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Abstract We present a versatile and effective mani-

fold learning approach to tackle the concept detection

problem in large scale and online settings. We demon-

strate that Approximate Laplacian Eigenmaps (ALE),

which constitutes a latent representation of the man-

ifold underlying a set of images, offers a compact yet

effective feature representation for the problem of con-

cept detection. We expose the theoretical principles of

the approach and present an extension that renders

the approach applicable in online settings. We evalu-

ate the approach on a number of well-known and two

new datasets, coming from the social media domain,

and demonstrate that it achieves equal or slightly bet-

ter detection accuracy compared to supervised meth-

ods, while at the same time offering substantial speed

up, enabling for instance the training of 10 concept de-
tectors using 1.5M images in just 3 minutes on a com-

modity server. We also explore a number of factors that

affect the detection accuracy of the proposed approach,

including the size of training set, the role of unlabelled

samples in semi-supervised learning settings, and the

performance of the approach across different concepts.

Keywords Concept Detection · Semi-supervised

Learning · Laplacian Eigenmaps · Online Learning
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1 Introduction

Concept detection is a challenging computer vision prob-

lem that is typically defined as a multi-label classifi-

cation problem, i.e. new images need to be classified

to one or more concepts (also termed as categories or

classes) out of a predefined concept set. Existing ap-

proaches typically focus on optimizing classification ac-

curacy, often disregarding the training and data man-

agement costs involved in the process of creating new

classification models. However, in modern image re-

trieval applications, there is often a need for rapidly

building new classification models in order to accom-

modate the quickly changing information filtering needs

of end users. In addition, there is often abundant unla-

belled or weakly labelled multimedia content available

that could be leveraged to improve the classification ac-

curacy, typically with the use of semi-supervised learn-

ing (SSL) approaches. In a few cases, there are even

large amounts of data available for training, yet using

all of it for training is computationally very expensive,

even though it appears that more training data leads

to better classification results [29].

This paper focuses on SSL-based concept detection,

which was found to lead to very competitive perfor-

mance in standard datasets [10,28] and has the poten-

tial of further improvements by leveraging additional

unlabelled content in the training process. In particu-

lar, we focus on graph-based SSL approaches that have

seen increasing adoption for concept detection in mul-

timedia [6,35–37] due to the popularity of graphs for

modelling similarity in large image collections, and the

intuitive idea that same-class images should cluster to-

gether (cluster assumption) and that images close on

the graph should be more likely to be associated with

the same concepts (manifold assumption).
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In graph-based SSL settings, a sparse n × n sim-

ilarity graph is built to encode the visual similarities

between images, and the resulting graph structure is

leveraged to solve the concept detection problem. Two

popular approaches to achieve this include the use of a)

spectral graph analysis, e.g. using the graph Laplacian

[5] as a new learning representation, and b) label prop-

agation, utilizing a label diffusion process on the graph

to spread the labels (concepts) from the known images

(nodes) to the unknown ones. Both of these approaches,

however, typically suffer from increased time complex-

ity, which can be as high as O(n3). In addition, many

of these approaches are transductive in nature, i.e. they

are only applicable when both the training and testing

images are available. Hence, both of these constraints

render a large number of existing approaches impracti-

cal in realistic applications settings, which require fast

training with a large number of samples, and real-time

concept detection for newly arriving images.

Motivated by the above constraints, we present a

scalable SSL approach that is also applicable in online

settings. The proposed approach relies on the concept of

Approximate Laplacian Eigenmaps (ALE) [9,23], and

extends it to be applicable to online settings. The In-

ductive ALE (IALE) approach, presented in detail in

Section 3.4, relies on a low-dimensional embedding of

images computed from the training set to compute an

embedding for the set of incoming images without the

need to recompute the ALEs for the whole set of images.

Furthermore, we conduct a comprehensive experimen-

tal study that delves into a number of previously un-

explored aspects in large-scale SSL, including the role

of the size and nature of the training set, the impact

of feature dimensionality, and the performance across

different concepts. More specifically, the paper makes

the following contributions:

– We propose IALE, an inductive extension over ALE,

that is easy to implement in online applications and

also tackles the scalability and incremental compu-

tation issues, while maintaining high accuracy.

– We explore the trade-off between feature dimension-

ality and accuracy demonstrating exceptional gains

in speed and scalability with marginal only decrease

in detection accuracy.

– We compare with a supervised learning (SL) method

in many datasets demonstrating that both ALE and

IALE are very fast and robust methods compared

with SL. The proposed methods were found to have

competitive accuracy over a large range of concepts,

including those arising in a social media context. In

addition, we study the effect of the employed super-

vised learning step (SVM versus Smooth Functions)

on the accuracy of the proposed approach.

– We explore the impact of adding more unlabelled

images on the detection accuracy, demonstrating

that for visually separable concepts, adding unla-

belled data can moderately improve accuracy, while

for overlapping concepts, adding unlabelled data can

harm the detection accuracy.

To our knowledge, this is the first work that explores

the use of a manifold learning approach on the prob-

lem of concept detection in large-scale and incremental

settings and compares its performance to other semi-

supervised and supervised learning approaches.

2 Related Work

SSL has received considerable attention in recent years

due to its capability to use inexpensive unlabelled data.

However, to make effective use of unlabelled data we

need to make two strong assumptions, the cluster and

the manifold assumption. Moreover, graph-based SSL

algorithms suffer from two main problems: a) computa-

tionally intensive training step, typically involving the

processing of large similarity matrices, b) applicabil-

ity in online settings. In this section, we give a short

overview of existing works on graph-based SSL and in-

ductive graph-based SSL approaches. Extensive surveys

on the topic are presented in [45] and [43].

2.1 Graph-based SSL

Given a set of training and a set of testing images,

graph-based SSL proceed by building a graph that en-
codes the similarities among the images, and leverages

the structure of the graph to perform the learning.

A large number of such approaches rely on the con-

sistency of label predictions and the smoothness of the

underlying graph. These algorithms are also known as

label propagation algorithms, with Gaussian Fields and

Harmonic Functions (GFHF) [44] and Learning with

Local and Global Consistency (LLGC) [42] being two

of the most popular approaches. These methods de-

fine a cost function to quantify the smoothness of the

predicted labels over the distribution of the training

data. Moreover, they converge to a solution in an itera-

tive matter. The main drawbacks of these methods are

that the results are sensitive to noise, and that they

are inapplicable in large-scale online settings due to

the need for iterative computations. A similar approach

is grounded on the notions of hashing-based l1-graph

construction and KL-based multi-label propagation [6],

with the goal of handling large-scale datasets. However,

the time complexity of this approach during inference
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still remains high, since it relies on a computational

scheme that requires 50 iterations for convergence (as

experimentally shown in [6]). Hence, its applicability in

online settings is limited. Moreover, Wang et al. [36]

proposed a bi-relational graph-based random walk ap-

proach, in which both the image graph and the label

graph are used as subgraphs in a bipartite graph for

image annotation. This approach is robust, but is trans-

ductive in nature and thus cannot be easily applied in

online learning. In addition, it suffers from the same

problem of constructing a huge similarity matrix when

the training set is large.

