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Abstract

We study the problem of semi-supervised, multi-label user classification of networked data

in the online social platform setting. We propose a framework that combines unsupervised

community extraction and supervised, community-based feature weighting before training a

classifier. We introduce Approximate Regularized Commute-Time Embedding (ARCTE), an

algorithm that projects the users of a social graph onto a latent space, but instead of packing

the global structure into a matrix of predefined rank, as many spectral and neural represen-

tation learning methods do, it extracts local communities for all users in the graph in order to

learn a sparse embedding. To this end, we employ an improvement of personalized PageR-

ank algorithms for searching locally in each user’s graph structure. Then, we perform super-

vised community feature weighting in order to boost the importance of highly predictive

communities. We assess our method performance on the problem of user classification by

performing an extensive comparative study among various recent methods based on graph

embeddings. The comparison shows that ARCTE significantly outperforms the competition

in almost all cases, achieving up to 35% relative improvement compared to the second best

competing method in terms of F1-score.

Introduction

User classification in Online Social Networks (OSNs) is the problem of inferring the interests,

associated themes, expertise and other attributes of a user based on their online behavior. It

has successfully found application in personalized content and user recommendation [1], tar-

geted advertising and marketing, expert search and monitoring [2] and social search and pro-

motion [3, 4]. A more recent application is the automated extraction of information sources,

i.e. users and communities that are relevant to news stories [5] and the identification and

tracking of experts by journalists given an initial seed set [6]. Finally, a recent interesting appli-

cation pertains to the behavioral analysis of online user communities that partake in political

discussions based on identifying the political affiliation of users [7] or communities/blogs [8].

The need for improved automated classification of public OSN user profiles is motivated by

the lack of reliable user annotation. The majority of online accounts do not explicitly publish

their interests, leading to sparsely and noisily labeled datasets. Specifically, the textual self-

descriptions that users provide in their online profiles are often too generic to be of any value,
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false, inaccurate, or simply unavailable. Furthermore, large-scale annotation by experts is

unfeasible due to the large amount of effort that would be required for such a task. Yet, the

large amount of social connections, interactions and messages by online users, which are pub-

licly visible and can be automatically collected and analyzed, could be leveraged as informative

signals for user classification.

Out of such informative signals, text messages may seem to be the most obvious choice.

However, such signals often prove to be noisy or insufficient due to brevity (e.g., in Twitter),

ambiguity or multi-linguality. This has been shown to be an obstacle in short text clustering

[9]. A different type of signal relies on the structure of user graphs and is based on the principle

of homophily [10]; i.e. people sharing the same beliefs and interests tend to connect to each

other and are expected to form denser than average communities. For example, topic experts

on Twitter are very often located within one hop from each other [11]. The homophily princi-

ple may be leveraged from a computational point of view by themanifold assumption of semi-

supervised learning. The latter states that the classification for adjacent samples should be

smooth. The appeal of this approach is that it exposes one more facet of this graph-based prob-

lem to analysis via the rich relevant literature while being complementary to content-based

analysis.

The social dimension approach to graph-based, semi-supervised learning aims to avoid

costly time and space consuming matrix inversions [12] and learning label-dependent hypoth-

eses [13] by first embedding the graph in an unsupervised way on a latent space and then

using the coordinates as features for training a classifier. To our knowledge, no previous

attempt has been made to generate detailed representations of the structure of the users’ social

graph for user classification by embedding a graph that captures the structural information

contained in user-centric communities from the standpoint of each user. In particular, our

contributions to multi-label, semi-supervised user classification by means of learning graph

representations are the following:

• We introduce user-centric community detection for graph-based user classification, as a

means to capture, for every user in a graph, missing links to similar, but not directly con-

nected users. To this end, we propose an algorithm that extracts user-centric communities in

a scalable and highly parallelizable way, and uses them to embed the user graph in a latent

feature space. We name our method Approximate Regularized Commute-Time Embedding

(ARCTE).

• As an additional benefit, we propose two improvements upon known methods for calculat-

ing user-centric PageRank vectors to be used in user-centric community detection: a) we

derive a method to calculate cumulative PageRank differences, a more potent similarity mea-

sure for local graph exploration, b) we reduce the number of required operations caused by

unnecessary user self-connections in user-centric methods.

