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Abstract. In this work we address algorithmic fairness concerns that
arise when graph nodes are ranked based on their structural relatedness
to a personalized set of query nodes. In particular, we aim to mitigate
disparate impact, i.e. the difference in average rank between nodes of a
sensitive attribute compared to the rest, while also preserving node rank
quality. To do this, we introduce a personalization editing mechanism
that helps ranking algorithms achieve different trade-offs between fair-
ness constraints and rank changes. In experiments across four real-world
social graphs and two base ranking algorithms, our approach outper-
forms baseline and existing methods in uniformly mitigating disparate
impact, even when personalization suffers from extreme bias. In particu-
lar, it achieves better trade-offs between fairness and node rank quality
under disparate impact constraints.

Keywords: Node ranking · Personalized ranking · Algorithmic
fairness · Disparate impact mitigation

1 Introduction

Machine learning has been widely adopted in systems that affect important
aspects of people’s lives, from recommending social media friends to assist-
ing jurisdictional or employment decisions. Since these systems often learn to
replicate human-generated and systemic biases, fairness concerns arise when
automated decisions end up correlated to sensitive attributes, such as gender
or ethnicity [1,2]. Fairness is commonly defined as similar assessment between
sensitive and non-sensitive groups of data samples under a statistical measure
[1,3–5]. In this work, we focus on disparate impact elimination [6–9], which
requires (approximate) statistical parity between sensitive and non-sensitive
positive predictions.

Node ranking refers to a class of methods that organize relational data into
graphs and score the structural relatedness of their nodes to a set of query
ones. This process can be personalized, in the sense that query nodes share an
attribute, such as their political views, in which case scores (ranks) can be used
as estimators for that attribute [10–12]. If no personalization takes place and all
nodes become queries, ranks reflect their structural importance [13,14].
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Although graph node ranking is an important machine learning discipline,
remarkably little work has been done to make it fair. In fact, the first -to our
knowledge- principled understanding of node rank fairness was only recently
proposed by Tsioutsiouliklis et al. [15], who explore disparate impact mitiga-
tion for the node ranks of Google’s PageRank algorithm [16]. We now initiate
a discussion on the fairness of personalized node ranking algorithms. Contrary
to the non-personalized case, where node rank quality is tied to ad hoc defini-
tions of structural importance, there exist objective notions of personalized node
rank quality that fairness-aware approaches should ideally respect. For example,
ranking social graph nodes to recommend friends should aim for relevance yet
its outcome should not be influenced by sensitive attributes, such as race.

In this work we leverage a model that weights training samples to make
classifiers fair [3] and adapt it to estimate an unbiased personalization that
yields fairer node ranks. Our new adaptation can be trained towards a variety
of fairness objectives, such as fully or partially eliminating disparate impact
while minimizing rank edits. We demonstrate its effectiveness by comparing it
to baseline and existing practices across two ranking algorithms and four real-
world graphs with both unbiased and extremely biased personalization.

Our contribution lies in initiating a discussion on fairness-aware personalized
ranking algorithms, where we address the trade-off between biased personaliza-
tion and the preservation of prediction-related node rank quality. Furthermore,
we investigate whether approaches uniformly introduce fairness in the sense that
they do so for both the whole graph and an evaluation subset of nodes.

2 Background

2.1 Personalized Node Ranking Algorithms

Personalized node ranking starts from a set of query nodes sharing an attribute
of interest and scores nodes v per some notion of structural proximity to query
ones. We organize node scores, which are called ranks and not to be confused
with ordinalities, into vectors r with elements r[v] ≥ 0. We similarly consider a
user-provided personalization vector p with elements p[v] ∈ [0, 1] reflecting the
importance of nodes v being used as queries (0 corresponds to non-query nodes).