Another class of graph-based SSL relies on mani-

fold learning, which typically comprise a manifold en-

coding step combined with a supervised learning tech-

nique. LapSVM and regularized least squares (LapRLS)

[4] constitute popular examples of such approaches. An-

other recent manifold-based approach is the Graph Struc-

ture Features (GSF) presented in [28]. GSF builds a

sparse similarity graph and then computes the corre-

sponding Laplacian Eigenmaps (LEs), which then uses

as new features for learning the target concepts. Despite

the obtained accuracy improvements, GSF cannot be

used for large-scale learning due to its high complexity.

In general, LE-based methods have to construct simi-

larity matrices and subsequently the graph Laplacians,

which have quadratic complexity to the size of labelled

and unlabelled data. Thus, as the size of data increases,

the use of such approaches becomes prohibitively ex-

pensive. Another problem in the construction of LEs

is the diagonalization of a n × n data matrix which is

impractical due to memory restrictions.

Motivated by the above issues, several methods were
proposed to efficiently calculate the graph Laplacian.

Some of them are based on building a smaller graph

by randomly subsampling a subset of the points [34].

The drawback of these methods is that their output can

change dramatically depending on the selected samples.

In addition, the methods proposed in [34,39] construct

a large adjacency matrix implementing the Nyström

method. Such approaches, however, cannot guarantee

the graph Laplacian to be positive and semi-definite.

In [38], the authors propose a variant, called clustered

Nyström method. They construct approximate eigen-

functions to a kernel by choosing a subset (landmark

points) of the entire data collection. The landmark points

are determined as the cluster centers of a k-means sam-

pling algorithm. This process is fast, though the main

problem still remains, because the final eigenvectors

are extracted by the sampled kernel matrix. In addi-

tion, Liu et al. [20] implement a method based on an-

chor graphs and Markov random walks between the

data points and the anchors to produce an adjacency

matrix that can guarantee the positiveness and semi-

definiteness of graph Laplacians.

In [32], the authors propose an approach based on

the cluster assumption for computing the adjacency

matrix eigenfunctions. They assume that identifying

the most important eigenfunction under high density

areas corresponds to finding the most representative

eigenvector. The drawback of this method is that if a

data point belongs to multiple clusters, the represen-

tative eigenvector will fail to assign it correctly. Ji et

al. [15] use the top eigenfunctions to build a prediction

function by producing a Guassian kernel matrix. This

approach ensures a better generalization error bound,

but with scalability problems.

Recently, the ALE approach [23] was proposed to

reduce the complexity by using the convergence of the

eigenvectors of the normalized graph Laplacian to eigen-

functions using Markov Chains [9]. The framework pre-

sented here extends this approach to make it applicable

in online settings.

2.2 Inductive graph-based SSL

Inductive approaches can detect concepts for newly ar-

riving images without the need to perform global com-

putations on the training set.

Jia et al. [16] propose a non-linear manifold learn-

ing method, in which they use sub-manifold analysis

to derive the LE representation of a new point and to

update the underlying manifold accordingly. Authors

in [19] extend the seminal ISOMAP manifold learning

algorithm [1] to online settings by using a nearest neigh-

bour technique to describe the geometry of data and to

compute the eigenvectors. Kouropteva et al. [18] pro-

pose an incremental extension of the LLE embedding

algorithm [31], in which the nearest neighbours of new

point are computed and then the neighbourhood is re-

calculated and the weights of the adjacency matrix are

updated. Assuming the eigenvalues of the cost matrix

remain the same when a new data point arrives, the

minimization of cost matrix is solved by solving a d×d
problem, where d is the number of eigenvectors.

Ning et al. [26] propose an incremental extension of

spectral clustering by changing the eigenvalues of a dy-

namic system as new data points arrive. As the similar-

ities among objects change, the algorithm updates the

cluster labels. In [21], the authors propose Incremen-

tal LTSA, an incremental extension of Local Tangent

Space Alignment (LTSA) [40] by using the geodesic

structure of LTSA to compute the nearest neighbours

of new data points and then to project the new point to

the low-dimensional space close to its neighbours. Then,
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the ILTSA updates the low-dimensional coordinates of

existing points. Another incremental SSL approach is

presented in [17]. The algorithm clusters the training

points using the LEs and generates cluster labels ac-

cording to representative members. Then, for every new

sample, the representative clusters are recomputed and

the eigenvalues are updated to keep a newest set of rep-

resentative points.

Zheng et al. [41] propose an alternative approach in

online learning for large-scale datasets. They propose an

online SVM method to update the model based on two

prototypes, the Learning Prototypes and the Learning

Support Vectors. The inductive extension of ALE de-

scribed here was first presented in [24]; however, it was

evaluated on a single dataset and in limited experi-

mental settings. The present paper attempts a much

more thorough presentation and experimental analysis

of IALE in numerous datasets.

3 Approach description

The main motivation behind ALE is the efficient com-

putation of a low-dimensional graph-based representa-

tion of images that are effective for the task of concept

detection. Using the exactly computed LEs, as will be

described in subsection 3.1, would require the construc-

tion of a n×n image similarity graph, the computation

of its Laplacian, and more importantly the computation

of the eigenvectors and eigenvalues of the graph Lapla-

cian. As the number of images n grows, the approach

becomes impractical due to the excessive computation

costs. To this end, ALE proposes an approximate so-

lution to the problem that is much faster to compute.

This is described in detail in subsection 3.2. Similar to

the original LE-based approach, ALE remains trans-

ductive, and hence is not suitable for application in on-

line problem settings. To render the approach inductive,

we present an extension of the approach in subsection

3.4, in which the features of the newly arriving images

are projected to the existing LE vectors with an appro-

priate interpolation operation.

Overall, the inductive concept detection process can

be summarized in the following steps: a) feature extrac-

tion, in which the feature vectors of choice are extracted

from the images available at training time (those can

be solely labelled images, or both labelled and unla-

belled ones), b) dimensionality reduction through PCA,

c) approximate computation of the eigenfunctions and

eigenvectors of the image similarity matrix Laplacian

without explicitly creating the graph, d) use the ap-

proximate LE vectors to create concept detectors using

“standard” supervised learning techniques, e.g. SVM,

e) project the PCA-reduced extracted features of the

“new” images to the space of approximate LE vectors,

f) use the trained concept detector to predict their la-

bels. Step c) is detailed in subsections 3.1 and 3.2. Steps

d) and f) are covered in subsection 3.3. Step e) is dis-

cussed in subsection 3.4. The impact of steps a) and

b) is examined in Section 4. The notation used in the

following is summarized in Table 1.

3.1 Background

Graph-based SSL leverages both labelled and unlabelled

images by considering them as nodes (vertices) of a

graph where edges (links) reflect the similarity between

them. Given a set of K target concepts Y = {Y1....YK}
and a labelled set L = {(xi,yi)}li=1 of training samples,

where xi ∈ <D stands for the feature vector extracted

from image i and yi ∈ {0, 1}K for the corresponding

concept indicator vector, a transductive learning algo-

rithm attempts to predict concepts associated with a

set of unlabelled items U = {xj}l+u
j=l+1, by processing

together sets L and U . Based on the features of the

input items, a graph G = (V,E) is constructed that

represents the similarities between all pairs of items.

The nodes of the graph include the items of both sets

L and U , i.e. V = VL ∪ VU with |V | = n.