• We extend the proposed community-centric user representation by introducing a supervised

feature weighting step that boosts the importance of communities that include similarly

annotated users with statistical significance. An overview of the proposed community-based
embedding framework is illustrated in Fig 1.

• We conduct an extensive comparative study of numerous feature extraction methods in a

multi-label user classification task. The results indicate that standard community detection

techniques do not manage to extract informative features for user classification. Further-

more, ARCTE surpasses several recent spectral and deep representation learning approaches

and also achieves one of the most favorable accuracy-complexity trade-offs compared to the

competition.

Community based online user classification
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• Finally, we also introduce a new dataset (SNOW 2014 Graph) for multi-label user classifica-

tion, on which we show the results of graph-based user classification leveraging social inter-

actions (e.g., mentions, retweets) on a Twitter stream sample collected during the course of a

day.

We provide an implementation of ARCTE and the SNOW 2014 Graph dataset at the proj-

ect’s GitHub page (https://github.com/MKLab-ITI/reveal-graph-embedding).

Graph-based user classification

Background

We model user classification as a multi-label, graph-based, semi-supervised classification prob-
lem, in which the input data do not inhabit a Euclidean space but are described via their pair-

wise relations. Let G = (V, E) be the graph (i.e. network) of users, where V is the set of vertices

(i.e. users) and E the set of edges (i.e. relations). The graph is represented by an adjacency

matrix A, where A(u, v) = auv, 8u, v 2 E is the directed edge weight from user u to user v. In

this study we discuss undirected graphs, in which the adjacency matrix is symmetric (A0 = A).

We will use the colon notation Au:, A:v to symbolize a single matrix row or column respectively.

We further denote by N(v) the set of neighbors of vertex v and by d(v) its degree. Let L be the

set of labels that characterize users. Let Vl be the labeled and Vu the unlabeled user set. For

each user u 2 V, let yv be the labeling vector, that contains 1 if user v is annotated with the cor-

responding label and 0 otherwise. We denote by Y the label matrix, where each row v corre-

sponds to the labeling vector of user v. Finally, we define the matrices Yl and Yu that

correspond to the sets Vl and Vu.
Given the above notation, user classification is the problem of inferring the labels of the

unlabelled set Yu given the adjacency matrix A and the known labels Yl. However, in a real-

world scenario we may get more annotated users or more labels for an already annotated user.

This may either be the result of additional expert input, or an automated process for annota-

tion. In such cases, it is desirable to have the bulk of the computational work be label-indepen-

dent. This can be done by performing a feature extraction step on the graph in order to project

the graph vertices to a latent Euclidean space such that vertex proximity is preserved. This has

been termed the social dimension approach [14]. The user coordinates in this latent space are

denoted by the user feature matrix X. The coordinates of vertex v are denoted by Xv: 2 <dim,

Fig 1. Overview of community-based user classification framework.

doi:10.1371/journal.pone.0173347.g001
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where dim is the dimensionality of the latent space. Subsequently we also have: Xl and Xu. The

latent space features are label-independent and as such reusable even when new labels become

available. The framework qualifies as semi-supervised learning regardless of whether a super-

vised or semi-supervised approach is selected to train a hypothesis h that maps user projections

in X to label vectors in Y, because the full graph is used to extract X. To deal with the multi-

label nature of the problem, any multi-label classification scheme may be used [15], such as

One-vs-All. The above process is formalized in Alg 1.

Algorithm 1 User Classification Framework

INPUT:A, Vl, Vu, Yl and dim
OUTPUT:Yu

1: X ¼
low � rank embeddingðA;dimÞ

community embeddingðA;dimÞ

(

▷ Graphembedding

2: h ¼
multi � labelðsupervised classifierðXl;YlÞÞ

multi � labelðsemi � supervised classifierðXl;Xu;YlÞÞ

(

▷ Hypothesis

3: Yu = h(Xu) ▷ Out-of-sampleprediction

Limitations of existing graph embedding approaches

We now describe the strengths and weaknesses of various graph embedding approaches with

the help of the toy graph depicted in Fig 2. We assume the presence of three labels (A, B, C)

and hypothesize that users with common labels give rise to dense social communities due to

homophily. Furthermore, there exist inter-community edges that imply the existence of

Fig 2. A toy graph.

doi:10.1371/journal.pone.0173347.g002
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boundary vertices with multiple affiliations. To complicate matters further, there exist other

vertices with no clear affiliations.