Ranking algorithms are often expressed as graph filters [17,18]. These use a
normalization W of the graph’s adjacency matrix, whose elements W [u, v] define
transitions from nodes u to v. Then, given that propagating the personalization
n hops away can be written as Wnp, they weight different propagation distances:

r = H(W )p H(W ) =
∞∑

n=0

hnWn (1)

where H(W ) is called a graph filter. Different filters can be obtained for differ-
ent weights hn and methods of calculating W . For example, the graph’s adja-
cency matrix M can be normalized column-wise W = MD−1 or symmetrically
D− 1

2 MD− 1
2 , where D = diag

([ ∑
u M [v, u]

]
v

)
is the diagonal table of node



612 E. Krasanakis et al.

degrees. Two well-known graph filters are Personalized PageRank [19,20] and
Heat Kernels [21], which respectively arise from hop weights hn = (1−a)an and
hn = e−ttn/n! for parameters a ∈ [0, 1] and t ∈ {1, 2, 3, . . . }.

2.2 Sweeping Node Ranks

The sweep procedure [22,23] utilizes node ranking algorithms to identify congre-
gations of nodes that are tightly-knit together and well-separated from the rest
of the graph, a concept known as low subgraph conductance [24]. This procedure
assumes that a base ranking algorithm R with strong locality [25], such as per-
sonalized PageRank and Heat Kernels, yields ranks R(p) for a personalization p
that comprises structurally close query nodes. It then compares ranks with their
non-personalized counterparts R(1), where 1 is a vector of ones:

rsweep =
R(p)[v]
R(1)[v]

(2)

From now on, we will refer to this post-processing as the sweep ratio.
The sweep procedure orders all nodes based on their sweep ratio and cuts

the graph into two partitions so that conductance is minimized. This practice
statistically yields well-separated partitions for a variety of node ranking algo-
rithms [22–24]. From a high-level perspective, this indicates that the sweep ratio
tends to improve node rank quality.

2.3 Algorithmic Fairness and Graph Mining

Algorithmic fairness is broadly understood as parity between sensitive and non-
sensitive group samples over a chosen statistical property. Three popular fairness-
aware objectives [1,3–5] are disparate treatment elimination, disparate impact
elimination and disparate mistreatment elimination. These correspond to not
using the sensitive attribute in predictions, preserving statistical parity between
the fraction of sensitive and non-sensitive positive labels and achieving identical
predictive performance on the two groups under a measure of choice.

In this work, we focus on mitigating disparate impact unfairness [1,6–9].
An established measure that quantifies this fairness objective is the pRule [6];
denoting as R[v] the binary outputs of a system R for samples v, S the sensitive
group, S′ the non-sensitive group (which is the complement of S) and P (a|b) the
probability of a conditioned on b, this is defined as:

pRule =
min(pS , pS′)
max(pS , pS′)

∈ [0, 1]
pS = P (R[v] = 1|p ∈ S)
pS′ = P (R[v] = 1|p �∈ S) (3)

The higher the pRule, the fairer a system is. There is precedence [6] for consid-
ering 80% pRule or higher as fair. Calders-Verwer disparity |pS − pS′ | [7] is a
correlated measure optimized at the same point, but is less descriptive in that
it biases fairness assessment against high fractions of positive predictions.
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In domains related to ranking, fairness has been defined for the order of
recommended items [26–29] as equity in the ranking positions between sensitive
and non-sensitive items. However, these notions of fairness are not applicable to
the more granular understanding provided by node ranks.

In graphs, the notion of achieving fair node embeddings has been proposed
[30,31]. These are the first approaches that introduce fair random walks, a
stochastic process modeled by personalized PageRank. However, the fairness
of these walks is only implicitly asserted through embedding fairness. A more
advanced understanding has been achieved recently in the more general domain
of graph neural networks [32], which can be trained to produce fair recommen-
dations, even under partial knowledge of the sensitive attribute.