There are different options for constructing such a

graph. A k-nn graph is created when an edge is inserted

between items i and j as long as one of them belongs

to the set of top-k most similar items of the other. Sim-

ilarity between i and j can be computed by a n × n

Gaussian kernel W (Heat Kernel):

wij = exp

(
−|xi − xj |

2

2t2

)
(1)

Symbol description
Y Label matrix yi, ..., yK of K concepts
L Set of labelled images
U Set of unlabelled images
X : xi, xj Feature matrix: xi and xj feature vectors with N dimensions
G Image similarity graph
W Heat Kernel
D Diagonal matrix whose elements are Σwi,j

L Graph Laplacian

L̃ Normalized Graph Laplacian
cD Number of eigenvectors
n Number of images
B Number of bins used to quantize the distribution
p(x) Distribution over feature x discretized on bin values b
P B ×B diagonal matrix whose diagonal elements correspond to p(x)

W̃ B ×B matrix expressing affinity between discrete points of density p
g Eigenfunctions
σ,Σ Eigenvalue, Eigenvalue matrix
φ,U Eigenvector, Eigenvector matrix

D̃ Diagonal matrix equal to ΣPW̃P

D̂ Diagonal matrix equal to ΣPW̃
f Smooth Function
a Smooth operator of f
Λ Diagonal matrix, where Λii = λ if labelled, otherwise Λii = 0

Table 1: Math notation
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where t defines the strength of the affinity, how strongly

connected the nodes are. Having constructed the simi-

larity graph between the input items, we have to map

the graph nodes to feature vectors that encode the

position of nodes on the underlying manifold. This is

achieved with the help of the graph Laplacian. Let D

be the diagonal vertex degree matrix, defined as Dii =∑n
j=1 wij . Then, the graph Laplacian is defined as:

L = D −W (2)

To extract the LE feature vectors, we must first con-

struct the normalized Laplacian:

L̃ = D−1/2LD−1/2 = I −D−1/2WD−1/2 (3)

Computing the eigenvectors of L̃ corresponding to the

smallest non-zero eigenvalues of the matrix results in

a set of cD eigenvectors with n dimensions, which are

then stacked to form the input matrix S ∈ <nxcD , each

row of which is denoted as Si ∈ <cD and constitutes

the LE feature vector for image i.

3.2 ALE construction

To compute the LEs exactly, we would need to build a

n× n similarity graph between labelled and unlabelled

images and then compute the eigenvalues and eigen-

vectors of its Laplacian. For large n, this is very costly.

ALE tackles this problem based on an approximation

of LEs by estimating a smaller covariance matrix, as

suggested in [9], where it is hypothesized that the data

xi ∈ <d are samples from a distribution p(x).

The key idea of the approach is that if the points

are sampled uniformly at random from a manifold, then

the eigenvectors of the corresponding graph Laplacian

would converge to the eigenfunctions of the Laplace

Beltrami operator. More specifically, as the number of

samples goes to infinity we construct a set of approx-

imate eigenfunctions to map the geometry of samples

and to find the convergence of eigenfunctions over a

diffusion map (a family of eigenvectors and eigenvalues

defined on a low dimensional Euclidean space) using a

discrete random walk [25]. To this end, for every dimen-

sion we construct Markov random walks along the im-

ages of the graph. For this, a transition probability ma-

trix P is computed based on their pairwise similarities

W (Equation 1). Specifically, we choose the Laplace-

Beltrami operator to construct the random walk, and

to compute the approximate eigenfunctions in the limit

of infinite data, we make use of Equation 4. Therefore,

under suitable convergence conditions we compute the

eigenvectors from a small number of eigenfunctions (the

ones with the smallest eigenvalues), which capture the

geometrical and statistical properties of the data.

The ideal solution to derive the eigenfunctions would

be that the density of features follows a known distri-

bution (i.e Gaussian). The issue is that real data do

not have such known distributions leading to the need

for making certain assumptions to solve the problem.

For every dimension of the N -dimensional feature vec-

tor of the images, a B ×B matrix W̃ is derived, which

expresses pairwise point affinities in the respective di-

mension, along with a diagonal matrix P , whose di-

agonal elements approximate the density p(s) of the

rotated data. Assuming that the N distributions are

independent, the eigenfunctions of marginals are also

eigenfunctions of the joint density. By building the his-

togram from discrete data, we create such marginal dis-

tributions. Therefore, using matrices W̃ and P , we nu-

merically determine the eigenfunctions, and hence the

eigenvalues, at a set of discrete points (the centres of

histogram bins). Then, instead of computing the eigen-

functions of the similarity matrix between the original

images, one can define eigenfunctions g corresponding

to the eigenvalues σ of the rotated data, which can be

seen as approximations of the LEs of the original data

when n → ∞. This is considerably faster, since typi-

cally B � n. These are recovered by solving the follow-

ing equation:(
D̃ − PW̃P

)
g = σPD̂g (4)

D̃ is a diagonal matrix whose diagonal elements are the

sum of the columns of PW̃P , and D̂ is a diagonal ma-

trix whose diagonal elements are the sum of the columns

of PW̃ . An example of this procedure is illustrated in

Figure 1. The final step involves the interpolation of

feature vectors to the target dimension cD to derive

the U ∈ <n×cD approximate LE vectors.

3.3 Model creation

We examine two supervised learning approaches for cre-

ating the concept models: SVMs and Smooth Func-

tions. According to the first, a linear classifier is trained

using the approximate vectors of the labelled items as

input. In our implementation, we opted for the use

of linear SVM to further increase the training speed.

According to the second, we use the LEs to define a

smoothness operator that takes into account the unla-

belled data. The key idea is to find a set of functions f ,

which agree with the labelled data and are also smooth

with respect to the graph. To this end, the following

minimization problem needs to be solved:
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Fig. 1: Eigenfunctions computation. From every dimen-

sion of discrete data we create the marginal distribution

p(xi), from which we derive the diagonal matrix P . We

also construct the affinity matrix W̃ and use P and W̃

to solve for the values of g eigenfunctions according to

Equation 4. According to these, we compute the small-

est eigenvalues and then the final U eigenvectors.

argmin
f

1

n2
fTLf =

1

2n2

∑
ij

Wij(f(i)− f(j))2 (5)

where f denotes the value of label function F . That

means that two points that are close to each other on

the graph are more likely to share a label. In addition,

the smoothness of any vector f can be defined as a lin-

ear combination of the eigenvectors with smallest eigen-

values [45]:

f = Σiαφi (6)

In our implementation, we define f = Uα. Thus, the

minimization problem of Equation 5 reduces to the min-

imization of α through the following equation:

(Σ + UTΛU)a = UTΛy (7)

where Σ are the smallest eigenvalues (cf. Equation 4),

U consists of the n×cD approximate LE vectors, Λ is a

diagonal matrix, whose diagonal elements are Λii = λ

if i is labelled, otherwise λ = 0, and y are the labels.

3.4 Inductive ALE

ALE was originally proposed and tested in transductive

learning settings [23]. There, the computation of the

learning representation, i.e. the LE vectors U , happened

simultaneously for the training and test images. As-

suming that new test samples arrive in the system, one

would need to recompute the LE vectors from scratch

for the union of the training and test images. In con-

trast, inductive SSL approaches assume that the low-

dimensional representations Ui of xi are pre-computed

for the training samples. When a new sample xn+1 is

observed, the learning algorithm should project xn+1

to the space spanned by U so that the trained concept

models can be applied.