Low-rank matrix embedding. Many existing approaches for embedding graphs attempt

to fit the full graph representation into a latent space of a small, pre-defined number of dimen-

sions dim. Their motivation is that a low dimensional projection leads to improved generaliza-

tion and that naturally continuous features as produced by spectral (e.g., Modularity

Maximization as in [14], Laplacian Eigenmaps as in [16], RWModMax [17]) or neural repre-

sentation learning (e.g., DeepWalk [18], LINE [19]) approaches better capture the affiliation

degree of a vertex to latent social dimensions. However, this may lead to only a “rough” repre-

sentation that would lack a lot of structural information given that the dimensionality of the

feature matrix is selected a-priori. The alternative is to use expensive cross-validation and fine-

tune the dimensionality to a specific labeling. Furthermore, spectral methods calculate a num-

ber of eigenvectors equal to the dimensionality dim, something that can be very costly. It must

also be noted that when the graph size is very large, the space required to store the features (O
(dim � |V|)) becomes a non-trivial problem [20].

We run Laplacian Eigenmaps [21] on our toy graph, shown in section A of Table 1. We

show the first three non-trivial eigenvectors (dim1–3) of the graph Laplacian matrix, which are

sufficient to capture the community structure of this simple graph. We note that vertices 9 and

10 are embedded at the same point in X due to structural equivalence.

Community-based embedding. Attempting to address some of the limitations of low-

rank embedding methods, a limited number of approaches using community detection [22]

have been tried for user embedding. These include the overlapping EdgeCluster method [20]

and the hierarchical Multi-Resolution Overlapping Communities (MROC) method [23]. We

first explain the means by which the community-based embedding is made and then discuss

the theoretical limitations of typical community detection paradigms used for its formation.

Suppose we execute any community detection method. The number of communities detected

is |C|, where C is the full set of communities. The number of vertices in a community c is |c|.
Graph vertices are then represented by the community indicator matrix X, defined in Eq 1.

xvd ¼
1; if v 2 cd

0; otherwise

(

; 8v 2 V; cd 2 C; ð1Þ

We call this operation community-based embedding, denoted by X = embed(C). Another

way to view such an embedding is a binary representation such as those usually found in text

classification where the communities are terms, the vertices are documents and the non-zero

values of X denote a document containing a term. By aggregating a number of vertices into a

community, one implicitly encodes a kind of similarity between the vertices of the same com-

munity, even though they may not be directly linked. The community-based embedding

examples in sections B-D of Table 1 correspond to three main types of community: disjoint,

overlapping and hierarchical.

Disjoint community detection: Given Eq 1, each vertex embedding will have exactly one

non-zero element in the dimension corresponding to the community it belongs. More impor-

tantly, all the vertices belonging to the same community are collocated at the same point on X.

For example, suppose that a hypothetical disjoint method correctly groups together vertices

0–3 as community Ad, vertices 4–7 as Bd and vertices 8–11 as Cd (see section B of Table 1).

Now suppose that vertex 12 gets allocated to community Cd. That would mean it would be on

the same latent point as all vertices from label C, whereas it is highly likely that this vertex is

also associated with label B.

Community based online user classification
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Overlapping community detection: This type of community leads to higher distinc-

tiveness in vertex embeddings on X by possibly associating a vertex with multiple latent

dimensions. Suppose now that a hypothetical overlapping method correctly groups together

vertices 0–3 as community Ao, vertices 4–7 as Bo and vertices 8–11 as Co (see section C of

Table 1). Itmight be possible for such a method to have vertex 12 also be assigned to Bo and Co.
Hierarchical community detection: In such cases, vertices are embedded in X using their

assignment to communities at different resolutions. If we consider vertex 4 to be a boundary

vertex associated both with label A and label B, then a hypothetical hierarchical scheme that

considers a hyper-community comprising vertices both of label A and B (AB—see section D of

Table 1) after merging communities A and B, will capture the multiple affiliation successfully.