Last, a recent work by Tsioutsiouliklis et al. [15] has initiated a discourse
on node rank fairness. Although focused on non-personalized ranking, it first
recognizes the need of optimizing a trade-off between fairness and preserving
rank quality. Furthermore, it provides a first definition of node rank fairness,
called φ-fairness. Under a stochastic interpretation of node ranks, where they
are proportional to the probability of nodes assuming positive labels, φ-fairness
becomes equivalent to disparate impact elimination when φ = |S|

|S|+|S′| .
In this work we consider the similar objectives of a) trading-off deviation

from the original ranks and high pRule and b) preserving rank quality under
fairness constraints. The pRule is calculated according to the above-mentioned
stochastic interpretation of ranks through:

pS = P (R[v] = 1|p ∈ S) = 1
|S|

∑

v∈S

L∞(r)[v]

pS′ = P (R[v] = 1|p �∈ S) = 1
|S′|

∑

v �∈S

L∞(r)[v]
(4)

where L∞(r) is a normalization that divides ranks with their maximum value and
R is a stochastic process with probability P (R[v] = 1) = r[v]

maxu r[u] = L∞(r)[v].

2.4 The CULEP Model

In previous work [3], we tackled the problem of making black box calibrated
binary classifiers fair by pre-processing training data. To this end, we pro-
posed a Convex Underlying Error Permutation (CULEP) model that weighs
the importance of training samples to treat unfairness similarly to how an ideal
but unobserved distribution of fair training labels would. To do this, we theorized
that unfairness correlates to misclassification error (i.e. the difference between
binary classification labels and calibration probabilities) and whether samples
are sensitive. Furthermore, we recognized that strongly misclassified samples
could exhibit different degrees of bias from correctly classified ones.

Under these considerations the CULEP model tries to promote fairness by
introducing a type of parameterized balancing between these sources of unfair-
ness. In particular, after a stochastic analysis similar to the one we will later
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conduct in this work, training samples i with misclassification error erri are
assigned weights proportional to αiEβi

(erri)+(1−αi)Eβi
(−erri) where the val-

ues of αi ∈ [0, 1], βi ≥ 0 depend only on whether samples are sensitive or not and
Eβ(·) is a function asymmetric around 0, such as the exponential Eβ(x) = eβx.
These parameters can be tuned to satisfy various fairness objectives, including
trade-offs between preserving accuracy (when βi = 0) and improving the pRule
(when βi are large enough and αi balance towards mitigating positive label dis-
parity).

3 Our Approach: Fair Personalizer

We theorize that there exist two types of potential node rank bias: stationary
and rank-related. The first arises when ranks end up multiplied with a fixed
bias-related quantity for each node. Whereas the second depends on the person-
alization, which transfers either its own or graph edge bias to the ranks. Of the
two, stationary bias is easier to treat, as it does not depend on the personaliza-
tion and only attacks the ranking algorithm’s outcome. In fact, the sweep ratio
eliminates it, as it ends up dividing node ranks with their bias term.

On the other hand, rank-related bias is harder to tackle. To see why, let
us consider an invertible graph filter, such as the closed form of personalized
PageRank H(W ) = (1 − a)(I − aW )−1, and a personalization vector p that
yields ranks r = H(W )p. We assume that there exist ideal ranks rfair satisfying
a fairness-aware objective, such as minimizing the following trade-off between
preserving ranks and improving the pRule with weight wpRule up to suppRule:

minimize 1
|V |‖L∞(rfair) − L∞(r)‖1 − wpRule · min{pRule(rfair), suppRule} (5)

where pRule(rfair) calculates the pRule of those ranks across all graph nodes V
and ‖ ·‖1 is the L1 norm that sums the absolute values of vector elements. Then,
the graph’s structure (e.g. edge sparseness) may cause H(W ) to be near-singular
and hence propagate back small fair rank changes as large differences between
the original personalization and its fair counterpart pfair = H−1(W )rfair.