To this end, in Inductive ALE (IALE) we reuse the

B×B×N eigenfunctions g and the B×N eigenvalues σ

that were derived from the training data by numerically

solving Equation 4. To derive each dimension Un+1(i)

of sample xn+1, we first identify the corresponding di-

mension xn+1(ai) and the corresponding eigenfunction

gi and bins bi, based on the ordering of the original

eigenvalues σ (for instance, if the σ3 was the smallest

eigenvalue, then a1 = 3). Having identified the bin val-

ues b0i , b1i , such that b0i ≤ xn+1(ai) < b1i , linear interpo-

lation is used to derive the corresponding ALE value:

Un+1(i) = gi(b
0
i ) + (gi(b

1
i )− gi(b0i ))

xn+1(ai)− b0i
b1i − b0i

(8)

where g(b) denotes the value of eigenfunction g at the

center of bin b. Equation 8 is applied cD times to derive

the full ALE vector Un+1.

3.5 Complexity analysis

Assuming n images available at training time, and the

use of features with N dimensions, the training cost for

extracting the ALE structure is O(N ·B2 ·n·cD). As will

be seen in the experiments section, ALE performs par-

ticularly well with aggregated dimensionality reduced

features, e.g. PCA-reduced VLAD with N = 512. Also,

the approach is insensitive to B and hence low values

are selected for efficiency reasons. In our experiments,

we set B = 50. Finally, small to medium values are

typically selected for cD, e.g. cD = 500. Given these

assumptions, it becomes obvious that N ·B2 ·cD can be

considered as a constant factor, and hence the approach

scales linearly to the number n of images available at

training time. At prediction time, the computation of

Un+1 based on Equation 8 requires only cD linear inter-

polations, hence the prediction time is essentially equal

to the time required to run the classification model.
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4 Experimental Study

We performed a systematic evaluation of the proposed

framework in a variety of datasets and settings. Section

4.1 describes the datasets and the evaluation criteria

used in the study. Section 4.2 is divided in five parts. In

the first, we explore the effect of different features on the

accuracy of concept detection. In the second, we com-

pare the two different learning methods of subsection

3.3, the linear SVM classifier and the smooth function.

In the third part, we compare the proposed framework

against a standard supervised learning method. Finally,

we explore the IALE performance in large-scale set-

tings, and the impact of adding new data to the training

process in the fourth and fifth parts respectively.

4.1 Experimental Setup

4.1.1 Datasets and evaluation criteria

Most of the experiments were carried out on the follow-

ing six datasets.

– Flickr-25K: The MIR-Flickr (MIRF) [12] dataset

is associated with two different ground truth anno-

tations. The first one has a set of 24 concepts [12]

and the second is the ImageCLEF 2012 (ICLEF12)

annotation [2] that has 94 concepts. Both contain

annotations for all 25K images of MIRF. 15K im-

ages are used as labelled and the rest as unlabelled.

Moreover, to study the learning stability of various

algorithms, we vary the number of labelled images

along 1K, 5K, 7.5K, 10K and 15K.

– NUS-WIDE: This contains 269,648 images and

the associated 5,018 tags and 81 concepts [7]. 161,789

images are used as labelled and the rest as unla-

belled. In the respective tests, we vary the number

of labelled images along 10K, 20K, 50K, 90K, 120K

and 162K.

– Yahoo GC1: This contains 2M images and 10 gen-

eral concepts. Out of those, 1.5M images are used

as labelled and the rest as unlabelled. The number

of labelled images varies between 10K and 1.5M.

– Flickr20132: This contains 22,142 images crawled

from Flickr groups and about 10K images from the

MIRFLICKR-1M dataset [12] that were added to

the set of negative examples. It comprises 14 con-

cepts, including concepts from the news domain,

1 http://acmmm13.org/submissions/call-for-multimedia-
grand-challenge-solutions/yahoo-large-scale-flickr-tag-image-
classification-challenge/
2 http://www.socialsensor.eu/datasets/mm-concept-

detection-dataset-2013/mm-concept-detection-datasets.zip

such as demonstrations and Obama. We use 14,762

images as labelled and the rest as unlabelled.

– Twitter20133: This contains 12,635 images crawled

from Twitter hashtags and users and about 10K im-

ages from the MIRFLICKR-1M dataset [12], again

used to enrich the set of negative examples. It con-

sists of five concepts: Selfie, Porn, Messages, Memes,

Keepcalm. We use 8,424 images as labelled and the

rest as unlabelled.

Evaluation criteria: To measure concept detection

performance, we use the interpolated Average Precision

(iAP) for each concept and the Mean interpolated Av-

erage Precision (MiAP) across all concepts [22, p.158]4.

We also use the Precision@100 score and the classifica-

tion error to measure the performance of the framework

against competing approaches. Each experiment is re-

peated 10 times and the MiAP averaged over the splits.

4.1.2 Framework Setup

Feature extraction: As state-of-the-art features, we

test the d = 128 SIFT [30] computed using the vlfeat

implementation5. As a fast alternative, we also test the

Speeded-Up Robust Features (SURF, d = 64) [3] using

the implementation of [33]6. In both cases, we used a

dense regular grid with a spacing of 6 pixels.

To aggregate the local descriptors into a single vec-

tor per image, we used the Vectors of Locally Aggre-

gating Descriptors (VLAD). For SIFT, we performed

K-means clustering with a vocabulary size of K = 64

centroids for better performance as proposed in [14] and

for SURF with k = 4 × 128 to apply multiple vocabu-

lary aggregation [13]. The clustering was performed on

an independent set of 10,000 images, randomly sam-

pled from the MIRFLICKR-1M dataset [12]. The final

VLAD vectors are power-and L2-normalized and then

reduced to D = {512} and L2-normalized again [33].

We also experimented with additional features to

measure the impact of different representations in com-

bination with ALEs. More specifically, we used the RGB-

SIFT (d = 384) local descriptors and GIST [27] to mea-

sure the effect of a global descriptor combined with LEs.

To measure the effectiveness of text-based features, we

applied probabilistic Latent Semantic Analysis (pLSA)

[11] on the tag bag-of-words vectors (with respect to

the 1000 most frequent tags) using 100 latent topics.

3 http://www.socialsensor.eu/datasets/mm-concept-
detection-dataset-2013/mm-concept-detection-twitter2013-
images.zip
4 MiAP is also known as 11-points interpolated average pre-

cision. It is computed with the vl pr() method of the vlfeat

library, http://www.vlfeat.org/matlab/vl_pr.html
5 http://www.vlfeat.org/
6 https://github.com/socialsensor/multimedia-indexing
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Competing approaches: Table 2 lists the compet-

ing concept detection systems. We compare both the

transductive and inductive version of ALE combined

with both SVM and smooth functions. We also com-

pare to GSF, a recently proposed SSL approach [28],

which is equivalent to using the LEs of an image sim-

ilarity graph in combination with an SVM, and was

found to exhibit highly competitive accuracy compared

to alternative SSL approaches, such as the one based

on Multiple Kernel Learning [10]. Due to its computa-

tional complexity, this approach was only tested on the

Flickr-25K dataset (MIRF and ICLEF12). As a state-

of-the-art baseline, we use SVM directly on the original

feature representation.

