (or faster) updates based on
intermediate training results.
Gossip – Fully decentralized gossip averaging, where each

node holds a copy of the base classifier and parameters are

averaged between communicating nodes. Since no stopping
criterion can be enforced, both training and validation nodes
contribute to training of base classifier fragment parameters
θ [u]. In particular, the simulated devices corresponding to
those nodes perform epoch updates on local instances of the
Adam optimizer every time they are involved in a commu-
nication. During these updates, each device performs one
gradient update to reduce the cross-entropy loss of its one
local data sample before performing the averaging.

If training data were independent and identically dis-
tributed and with many samples residing on each device,
this approach could be considered a state-of-the-art base-
line in terms of accuracy, as indicated by the theoretical
analysis of Koloskova et al. [8] and experiment results of
Niwa et al. [34]. However, our setting of classifying devices
ties at most one sample to each device and hence does not pre-
serve these requirements. Thus, the efficacy of this practice
is uncertain. We also consider the Label classifier as natively
Gossip, as it does not require any centralized infrastructure.

For all base classifiers, we report: a) their vanilla accu-
racy, b) the accuracy of passing base predictions through
the FDiff-scale scheme of (1), as approximated via p2pGNN
operations presented in Algorithm 2, and c) the accuracy of
passing the predictions of centralized counterparts through an
also centralized implementation of FDiff-scale with the same
hyperparameters, i.e. the last approach is fully centralized.

Finally, given that training does not depend on diffusion,
we perform the latter by considering both training and val-
idation node labels as known information. That is, both
types of nodes form the set Vtrain of our analysis. Ideally,
p2pGNN would leverage the homophilous node communi-
cations to improve base accuracy and tightly approximate
fully-centralized predictions. In this case, it would become a
decentralized equivalent to centralized diffusion that works
under uncertain communication availability and does not
expose predictive information to devices other than commu-
nicating graph neighbors.

D. RESULTS
In Table 2 we compare the accuracy of base algorithms
vs. their augmented predictions with the decentralized
p2pGNN and a fully centralized implementation of FDiff-
scale. We remind that the last two schemes implement
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FIGURE 3. Accuracy convergence over 1000 time steps of p2pGNN over the datasets Citeseer (left), Cora (middle),
Pubmed (right) for pre-trained base classifiers and label diffusion. Simulated peer-to-peer communication between
neighbors takes place with rates uniformly sampled from the range [0, σmax] where the maximum communication
frequency σmax is either 0.1 (top) or 0.05 (bottom).

the same architecture and differ only on whether diffusion
runs on peer-to-peer networks or not respectively. We can
see that, in case of pre-trained base classifiers, p2pGNN
successfully improves accuracy scores by wide margins,
i.e. 7%-47% relative increase. In fact, the improved scores
closely resemble the ones of centralized diffusion, i.e. with
less than 3% relative decrease, for the Citeseer and Cora
datasets. In these cases, we consider our peer-to-peer diffu-
sion algorithm to have successfully decentralized its com-
ponents. On the Pubmed dataset, centralized schemes are
replicated less tightly (this also holds true for simple Label
propagation), but there is still substantial improvement com-
pared to pre-trained base classifiers.

On the other hand, results are mixed for base classifiers
trained via gossip averaging. Before further exploration,
we remark that MLP and LR outperform their pre-trained
counterparts in large part due to a combination of training
with larger sets of node labels (both training and validation
nodes) and ‘‘leaking’’ the graph structure into local classi-
fier fragment parameters due to non-identically distributed
node class labels. Thus, gossip training already implicitly
incorporates diffusion. However, after diffusion is performed,
accuracy does not reach the same levels as pre-trained
base classifiers—in fact, in the Citesser and Cora datasets,
homophilous parameter training reduces the diffusion of

classifier fragment parameters to the diffusion of class labels.
This indicates that classifier fragments tend to correlate node
features with graph structure and hence additional diffusion
operations are not necessarily meaningful. Characteristically,
the linear nature of LR makes its base gossip-trained and
p2pGNN versions near-identical. Since this issue systemi-
cally arises from gossip training shortcomings, we leave its
mitigation to future research.