Setting aside the potential intractability of optimally editing the personal-
ization, we argue that this practice should be preferred to postprocessing ranks,
as it respects underlying structural characteristics exposed when the graph filter
diffuses the personalization through edges. To keep this upside, we propose that
searching for fairness-inducing personalization edits can be made easier if these
are expressed through parametric models of only few parameters to learn.

The CULEP model could in theory fit this role, since it depends on only four
parameters (αi and βi can each assume only two values, depending on whether
i are sensitive). However, it can not be ported to graph ranking as-is, since
weighting zero elements of the personalization vector through multiplication does
not affect ranks at all and there is no rank validation set on which to tune its
parameters. To address these issues, we adapt this model to perform non-linear
edits on the penalization vector and use the original personalization as a rough
one-class validation set of known positive examples.
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We start from a stochastic interpretation of ranks that snaps them to 1 with
probability P (·) proportional to their value and to 0 otherwise. We also consider
an edited vector personalization pest that estimates ranks rest = H(W )pest of
similar fairness to some unobserved ideal ones rfair. For ease of notation, in the
rest of this section we consider all vector operations (including multiplication)
to be applied element-wise.

We first analyse whether estimated ranks match the ideal fair ones:

P (rfair = rest) = P (rfair = rest|p = rest)P (p = rest)
+ P (rfair = rest|p �= rest)P (p �= rest)

Borrowing CULEP’s theorization, the probabilities of estimated node ranks
being fair given that they approximate well the original personalization are cor-
related with the probability of personalization being fair P (pfair = pest) and
the same holds true given that estimated node ranks do not approximate well
the original personalization. Furthermore, if one of these two types of proba-
bilities becomes larger for a node the other should become smaller and con-
versely. Finally, we consider an exponential-based approximation (whose ability
to achieve fairness has been experimentally demonstrated [3]) of how these types
of probabilities differ from their correlated fair personalization. This approxima-
tion depends on rank and personalization differences and whether nodes are
sensitive:

P (rfair = rest|p = rest) ≈ K P (pfair = pest) e−b(L∞(r)−p)

P (rfair = rest|p �= rest) ≈ K P (pfair = pest) eb(L∞(r)−p)

where b is a vector of real values such that b[v] = {bS if v ∈ S, bS′ otherwise}
and K > 0 is a normalization constant that makes probabilities sum to 1.

We further assume that selecting sensitive and non-sensitive nodes as part
of the personalization is done with fixed probabilities aS and aS′ pertaining to
the personalization bias and organize those into a vector a = P (p = rest) with
elements a[v] = {aS if v ∈ S, aS′ otherwise} ∈ [0, 1].

Given the above analysis, we select a fair personalization estimation pfair

based on the self-consistency criterion that, when it approaches fairness-inducing
personalization, estimated fair ranks should also approach the ideal fair ones:

pest = P (rfair = rest|pfair = pest) ≈ P (rfair = rest)
P (pfair = pest)

∝ ae−b(L∞(r)−p) + (1 − a)eb(L∞(r)−p)

(6)

4 Experiment Setup

4.1 Graphs

To assess whether our approach can achieve fairness while preserving node rank
quality, we experiment on four graphs: two Facebook friendship graphs [33],
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one Twitter graph of political retweets [34] and one Amazon graph of frequent
product co-purchases [35]. The first three comprise real-world fairness sensi-
tive attributes, but not adequately many nodes and edges to calculate ranks
of high quality. On the other hand, the Amazon graph is not annotated with
fairness-related attributes but is large enough for ranking algorithms to boast
high quality, which our approach aims to maintain.

The Facebook graphs each start from a given user and record social relations
between them and their friends, including relations between friends. Ten such
graphs are available in the source material, out of which we randomly select two
to experiment on. These are denoted as FacebookX, where X is their starting
user. We select the anonymized binary ‘gender’ attribute as sensitive and the
first anonymized binary ‘education’ attribute as the prediction label. The Twit-
ter graph comprises only one anonymized sensitive attribute of binary political
opinions (left or right). The Amazon graph does not contain sensitive informa-
tion and we consider the product category ‘Book’ to be sensitive. Due to lack
of predictive attributes for the Twitter and Amazon graphs, we define predic-
tions for the sensitive attribute’s binary complement, which makes those graphs
exhibit what we later dub as extreme unfairness.