Name Methods
ALE-SVM ALE with Linear SVM
IALE-SVM IALE with Linear SVM
ALE-SF ALE with Smooth Function
IALE-SF IALE with Smooth Function
GSF [28] Equivalent to exact LEs with SVM
BSVM Baseline SVM

Table 2: The competing concept detection systems

Classification settings: We use linear SVM as

baseline, in particular, the implementation of the lib-

linear library [8]. We set the SVM parameter c = 5 in

all experiments.

ALE settings: In ALE, very limited parameter

tuning was carried out: it was observed that different

values of B did not considerably affect accuracy. Thus,

we choose to set B = 50 for computational efficiency

reasons. Regarding the number of eigenvectors, our pre-

liminary experiments on the ICLEF12 dataset [2], re-

ported in Table 3, indicated that a reasonable choice

was cD = 500, which we used across all experiments

presented in the rest of this study. Later experiments

on the NUS-WIDE dataset, reported in Table 4, indi-

cate that further performance gains would be possible

by dataset-specific tuning of the parameter. However,

we opted for avoiding dataset-specific parameter tun-

ing, since our interest has been to test the approach

in real-time indexing settings, where there is no time

available for offline processing operations (such as pa-

rameter tuning). For λ we observe in Figure 2 (also

based on the ICLEF12 dataset) that after λ = 10 the

MiAP stabilizes and we choose to set λ = 100.

IALE settings: Due to the optimized vector im-

plementations of MATLAB, we performed the concept

detection in batches of images (instead of per single

image). In each batch we included 1000 images. This

still simulates a realistic indexing scenario, when large

amounts of images constantly arrive in the system.

Table 3: Dependence of MiAP on cD in ICLEF12 (using

SIFT and 15K training).

Method cD = 50 cD = 100 cD = 200 cD = 500 cD = 1000
ALE-SVM 21.81 23.22 24.66 24.90 24.96
ALE-SF 18.22 20.56 22.88 24.57 24.00

Table 4: Dependence of MiAP on cD in NUS-WIDE

(using SIFT and 160K training).

Method cD = 100 cD = 500 cD = 1000
ALE-SVM 16.26 22.06 22.66
ALE-SF 17.73 22.04 23.93
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Fig. 2: Detection accuracy with respect to λ in ICLEF12

All experiments were implemented in MATLAB and

executed on a 24-core (an Intel Xeon Q6600@2.0Ghz,

128G RAM) machine. The code is available on GitHub7.

4.2 Results

4.2.1 PCA and features

In [23], we had concluded that the use of PCA on the

VLAD vectors (for different variants of SIFT) offered

substantial accuracy gains in terms of Mean interpo-

lated Average Precision (MiAP) on concept detection

using ALEs on the MIRF dataset. Here, we are inter-

ested in the impact that the extent of dimensionality

reduction has on the detection accuracy over a large

variety of datasets. Table 5 presents the effect of PCA

in all datasets examined in this paper. The experiments

are conducted for the transductive version of ALE and

they are repeated for both the SVM and the smooth

functions-based learning.

One may note that performing more aggres-

sive reduction (i.e. to 512 dimensions instead of 1024)

7 https://github.com/socialsensor/mm-concept-detection-
experiments
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MIRF ICLEF12
Descriptor K D # 1024 512 Descriptor K D # 1024 512

SIFT 64 128
ALE-SVM 46.8 46.6

SIFT 64 128
ALE-SVM 24.84 24.9

ALE-SF 46.7 46.6 ALE-SF 24.4 24.5

SURF 4x128 64
ALE-SVM 42.6 42.6

SURF 4x128 64
ALE-SVM 23.8 23.9

ALE-SF 41.8 41.9 ALE-SF 22.2 22.1

RGB-SIFT 64 384
ALE-SVM 49.4 49.3

RGB-SIFT 64 384
ALE-SVM 26.9 26.8

ALE-SF 49.4 49.3 ALE-SF 26.3 26.3

Yahoo GC NUS-WIDE
Descriptor K D # 1024 512 Descriptor K D # 1024 512

SIFT 64 128
ALE-SVM 22.3 21.65

SIFT 64 128
ALE-SVM 20.8 19.8

ALE-SF 40.9 39.55 ALE-SF 21.9 20.2

SURF 4x128 64
ALE-SVM 20.0 20.0

SURF 4x128 64
ALE-SVM 15.3 15.4

ALE-SF 40.5 40.92 ALE-SF 17.7 17.6

RGB-SIFT 64 384
ALE-SVM 22.65 21.46
ALE-SF 42.4 41.21

Flickr2013 Twitter2013
Descriptor K D # 1024 512 Descriptor K D # 1024 512

SIFT 64 128
ALE-SVM 56.1 52

SIFT 64 128
ALE-SVM 77.7 73.8

ALE-SF 55.44 52.02 ALE-SF 80.41 72.00

SURF 4x128 64
ALE-SVM 45.4 45.8

SURF 4x128 64
ALE-SVM 72.6 73.4

ALE-SF 45.03 44.66 ALE-SF 71.26 71.74

Table 5: Accuracy of two learning configurations (ALE-SVM, ALE-SF) with respect to reduced size of VLAD.

affects only marginally the detection accuracy.

This is important in case we are interested in storing the

computed representation. More specifically, ALE-SVM

in combination with SIFT 1024-d achieves a MiAP score

of 46.8% on the MIRF dataset, while the use of SIFT

512-d slightly reduces accuracy to 46.6%. Also, ALE-

SF in combination with SIFT 1024-d achieves a score of

46.7%, while with SIFT 512-d the score remains almost

the same 46.6%. We also observe that SURF is more

amenable to dimensionality reduction, since the perfor-

mance difference there between 1024-d and 512-d is even

smaller, and in some cases 512-d leads to higher accu-

racy. Hence, for the rest of the experiments we choose

to use the smaller feature dimensionality to reduce the

computational costs.

Tables 6-9 present the detection accuracy over dif-

ferent datasets (Flickr2013 and Twitter2013 are not

included due to space limitations) and using different

features. Tables 6 and 7 demonstrate that the vectors

of aggregated local descriptors significantly outperform

the global descriptors. In contrast, the tag-based pLSA

features do not have consistent performance. In the case

of MIRF and ICLEF12, they perform worse than the

vectors of local descriptors, while the situation is re-

versed on the NUS-Wide dataset. Figure 3 illustrates

several cases where the manifold assumption holds for

SIFT and pLSA features, and others where it is vio-

lated. Naturally, in cases where the most similar images

to the input image are largely irrelevant (in terms of the

concept of interest) to the image, then the manifold as-

sumption does not hold and consequently the concept

detection fails.

Among local descriptors, RGB-SIFT is found to out-

perform both SIFT and SURF in all datasets where it

was tested. Also, there is no considerable difference in

the performance between SIFT and SURF in most of

the datasets. In most of the datasets SIFT performs

somewhat better, while in the case of the Yahoo GC

dataset SURF achieves higher accuracy. The main con-

clusion out of these observations is that the ALE frame-

work can achieve highly competitive accuracy

even with fast-to-compute and compact features

(SURF+VLAD).