Still, all the other vertices from label B will also share a common feature with all the label A

ones, something that may be undesired in case there is no true label hierarchy.

Vertex-centric community embedding. We posit that since each vertex has its own local

view of the graph, considering vertex-centric communities results in a vertex representation

that is much more granular and detailed compared to the previously presented community

representations. We now describe two types of vertex-centric community, the first capturing the
local connectivity structure in high resolution, and the second additionally capturing missing links
between vertices.

Base vertex-centric communities: We define the very high resolution base community [23]

bv of a vertex v as the set of adjacent vertices plus the ego vertex, bv = N(v) [ v. Their value as

Table 1. Examples of low-rank and community-based representations.

A

dim1 dim2 dim3

v4 0.151 −0.342 −0.024

v12 −0.146 −0.198 −0.141

v13 0.019 0.09 0.362

v15 0.155 0.334 0.394

B

Ad Bd Cd

v4 0 1 0

v12 0 0 1

v13 1 0 0

v15 1 0 0

C

Ao Bo Co

v4 0 1 1

v12 0 1 1

v13 1 1 0

v15 1 0 0

D

A B C AB

v4 0 1 0 1

v12 0 0 1 0

v13 0 0 1 0

v15 1 0 0 0

A: Spectral, B: Disjoint, C: Overlapping and D: Hierarchical.

doi:10.1371/journal.pone.0173347.t001
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high resolution features that encode user preferences can be understood by considering vertex

13. Many techniques that aim for a mesoscopic community representation of a graph might

overlook the possible triple affiliation implied for vertex 13 and there is no guarantee that they

will capture it. Furthermore, hierarchical community detection might not be of use in this

case, as the affiliation of this vertex to a hyper-community containing numerous (or all) verti-

ces is not very informative. In contrast, the base community of a vertex implies similarity

among its member vertices, as it captures vertex-centric preferences given that the connections

were made voluntarily (see homophily). The same applies to vertices 12 and 4. Consider the

feature matrix Xbase = embed(B), where B is the set of all base communities. Using base com-

munities for vertex embeddings results in points in the high-dimensional space <|V|, which are

by definition proximal to the ones of adjacent vertices. However, in sparsely annotated graphs

many vertices and especially the ones with small degree, will not have annotated neighbors

and thus will be difficult to classify using just base communities.

Extended vertex-centric communities: In order to capture missing links for each vertex in

the graph, we propose the inclusion of an additional type of community that is based on local
searches around each vertex. We consider extended vertex-centric communities ev that contain

the neighbors of a vertex plus any not directly connected, yet similar vertices. To this end, we

will use a type of random walk based similarity called regularized commute-times, to be

described in sub-sub-section Fast similarity vector Calculation. See, for example, in section B of

Table 2 that the local community around vertex 13 (e13) contains vertex 15, in addition to its

neighbors. Consider further that our method (see sub-section Unsupervised community-based
embedding), with an appropriate parameter selection, will identify two user-centric communi-

ties after searching around vertex 11. The base community (b11), comprised of its neighbors,

and another one (e11) that also incorporates vertex 12. This means that vertex 12 is character-

ized through its association with four vertices (including itself): b5, b8, b12 and e11. Association

with e11 reinforces the assignment of label C to vertex b12.

Related work

We now discuss the unique elements of the proposed user representation and classification

framework compared to related works in Relational classification, Local community detection
and User profiling.

Table 2. Vertex-centric communities lead to more personalized embeddings.

A

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15

v4 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0

v12 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0

v13 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0

v15 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1

B

b0 b1 b2 b3 b4 b5 b6 b7 b8 b9 b10 b11 b12 b13 b14 b15 e1 e3 e11 e13

v4 0 1 0 0 1 1 1 1 0 0 0 0 0 0 0 0 1 0 0 0

v12 0 0 0 0 0 1 0 0 1 0 0 0 1 0 0 0 0 0 1 0

v13 0 0 0 1 0 0 1 0 0 0 0 1 0 1 1 0 0 1 1 1

v15 0 0 1 0 0 0 0 0 0 0 0 0 0 0 1 1 1 1 0 1

A: Base Community and B: ARCTE.

doi:10.1371/journal.pone.0173347.t002
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Relational classification. The first related line of work refers to approaches in which the

data do not inhabit a Euclidean space, but are described through their relations. We note that

these methods are completely label-dependent. Our own approach is different in that the com-

munity-based social relation representation is done in a completely unsupervised way and

may be reused in multiple experiments.