Overall, experiment results indicate that, in most
cases, p2pGNN successfully applies GNN principles to
improve base classifier accuracy. Importantly, although
neighbor-based gossip training of base classifiers on both
training and validation nodes outperforms models pre-trained
on only training nodes (in which case validation nodes are
used for early stopping), decentralized graph diffusion of the
latter exhibits the highest accuracy across most combinations
of datasets and base classifiers.

E. PRACTICAL EXPLORATION
To gain an understanding of our approach’s practical
applicability, in Table 3 we investigate the added commu-
nication overhead of employing decentralized graph diffu-
sion. To do this, we serialize messages using the pickle
library [35] and measure the number of bytes the result takes
up in-memory. This depends on the number of exchanged
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TABLE 3. Comparing overhead in bytes (B) and kilobytes (kB—used for
large overheads with rounded off decimal digits) during peer-to-peer
communication between base algorithms and p2pGNN variations. The
latter require less than one additional kilobyte.

classifier parameters and decentralized graph signal trans-
misions and is fixed for each dataset.4 In the real world,
serialized messages could be sent alongside other forms of
communication (e.g. social messaging) to guarantee that they
reach their recipients. Alternatively, they could be exchanged
whenever communication channels become available.

We can see that, thanks to decoupled GNNs propagating
vectors of few class label estimations and their errors, only a
small overhead is added to information transmission, which
lies in the order of magnitude of less than a kilobyte. In fact,
this overhead can be considered negligible when compared
to the communication cost of gossip training of MLP and LR
base classifiers that requires 40 or more times the number of
bytes. As a final note, we stress that these experiments do not
capture (report as zero) communication costs for receiving
pre-trained models from a central infrastructure, as this is an
one-time operation.

Finally, in Fig. 3 we investigate the convergence process
of p2pGNN variations in terms of predictive accuracy. To do
this, we plot how accuracy evolves over times in one repeti-
tion of our experiments (that is, for a specific randomization
seed) and the accuracy when communications are performed
at half the rate. First, we verify that diffusion exhibits lin-
ear convergence, as accuracy values quickly approach their
asymptotic limit. This is achieved within 100-200 time steps
for our experiments and less than twice as many time steps
when the communication rate is halved.

To understand why the product between the communica-
tion rate and the number of steps does not increase, we refer
to the proof of Theorem 1, where the convergence rate is
upper-bounded by the minimum communication rate pcom
between nodes (since the convergence rate is less than aσ <
pcom). Thus, halving the communication rate of all edges also
halves the upper stochastic bound of the convergence rate and
at most doubles convergence time.

V. CONCLUSION AND FUTURE WORK
In this work, we investigated the problem of letting nodes of
unstructured peer-to-peer networks classify themselves under

4Data compression encodings could be employed to reduce communica-
tion costs, but we expect these to maintain similar relative differences, since
numerical data of few zeroes are exchanged.

communication uncertainty and proposed that homophilous
communication links can be mined with decoupled GNN
diffusion to improve base classifier accuracy. We thus intro-
duced a decentralized implementation of diffusion, called
p2pGNN, whose fragments run on devices and mine network
links as irregular peer-to-peer communication takes place.
Theoretical analysis and experiments on three simulated peer-
to-peer networks from labeled graph data showed that com-
bining pre-trained (and often gossip-trained) base classifiers
with our approach successfully improves their accuracy at
comparable degrees to fully centralized decoupled graph neu-
ral networks while introducing non-intrusive communication
overheads.

For future work, we aim to improve gossip training to let it
account for our setting’s non-identically distributed spread of
data samples across graph nodes, which systemically arises
when each device accommodates only one sample. We are
also interested in addressing privacy concerns and societal
biases in our approach and explore automated hyperparam-
eter selection.
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