4.2.2 SVM versus SF

The results of Tables 6 - 9 also give insights into the role

of the learning approach (SVM versus SF) employed in

combination with the ALE (and IALE) representation.

It appears that in the MIRF and ICLEF12 datasets,

the use of SVM is clearly beneficial for the accuracy

of the system. In the case of NUS-WIDE, the results

are not conclusive, since there are settings where SF

performs slightly better than SVM, and others where

the reverse outcome is observed. Instead, in the case

of Yahoo GC, the use of SF results in a clear improve-

ment compared to SVMs. Another noteworthy obser-

vation is that SF tends to perform better in combina-

tion with the pLSA tag-based features. The difference

in performance between the two approaches may be at-

tributed to their different principles: SVMs try to max-

imize the inter-class separation of the training samples,

hence its performance deteriorates in datasets and fea-

tures where samples from different classes “mix” on the

feature space. In contrast, SF attempts to enforce class
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MIRF
Descriptor Method 1K 5K 7.5K 10K 15K

GIST

ALE-SVM 30.90 32.16 32.05 32.09 31.82
IALE-SVM 30.31 33.64 33.75 33.23 32.26
ALE-SF 29.27 32.94 33.47 34.07 34.72
IALE-SF 25.61 32.06 33.02 33.79 34.63
GSF [28] 34.02 36.51 37.08 37.52 35.30
BSVM 30.33 31.01 31.88 32.57 33.13

SIFT

ALE-SVM 36.80 43.74 45.05 45.80 46.58
IALE-SVM 33.20 43.17 44.76 45.60 46.51
ALE-SF 32.86 43.03 44.63 45.50 46.63
IALE-SF 31.50 42.86 44.46 45.36 46.40
GSF [28] 39.64 43.72 44.70 45.26 46.05
BSVM 35.80 42.04 43.76 44.82 46.24

RGB-SIFT

ALE-SVM 38.81 46.27 47.56 48.35 49.33
IALE-SVM 35.04 45.64 47.33 48.32 49.35
ALE-SF 34.97 45.97 47.50 48.31 49.37
IALE-SF 33.46 45.70 47.36 48.15 49.24
GSF [28] 41.15 45.80 47.05 47.77 48.40
BSVM 38.01 44.45 46.35 47.57 49.01

SURF

ALE-SVM 32.57 39.45 40.84 41.70 42.88
IALE-SVM 30.84 39.05 40.73 41.67 42.81
ALE-SF 30.33 38.68 40.03 40.80 41.90
IALE-SF 29.90 38.61 40.00 40.83 41.90
GSF [28] 37.43 42.31 43.42 44.28 45.26
BSVM 31.66 37.86 39.84 41.00 42.50

pLSA

ALE-SVM 23.17 23.16 23.17 23.17 23.20
IALE-SVM 23.20 23.20 23.18 23.18 23.17
ALE-SF 23.20 23.17 23.20 23.20 23.20
IALE-SF 23.21 23.18 23.20 23.20 23.18
GSF [28] 23.55 23.51 23.52 23.51 23.58
BSVM 23.22 23.20 23.20 23.18 23.18

Table 6: MiAP results in MIRF

ICLEF12
Descriptor Method 1K 5K 7.5K 10K 15K

GIST

ALE-SVM 15.18 16.58 16.70 16.68 16.66
IALE-SVM 14.52 16.87 17.25 17.43 17.24
ALE-SF 13.79 15.87 16.36 16.88 17.29
IALE-SF 12.46 15.31 16.00 16.56 17.11
GSF [28] 19.09 20.78 21.12 21.41 22.00
BSVM 13.35 14.87 15.32 15.70 16.18

SIFT

ALE-SVM 17.15 21.87 23.11 23.83 24.90
IALE-SVM 15.77 21.26 22.64 23.57 24.51
ALE-SF 15.11 21.20 22.48 23.28 24.57
IALE-SF 14.64 21.09 22.31 23.04 24.25
GSF [28] 21.52 24.13 24.89 25.23 25.84
BSVM 17.21 20.48 21.50 22.21 23.57

RGB-SIFT

ALE-SVM 18.20 23.62 24.83 25.65 26.85
IALE-SVM 16.53 23.00 24.42 25.31 26.73
ALE-SF 16.09 22.89 24.24 25.01 26.36
IALE-SF 15.51 22.62 24.03 24.83 26.36
GSF [28] 22.30 25.40 26.25 26.71 27.44
BSVM 18.29 22.02 23.22 24.11 25.50

SURF

ALE-SVM 17.90 21.52 22.36 23.03 23.93
IALE-SVM 17.33 21.16 22.14 22.91 23.86
ALE-SF 16.83 20.38 21.01 21.50 22.25
IALE-SF 21.16 20.28 20.95 21.53 22.24
GSF [28] 20.78 23.72 24.40 24.98 25.55
BSVM 17.97 20.34 21.14 21.91 22.95

pLSA

ALE-SVM 11.71 11.83 11.73 11.78 11.61
IALE-SVM 11.08 11.32 11.40 11.44 11.50
ALE-SF 11.47 11.77 11.71 11.74 11.62
IALE-SF 11.21 11.60 11.60 11.64 11.68
GSF [28] 15.11 15.07 15.08 15.08 15.07
BSVM 11.07 11.31 11.37 11.43 11.48

Table 7: MiAP results in ICLEF12

(a) Correctly detected concept

(b) Incorrectly detected concept

Fig. 3: Five most similar images using SIFT and pLSA

for correct and incorrect detection of concept lake in

NUS-WIDE.

NUS-WIDE
Descriptor Method 10K 20K 50K 80K 120K 160K

SIFT

ALE-SVM 17.43 18.51 19.61 20.08 20.11 22.06
IALE-SVM 17.80 20.00 21.20 21.66 21.70 21.42
ALE-SF 16.02 17.56 19.23 19.67 20.00 22.04
IALE-SF 14.93 16.28 17.90 18.16 18.35 21.40
BSVM 17.40 19.26 21.87 23.01 23.85 24.26

SURF

ALE-SVM 14.61 15.18 14.78 14.36 13.33 13.12
IALE-SVM 15.20 16.30 17.40 17.09 16.14 16.01
ALE-SF 15.30 16.15 17.13 17.44 17.63 17.69
IALE-SF 14.51 15.96 17.08 17.35 17.44 17.50
BSVM 14.80 15.86 17.25 17.95 18.50 18.86

pLSA

ALE-SVM 25.84 26.38 25.60 24.70 23.13 21.82
IALE-SVM 27.90 28.83 28.24 27.64 26.03 24.37
ALE-SF 28.56 29.85 30.86 31.14 31.30 31.20
IALE-SF 24.27 26.12 27.30 27.82 27.95 28.14
BSVM 15.22 16.07 16.66 16.80 16.87 16.93

Table 8: MiAP results in NUS-WIDE

smoothness over the samples with respect to the mani-

fold imposed by the considered similarity graph; hence,

it is mostly affected in cases where the manifold and

clustering assumptions are violated.