Collective classification: For classification on graphs, collective classification has been used

extensively [13]. Such methods, however, have been outperformed by approaches using low-

rank matrix representation. Specifically, LapEig used in a social network context [16] outper-

formed Link Based Classification (LBC) with relaxation labeling for collective classification

[24] and the weighted vote relational neighbor classifier (wvRN) [25] with iterative classifica-

tion [24, 26] on the ASU-Flickr dataset. ARCTE achieves even higher accuracy than LapEig on

that dataset, so we elected not to include collective classification approaches in our study in

order to leave room for more recent and competitive methods.

Random walk similarity matrix methods: Semi-supervised random walk methods for esti-

mating vertex-to-vertex similarities also take into account the number of paths between verti-

ces instead of the less distinctive measure of geodesic distance. Various graph-kernels or

similarity matrices have been developed [12, 27]. However, they require the inversion of a

matrix (O(n3)) as large as the input graph. Certain approaches [28] exploit advances towards

near-linear system solutions [29] for diagonally dominant matrices or the small-world prop-

erty of real-world graphs [30] to expedite the similarity matrix calculation, though they still

require space quadratic to the number of samples. Finally, we note that the semi-supervised

label diffusion method [28] has been outperformed by the low-rank matrix embedding

approach—specifically by the RWModMax [17] method we included in our comparisons.

Local community detection. When a graph becomes too large, a sensible hypothesis is

that one does not need access to the full graph structure in order to extract a community near

a specific vertex. This concept has sparked the interest for local community detection methods,

such as the random walk based Nibble algorithm [31] and its improvement PageRank-Nibble

[32] that were used in constructing near-linear time spectral graph sparsifiers [33], solvers of

symmetric, diagonally dominant systems [29] and conventional community detection [34].

The method by [32] relies on the calculation of a personalized, vertex-centric array of similari-

ties for a seed vertex and a conductance sweep [31] of the sorted values to search for a good

conductance cut.

We consider user-centric community detection as a step in our social relation latent repre-

sentation algorithm that is distanced from the aforementioned approaches by the fact that we

a) perform it in an unsupervised way for all users in a graph and it does not need to be seeded

with a set of labeled users [34, 35], b) we use a novel heuristic for thresholding the similarity

vector and capturing missing links instead of using costly sweeps, and c) we make computa-

tional improvements on the calculation of similarity vectors.

User profiling. Whereas we focus on topic-oriented user classification, other efforts

attempt to use graph-based techniques to reveal other aspects of users’ profiles. For example, a

study involved the identification of authoritative users in Twitter based on text content and

links/interactions [6]. According to it, the latter type is more informative although feature

fusion yielded the best results. Furthermore, graph-regularized non-negative matrix factoriza-

tion of text features was successfully used to identify spam accounts in Twitter [36]. A PageR-

ank variation was proposed by [37] to combat spam account link farms. Also noteworthy are

methods that try to extract role similarity [38] and types [39] from structural complexity in

user graphs.

Finally, it should be noted that some recent works have pointed to some limitations of

graph-based approaches. In a recent study [40] a number of graph-theoretic features such as

Community based online user classification
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various centrality measures, counts and ratios of followers, friends, replies, etc. did not offer

significant discrimination. Another study [41] leveraged user connectivity in the second of a

two-step classification process. First, users were classified using text- and behavior-based fea-

tures and then a neighbor voting scheme was applied for updating the labels, something that

did not lead to improved accuracy. Yet, both of the aforementioned approaches did not fully

leverage the potential of graph-based representations, since the first did not utilize user con-

nectivity for calculating similarities, while the latter relied on neighbor voting which has been

found to be inferior to low-rank graph representations [14].