These graphs are overviewed in Table 1. Columns correspond to graph names,
number of nodes, number of edges, fraction of nodes with positive labels, number
of nodes designated as sensitive and pRule value of their positive labels.

Table 1. Experiment graph characteristics

Graph Nodes Edges Positive% Sensitive% pRule

Facebook0 347 5,038 68% 36% .91

Facebook686 170 3,312 55% 46% .91

Twitter 18,470 48,365 61% 39% 0

Amazon 334,863 925,872 >99% <1% 0

4.2 Compared Methods

In our experiments we investigate methods that bring fairness to personalized
PageRank and Heat Kernels. These are run with parameters a = .99 and t = 5
for the Amazon graph to diffuse the personalization many hops away [36] and the
frequently used a = .85 and t = 3 for the graphs with fewer nodes. In all cases
we deploy symmetric normalization, which a preliminary investigation revealed
to yield higher AUC (see Subsection 4.3). Ranks were computed to a numerical
precision of 10−9 using the pygrank1 graph ranking library. We compare the
following fairness-aware schemes on the two base node ranking algorithms:
None. The base ranking algorithm.
1 https://pypi.org/project/pygrank/.
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Mult [baseline]. A simple post-processing baseline that multiplies ranks across
the sensitive and non-sensitive groups with a different constant each, so that
disparate impact is fully mitigated. If r are the base ranking algorithm’s node
ranks, this method yields ranks:

rMult[v] =
(

φs[v]∑
u∈S s[u]r[u]

+
(1 − φ)(1 − s[v])∑

u�∈S s[u]r[u]

)
r[v]

where φ = |S|
|S|+|S′| is the fraction of graph nodes that are sensitive and

s[u] = {1 if u ∈ S, 0 otherwise}. It holds that
∑

v∈S rMult[v] =
∑

v �∈S rMult[v].
FairWalk [31]. The graph filter equivalent of random walks previously used for
fair node embeddings, in which the adjacency matrix is adjusted to yield the
same total weight for hopping to sensitive and non-sensitive neighbors.
LFPRO [15]. Near-optimal redistribution of ranks causing disparate impact.
Sweep [22,23]. Postprocessing node ranks with the sweep ratio of Eq. 2.
SLFPRO [baseline]. Applying LFPRO on the outcome of Sweep.
FP [this work]. The model of Eq. 6 whose parameters aS , aS′ ∈ [0, 1] and expo-
nentials bS , bS′ ∈ [−10, 10] are trained with the pygrank library’s coordinate
descent optimization towards Eq. 5 for wpRule = 1 and suppRule = 1.
CFP [this work]. Constraining the FP model to prioritize improving the pRule
but only up to 80% by optimizing Eq. 5 for wpRule = 10 and suppRule = .8.
SweepFP [this work]. Applying FP on the outcome of Sweep.
SweepCFP [this work]. Applying CFP on the outcome of Sweep.