4.2.3 ALE versus other methods and SL

One of the goals of this paper is to test whether there

are performance benefits for SSL methods against stan-

dard supervised learning. The results of Tables 6-9 indi-

cate a marginal improvement in the detection accuracy

when ALE is used versus the baseline SVM. Interest-

ingly, there are cases where the performance of the ALE

systems exceeds the one of BSVM only for large train-
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Yahoo GC
Descriptor Method 10K 50K 100K 200K 500K 1M 1.5M

SIFT

ALE-SVM 34.25 34.93 35.0 35.02 35.04 35.05 35.08
IALE-SVM 34.16 34.94 34.93 35.03 35.08 35.04 35.06
ALE-SF 36.71 38.67 39.07 39.33 39.51 39.54 39.55
IALE-SF 35.37 37.90 38.50 38.80 38.98 39.07 38.93
BSVM 35.43 38.02 38.31 38.50 38.32 38.39 38.44

RGB-SIFT

ALE-SVM 35.60 36.07 36.11 36.15 36.20 36.31 36.08
IALE-SVM 35.61 36.12 36.18 36.30 36.24 36.30 36.34
ALE-SF 38.12 40.3 40.71 41.0 41.14 41.2 41.21
IALE-SF 37.12 39.70 40.05 40.33 40.38 40.45 40.40
BSVM 37.60 39.82 40.32 40.43 40.78 40.84 40.90

SURF

ALE-SVM 32.63 33.35 33.22 33.10 33.08 33.05 33.04
IALE-SVM 32.88 33.47 33.33 33.13 33.08 33.05 33.03
ALE-SF 37.08 39.55 40.37 40.67 40.84 40.9 40.92
IALE-SF 37.25 39.75 40.15 40.39 40.53 40.55 40.54
BSVM 36.13 39.82 40.03 40.31 40.5 40.50 40.54

Table 9: MiAP results in Yahoo GC

ing sets, which indicates that such methods can better

leverage the availability of large training sets. The per-

formance comparison is complemented by the Table 10,

which presents the precision@100 scores. Across almost

all tested datasets and features, the best accuracy is at-

tained by ALE-based systems, with the exception being

NUS-WIDE with the use of SIFT and SURF, in which

BSVM outperforms all ALE systems.

In addition, we compared ALE to competing SSL

approaches. A comparison with the GSF approach [28]

was already presented in Tables 6 and 7. GSF resulted

in higher concept detection accuracy in combination

with most features and training set sizes (it was sur-

passed by ALE-based methods only in the case of MIRF

when SIFT or RGB-SIFT were used). However, its com-

putational cost makes GSF highly impractical in real-

istic settings. For instance, the training step of GSF on

MIRF took approximately 2 hours, while for ALE-SVM

only 2.5 minutes. Furthermore, we compared ALE-SVM

with the LSMP method [6] on the NUS-WIDE dataset

using the same features as the ones reported in [6].

When using the full training set, LSMP achieved a

MAP score of 0.193, while ALE-SVM scored 0.1866,

which is somewhat lower compared to the one of LSMP,

but still better than the rest of the four methods re-

ported in [6]. Interestingly, while LSMP needed 31.4

hours for the training, ALE-SVM needed only 4 min-

utes. Finally, we included LapSVM [4] in the tests, mea-

suring the classification error rate. As we can see from

Table 11, ALE-SVM clearly outperforms both LapSVM

and BSVM except in the cases where the complete

training set (15K images) is given to the algorithms.

This is justified by the fact that SSL methods leverage

a relatively large test set (10K images), which, in the

case of small training sets (1K-10K), greatly contributes

to better capture the underlying feature structure. This

advantage is mitigated when the size of the test set is

smaller than the one of the training set.

MIRF ICLEF12
Descriptor Method P@100 Descriptor Method P@100

SIFT

ALE-SVM 0.7075

SIFT

ALE-SVM 0.3313
IALE-SVM 0.7125 IALE-SVM 0.3293
ALE-SF 0.6967 ALE-SF 0.3213
IALE-SF 0.6913 IALE-SF 0.3205
BSVM 0.7065 BSVM 0.3115

RGB-SIFT

ALE-SVM 0.7492

RGB-SIFT

ALE-SVM 0.3545
IALE-SVM 0.7488 IALE-SVM 0.3564
ALE-SF 0.7429 ALE-SF 0.3481
IALE-SF 0.7360 IALE-SF 0.3473
BSVM 0.7358 BSVM 0.3348

SURF

ALE-SVM 0.6571

SURF

ALE-SVM 0.2812
IALE-SVM 0.6567 IALE-SVM 0.2790
ALE-SF 0.6325 ALE-SF 0.2466
IALE-SF 0.6338 IALE-SF 0.2482
BSVM 0.6479 BSVM 0.2617

Yahoo GC NUS-WIDE
Descriptor Method P@100 Descriptor Method P@100

SIFT

ALE-SVM 0.5600

SIFT

ALE-SVM 0.3527
IALE-SVM 0.5620 IALE-SVM 0.3715
ALE-SF 0.7490 ALE-SF 0.3859
IALE-SF 0.7350 IALE-SF 0.3472
BSVM 0.6950 BSVM 0.4611

SURF

ALE-SVM 0.4930

SURF

ALE-SVM 0.2481
IALE-SVM 0.5020 IALE-SVM 0.2714
ALE-SF 0.7530 ALE-SF 0.2912
IALE-SF 0.7550 IALE-SF 0.2849
BSVM 0.7540 BSVM 0.3222

RGB-SIFT

ALE-SVM 0.5790

pLSA

ALE-SVM 0.3274
IALE-SVM 0.5900 IALE-SVM 0.4355
ALE-SF 0.7600 ALE-SF 0.6077
IALE-SF 0.7560 IALE-SF 0.5653
BSVM 0.7410 BSVM 0.1304

Flickr2013 Twitter2013
Descriptor Method P@100 Descriptor Method P@100

SIFT

ALE-SVM 0.6757

SIFT

ALE-SVM 0.7740
IALE-SVM 0.6200 IALE-SVM 0.7737
ALE-SF 0.6857 ALE-SF 0.2278
IALE-SF 0.6500 IALE-SF 0.7500
BSVM 0.6500 BSVM 0.7640

SURF

ALE-SVM 0.5971

SURF

ALE-SVM 0.7980
IALE-SVM 0.3007 IALE-SVM 0.7880
ALE-SF 0.3007 ALE-SF 0.7780
IALE-SF 0.5607 IALE-SF 0.7620
BSVM 0.5829 BSVM 0.7580

Table 10: Precision at top-100 (P@100) results of ALE,

IALE and BSVM when all training samples are used

MIRF
Descriptor Method 1K 5K 7.5K 10K 15K

SIFT
ALE-SVM 13.6226 12.4455 12.2392 12.1486 12.0629
LapSVM 15.0545 13.6265 13.2378 12.9867 12.6296
BSVM 15.332 12.8633 12.3503 12.134 11.9088

ICLEF12
Descriptor Method 1K 5K 7.5K 10K 15K

SIFT
ALE-SVM 5.3211 5.1406 5.1089 5.0922 5.0845
LapSVM 5.4021 5.271 5.2287 5.1949 5.193
BSVM 6.2781 5.4268 5.2097 5.1181 5.0373

Table 11: Error rate results in relation to the training

set size. In all cases, 10K images are used for testing.