Proposed framework

We will now describe the means by which we depart from previous user classification

approaches. Our proposed high-dimensional, community-based, binary representation is

amenable to low-complexity, highly interpretable feature weighting techniques as in text classi-

fication. We extract a massive number of vertex-centric communities for the formation of a

highly-redundant latent embedding (see sub-section Unsupervised community-based embed-
ding) and then perform a supervised community weighting step (see sub-section Supervised
community weighting) for adapting the embedding to the labeling. An overview of the pro-

posed framework is depicted in Fig 1, while the computational process is formalized in Alg 2.

Algorithm 2 Community-based user classification

INPUT:A, Vl, Vu, Yl and dim
OUTPUT:Yu
Unsupervised part

1: X = community_embedding(A, dim) ▷ Community-basedrepresentation
Supervised part

2: X = community_weighting(X) ▷ Supervisedrepresentation adaptation

3: h ¼
multi � labelðsupervised classifierðXl;YlÞÞ

multi � labelðsemi � supervised classifierðXl;Xu;YlÞÞ

(

▷ Hypothesis

Prediction
4: Yu = h(Xu) ▷ Out-of-sample prediction

Unsupervised community-based embedding

We now introduce ARCTE, an algorithm based on the extraction of vertex-centric communi-

ties for graph-based feature extraction. It produces a fine-grained representation of all vertices

without being too computationally expensive or requiring huge amounts of storage space. We

focus on two types of community with respect to each seed vertex: a) the set of base user-cen-

tric communities C1 = {bv}, where bv is the base community around the seed vertex v, and b)

the set of extended user-centric communities C2 = {ev}, where ev is the extended community

that results from identifying similar, but not directly connected vertices to the seed v. The final

output is X = embed(C1 [ C2). As stated previously, each base community bv = N(v) [ v, 8v 2
V. The merits of using such a community were described in sub-sub-section Vertex-centric
community embedding. As for the second type of community, suppose that for any given seed

vertex, we have a vector k of length |V| and that each element contains a value that encodes the

similarity between user v and every user in the graph, including v. We can extract an extended

user-centric community by appropriately truncating the similarity vector such that only users

that exhibit high similarity (detailed in sub-sub-section Fast similarity vector calculation) to the

seed are kept.

Truncating the similarity vector can be done in multiple ways, such as “sweeping” the

sorted vector for a good conductance cut [31, 32]. Since we want to perform this truncation

Community based online user classification
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for all users, we opt for a faster approach. Given a similarity vector, sorted according to

decreasing similarity, we select the fewest possible, highest ranking users, such that they com-

prise a strict superset of the corresponding base community. The sparsity of k (described in

sub-sub-section Fast similarity vector calculation) guarantees a fast sorting process. Our moti-

vation for this part is that if a non-adjacent vertex is a more probable random walk destination

than the adjacent ones, then it is bound to be similar. We present a description in Alg 3. We

denote by nnz(k) the non-zero element indices of vector k.

Algorithm 3 ARCTE

INPUT:A, ρeff, ε
OUTPUT:X
1: initializeC1, C2 ;
2: loop[8u2 V]

Step 1—Findbase user-centric community
3: bu N(u)[ u ▷ Calculatebase community
4: C1 C1 [ bu ▷ Add base communityto the C1 set

Step 2—Findextendeduser-centric community
5: k get_similarity_vector(u,ρeff, ε) ▷ Reg. commute-times—Alg 4
6: k sort(k) ▷ Sort in decreasingorder of similarity
7: eu ;
8: loop[v2 nnz(k)] ▷ Go over all non-zerosimilarityvertices
9: eu eu [ v ▷ Startaddingvertices
10: if bu� eu then ▷ If base communitystrictsubsetof extended . . .

11: C2 C2 [ eu ▷ . . . add extendedcommunityto the C2 set
12: break
13: end if
14: end loop
15: end loop
16: X = embed(C1 [ C2) ▷ Form community-basedfeatures—Eq1

Fast similarity vector calculation. Similarity vectors for all seed users must be calculated

and then sorted. To this end, working only on the non-zero elements is necessary for a scalable

solution. Avoiding to propagate trivial values by assuming that similarities with distant vertices

are almost zero leads to faster methods and storing only non-zero values results in sparse simi-

larity vectors. In this section, we propose an improved variation of fast, sparse, vertex-centric
similarity vector calculation [32] by deriving a fast algorithm that approximates cumulative
PageRank differences, which results in the discovery of more relevant vertices with fewer
iterations.