4.3 Evaluation

To compare the different fairness-aware methods, we randomly split graph nodes
into training and evaluation sets, where the former comprise a fraction among
[10%, 20%, 30%] of graph nodes, uniformly sampled without repetition. This
mimics real-world usage of node ranking algorithms, where not many labels
are known. For each split fraction we sample one training set for the Amazon
and 5 for the other graphs (we pass the same sets to each ranking algorithm)
and average the following measures across the respective evaluation sets:
AUC. The area under curve of the receiver operating characteristics [37], which
is often used to measure the quality of rank-based recommendations given known
binary labels. 50% AUC indicates random node ranks, whereas 100% AUC per-
fect rank quality. We stress that fairness-aware methods are tasked with pre-
serving but not improving potentially low node rank quality.
WR. We propose this novel measure of fairness that captures the worst pRule
between the ranks of all graph nodes and the ranks of evaluation nodes. Our
motivation is that some fairness-aware algorithms are designed to yield perfect
disparate impact elimination (i.e. 100% pRule) when considering all graph nodes,
but subsets of nodes should also exhibit increased fairness. For example, if a
method achieves 100% and 1% pRule on all graph and evaluation nodes respec-
tively, it should not be considered fair. For WR to accurately assess whether
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disparate impact treatment are uniformly spread across the graph, we avoid
directly optimizing towards the pRule of evaluation nodes.

We also consider cases of biased personalization, in which sensitive nodes are
underrepresented. This is probable to occur when sensitive nodes are dispropor-
tionately few or when query node selection is biased against them, for example
due to people with sensitive attributes being reluctant to share information [38].
To simulate this behavior, we repeat experiments with extreme personalization
bias, in which sensitive nodes are removed from the personalization.

5 Experiments

We first conduct experiments under unbiased personalization, where training
nodes are uniformly sampled. In Table 2 we detail the outcome of applying
fairness-aware schemes on the personalized PageRank and Heat Kernel algo-
rithms. We omit results for the Twitter and Amazon graphs, which by definition
follow the extreme personalization covered in subsequent experiments.

In this first series of experiments, the high pRule of Facebook graph labels is
transferred through uniform sampling to the personalization and lets base rank-
ing algorithms comfortably exceed 80% pRule. Nevertheless, no method yields
perfect fairness for both all nodes and their evaluation subset. As can be seen
from WR assessments, FP and SweepFP dominate other approaches in satisfying
both fairness terms. SweepFP also maintains equal or better AUC compared to
base ranking algorithms. CFP and SweepCFP do not improve fairness as much,
since their 80% pRule constraint is already satisfied, yet yield similar or higher
rank quality and fairness compared to base algorithms and non-FP approaches.

Table 2. Experiments for unbiased personalization

Personalized PageRank Heat Kernels

Facebook0 Facebook686 Facebook0 Facebook686

AUC WR AUC WR AUC WR AUC WR

None .54 .90 .55 .92 .53 .85 .56 .83

Mult .53 .95 .55 .94 .53 .89 .55 .85

FairWalk .52 .79 .55 .95 .52 .77 .55 .85

LFPRO .53 .94 .55 .92 .52 .81 .55 .74

Sweep .55 .92 .58 .94 .54 .86 .58 .80

SweepLFPRO .54 .94 .57 .93 .53 .81 .57 .77

FP .50 .94 .53 .96 .49 .95 .51 .96

CFP .53 .92 .53 .91 .52 .89 .51 .92

SweepFP .56 .94 .55 .95 .56 .95 .54 .92

SweepCFP .56 .95 .55 .91 .57 .88 .54 .88
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We now experiment with extreme personalization bias, where there is no sen-
sitive query node. Extreme bias ends up being too unfair for base ranking algo-
rithms to reach 80% WR. Furthermore, only methods that involve personaliza-
tion editing assist them in consistently doing so. Although these sometimes sig-
nificantly reduce node rank quality, they avoid settling for minimal rank changes
that fail to reach meaningful levels of fairness, as other approaches often do.

Significant node rank quality reductions for personalization editing occur only
on the Twitter and Amazon graphs. In these, sensitive and predictive labels are
complementary and, from a classification viewpoint, improving fairness comes at
the direct cost of erroneously identifying sensitive nodes as positive. However, in
Amazon graph the granularity provided by ranks sometimes suffers less from this
problem for SweepFP and SweepCFP; these affect ranks just enough to improve
fairness but not so much that AUC is impacted.