4.2.4 Large-scale experiments

One of the primary motivations behind the develop-

ment and evaluation of the ALE framework was the

possibility to train models with very large amounts of

samples in very limited time. Here, we compare the per-

formance of IALE with SVM from an efficiency point

of view. As illustrated in Table 12, IALE achieves com-

petitive classification accuracy, while achieving a much

faster classification speed. More specifically, the execu-

tion time of IALE scales linearly to the training set. For

example, if a 50K/concept training set is used, IALE
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IALE-SF BSVM
Train Test

MiAP
Train Test

MiAPB ×B, g, U f Model Prediction
1K 5.3 sec 10 mins 0.3537 1K 23 sec 2.5 sec 0.3543
50K 59 sec 10 mins 0.3898 50K 19 mins 2.5 sec 0.3832
150K 3 mins 10 mins 0.3893 150K 71 mins 2.5 sec 0.3844

Table 12: Computational cost and accuracy of IALE-SF

and linear SVM on Yahoo GC.

needs 59 secs for training and 10 mins to predict the

500K test set (in batches of 1000), while linear SVM

needs 19 mins for training and 2.5 secs for prediction.

When 150K images/concept are provided as input, ALE

needs just 3 mins to compute the training variables

(B×B, g and U) and 10 mins for the prediction, while

linear SVM needs about 71 mins to learn the model and

2.5 secs for prediction.

To further test the practical value of ALE in on-

line settings, we focus on the performance of the induc-

tive extension (IALE) versus the transductive one. It

is observed that IALE results in competitive results in

the majority of tests. The difference between the best

performing configuration and the IALE ones is in all

cases marginal, while there are cases where IALE sys-

tems yield the highest accuracy, e.g. in the case of NUS-

WIDE with the use of SIFT, and in the case of MIRF

and ICLEF12 with the use of GIST.

Fusion: Within IALE, fusion takes place at the level

of the LE vectors. Compared to early fusion (i.e. at

the level of VLAD vectors), this appears to lead to

improved accuracy. As illustrated in Figure 4, IALE

outperforms BSVM across all training ratios on NUS-

WIDE. For 10K training images, the MiAP of IALE is

33.85%, while for BSVM it is 22.24%. For 160K train-

ing images, the MiAP of IALE is 42.52% considerably

higher than the 35.07% score of BSVM. In the case of

the Yahoo GC dataset, BSVM performs better than

IALE for 1K training images/concept, but as the train-

ing set increases, IALE improves its accuracy and for

50K training images/concept, it outperforms BSVM.

Concept-level evaluation: Figures 5 and 6 illus-

trate the iAPs of concepts for NUS-WIDE and Yahoo

GC datasets. NUS-WIDE includes 81 concepts. Despite

the fact that BSVM outperforms IALE for the ma-

jority of concepts, it is interesting to see that IALE

outperforms BSVM in many challenging: for instance,

concepts earthquake and flags have a small number of

samples (42 and 214 respectively), and the first of those

exhibits high variability. We also observe that IALE

can predict more accurately concepts containing objects

that are conspicuous. For instance, in the concepts mil-

itary, cars and garden IALE-SF achieves iAP scores of

18.63%, 12.92% and 18.05% respectively, while BSVM

achieves 16.9%, 12.08% and 14.87%.
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Fig. 4: Comparison of MiAP between BSVM and IALE-

SF in case of fusion in NUS-WIDE and Yahoo GC.

Figure 6 shows the obtained iAPs on the Yahoo GC

dataset that contains 10 general concepts. For the ma-

jority of them, we note that the difference in accuracy

between BSVM and IALE is only marginal. However,

for concept nature and 2012, IALE performs consid-

erably better than BSVM. This is of particular value,

since the 2012 concept was among the most challenging

ones of the dataset (second lowest MiAP score).

Further insights can be gleaned by the scatter plots

of Figures 7 and 8. The x-axis depicts the absolute dif-

ference in accuracy (in terms of iAP) when moving from

the smallest training set size to the largest one (for

IALE), i.e. it indicates the extent to which each con-

cept benefits from the availability of a larger training

set. The y-axis depicts the absolute difference in accu-

racy (in terms of iAP) between IALE and BSVM, i.e. to

what extent a particular concept can be better detected

by the proposed framework.

By inspecting the plots of the NUS-WIDE dataset,

it appears that the large majority of concepts benefit

from the availability of bigger training sets. Surpris-

ingly, in the case of the concept lake the detection ac-

curacy drops considerably. Furthermore, as mentioned
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Fig. 5: Comparison of iAPs for the 81 concepts of NUS-

WIDE using IALE-SF and BSVM.
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Fig. 6: Comparison of iAPs for the 10 concepts of Yahoo

GC using IALE-SF and BSVM

above, for the majority of concepts, BSVM performs

somewhat better than IALE. In contrast, inspection of

the Yahoo GC plot reveals that IALE detects the ma-

jority of concepts with higher accuracy compared to

BSVM and that all concepts benefit for the availability

of a larger training set.
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Fig. 7: Per concept analysis of training size impact on

NUS-WIDE dataset (the figure is split in four subfig-

ures for readability).
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Fig. 8: Per concept analysis of training size impact on

Yahoo GC dataset.

4.2.5 Impact of unlabelled data

So far, we have not accounted for the potential of SSL

methods to further improve their performance with the

inclusion of additional unlabelled images in the learn-

ing process. Figure 9 illustrates the gains reaped by

IALE when more unlabelled samples are provided as in-

put together with the labelled ones. In ICLEF12 out of

the 25K images, 5K were reserved for training and 10K

testing. The remaining 10K images were progressively

added as unlabelled items. For NUS-WIDE from the

161,789 training images, 10K were reserved for training

and the remaining 107,859 for testing. From the rest,

we progressively added 1K as unalebelled items. The

same pattern was also followed for Yahoo GC, where

10K were kept for training and 500K for testing.

In the case of ICLEF12, the performance benefits

for SIFT and SURF are moderate (absolute difference

of about 1% between using no unlabelled samples and

using 10K samples). For GIST, there is considerable

improvement already by adding 1K additional unla-

belled samples. In the case of NUS-WIDE the gains

are more significant. In particular, when using the tag-

based pLSA features, the performance increases by al-

most 4% between having no unlabelled and adding 10K

unlabelled in the learning process. The benefits are less

pronounced for SIFT and SURF features. On the other

hand, there is no consistent behaviour in the case of Ya-

hoo GC. For a small number of additional unlabelled

samples there is a small performance improvement, but

when we add more the performance drops by little.
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Fig. 9: Impact of unlabelled data on IALE.

5 Conclusion

In this paper, we described a semi-supervised frame-

work for large-scale learning based on the use of Ap-

proximate Laplacian Eigenmaps (ALE) in tandem with

supervised learning approaches. The algorithm is appli-

cable in both transductive and inductive settings, which

makes it practical for applications where real-time in-

dexing of the incoming media items is of importance.

Evaluation on a variety of real datasets shows that

a significant speed up is achieved on the training pro-

cess (compared to a standard supervised classification

approach) without noticeable degradation of the detec-

tion accuracy. Given also the merits of the ALE repre-
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sentation in terms of storage cost and its amenability

for fusing different features, we may conclude that the

proposed framework offers an effective and extremely

efficient concept detection solution for multimedia in-

dexing and retrieval applications, with a particular fo-

cus on large scale settings.
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