An interesting finding is that the sweep ratio detrimentally affects FP and
CFP on the Twitter graph. This indicates that its success in aiding fairness-
aware approaches in other cases can be attributed to higher quality node ranks
proving more leeway for personalization editing to improve fairness trade-offs.

Table 3. Experiments for extreme personalization bias

Personalized PageRank Heat Kernels

Facebook0 Face/k686 Twitter Amazon Facebook0 Face/k686 Twitter Amazon

AUC WR AUC WR AUC WR AUC WR AUC WR AUC WR AUC WR AUC WR

None .53 .69 .54 .74 .58 0 .96 .39 .54 .37 .55 .39 .58 0 .92 .08

Mult .51 .75 .52 .73 .49 .25 .50 .98 .50 .40 .52 .38 .56 .11 .67 .63

FairWalk .52 .78 .54 .78 .57 .03 1 .17 .52 .49 .55 .42 .58 .02 .93 .06

LFPRO .51 .75 .52 .70 .54 .53 .42 .98 .42 .48 .50 .48 .57 .53 .16 .65

Sweep .55 .67 .56 .74 .58 0 1 .34 .54 .35 .56 .38 .58 0 .93 .07

SLFPRO .51 .72 .52 .68 .55 .52 .48 .98 .44 .44 .49 .43 .58 .53 .13 .64

FP .53 .95 .52 .93 .49 .93 .50 .99 .47 .81 .52 .90 .44 .96 .49 .98

CFP .52 .90 .52 .82 .53 .80 .67 .80 .49 .82 .52 .81 .45 .80 .69 .80

SweepFP .54 .91 .54 .92 .27 .96 .52 1 .52 .78 .52 .80 .38 .94 .76 .77

SweepCFP .54 .88 .54 .84 .43 .80 .99 .80 .53 .80 .54 .83 .48 .81 .85 .80

Across all experiments, FairWalk yields fairer ranks compared to both Mult,
which perfectly balances ranks of all nodes, and LFPRO, despite the latter
being known to achieve balance between rank retention and fairness results
in non-personalized settings [15]. This corroborates our assumption that non-
personalized fairness when considering all graph nodes does not necessarily carry
over to personalization and uniform notions of fairness.

Overall, SweepFP achieves similar or better levels of uniform disparate
impact mitigation and node rank quality trade-offs compared to other meth-
ods and is only sometimes outperformed by other FP-based methods and only
under extreme unfairness. We hence suggest using this method when disparate
impact mitigation is the most important objective of node ranking algorithms.
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On the other hand, SweepCFP and CFP always achieve their objective of
reaching 80% WR. From this we surmise that they successfully prevent over-
fitting towards non-uniform notions of fairness and should be preferred when
ranking needs to satisfy only a predetermined fairness level. SweepCFP further
maintains node rank quality close to the base algorithm under most settings.

The broader success of personalization editing approaches can be attributed
to their pre-processing nature, which addresses the catastrophic effects of bias
before being entangled with produced ranks through complex network dynamics.

6 Conclusions and Future Work

In this work we tackled the problem of mitigating disparate impact while pre-
serving the quality of graph node ranks and explored personalization editing as
a means to do so. Our approach derives a personalization editing mechanism
whose parameters can be adjusted to trade-off rank preservation and fairness
objectives. Experimenting on two ranking algorithms and four real-world social
graphs, we found that, when combined with the rank post-processing of the
sweep procedure, our approach significantly outperforms existing and baseline
methods in uniformly mitigating bias across ranks while in large part preserving
their quality, even under cases of extreme unfairness.

For future work, we are interested in exploring the efficacy of our approach
on more graphs and node ranking algorithms. We are especially interested in
graphs of real-world sensitive attributes where ranking exhibits high predictive
capabilities and algorithms that are not graph filters. Furthermore, the FP model
or an adjustment could be used to mitigate other types of unfairness, such as
disparate mistreatment, or do so under partial knowledge of sensitive attributes.
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