Denote by kðtÞrwðvÞ the probability of an agent randomly walking on a graph being on vertex

v at time step t and by the row vector kðtÞrw the probability distribution for all vertices. The distri-

bution after a random step is kðtþ1Þ
rw ¼ kðtÞrwW, whereW = D−1 A is the Markov chain transition

probability matrix and D is the diagonal degree matrix. By altering the random walk process to

restart at each step to an initial distribution s with a given restart probability ρ 2 [0, 1], kðtÞrw con-

verges to a stationary distribution called the PageRank vector kpr. When s is anything but the

uniform distribution, we call the resulting stationary distribution personalized PageRank [42].

We will consider s = ev, where ev is a distribution with all probability concentrated on the seed

position v, thus leading to user-centric similarity vectors. The user-centric PageRank is shown

in Eq 2.

kðtþ1Þ
pr ¼ rev þ ð1 � rÞkðtÞpr W; ð2Þ

We base our approach on the concept of updating a single element u 2 V per iteration, which
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has been adopted by different approaches [32, 43, 44]. The method described by [43] is for

simultaneous calculation of multiple PageRank vectors by maintaining a heap, the relevant

part of the work by [44] describes a method for calculating vertex-centric Katz score vectors

also by maintaining a heap, whereas a lazy random walk based PageRank method is introduced

by [32] where a queue replaces the heap, leading to lower complexity. A lazy random walk

implies that there is a non-zero probability that the agent will perform a self-loop at any given

time step t. We show in Eq 3 the single element update for a single PageRank vector by means

of a non-lazy random walk.

kðtþ1Þ
pr ¼ kðtÞpr þ r

ðtÞIu; ð3Þ

where rðtÞ ¼ rev � kðtÞpr ðI � ð1 � rÞWÞ is the residual probability vector at time step t and Iu is

a zero matrix with a single unit element at the u-th place of the main diagonal. In order to

avoid propagating trivial values, only a significant element u from the residual is used per

update; this means that only one transition probability rowWu: = Iu W is needed to update the

residual. Eq 4 is the incremental rule for updating the residual.

rðtþ1Þ ¼ rev � ðkðtÞpr þ r
ðtÞIuÞðI � ð1 � rÞWÞ

¼ rðtÞ � rðtÞIu þ ð1 � rÞrðtÞIuW

¼ rðtÞ � rðtÞIu þ ð1 � rÞrðtÞWu:;

ð4Þ

One has to initialize the approximate solution as a zero vector kð0Þpr ¼ �0 and the residual

rð0Þpr ¼ ev and update alternatively Eqs 3 and 4 until convergence. Since we multiplied r(0) by 1/ρ,

we need to also multiply the update in Eq 3 by ρ in order to calculate a probability distribution

(i.e. summing to 1), if needed. However, we can avoid that by multiplying the resulting vector

kðTÞpr by ρ after the final step, T. Following previous approaches [32, 44] we select an element u if

it has a value r(u)/d(u) > ε, where ε is a predefined threshold.

The reason why it is preferable to use a non-lazy random walk over a lazy one in user-cen-

tric PageRank calculation is described in S2 Appendix.

For our second improvement, consider the vector ckδpr of cumulative differences kδpr
between the PageRank distribution at step t in Eq 5.

ckðtþ1Þ

dpr ¼ ck
ðtÞ
dpr þ k

ðtþ1Þ

dpr ¼ ck
ðtÞ
dpr þ ktþ1

pr � k
t
pr; ð5Þ

The incremental rule for calculating ckδpr is shown in Eq 6. We propose the alternative update

of the rules in Eqs 6 and 4 for the calculation of cumulative PageRank differences. We initialize

kð1Þdpr ¼ kð1Þpr � k
ð0Þ
pr ¼ ev. A derivation and further discussion can be found in S3 Appendix.

ckðtþ1Þ

dpr ¼ ck
ðtÞ
dpr þ ð1 � rÞrðt� 1ÞWu; ð6Þ

The vector can be calculated as follows: one maintains a queue of all elements in the degree-

normalized distribution r with probability exceeding the threshold ε. We perform exactly one
iteration for each element (see S2 Appendix), by removing lazy steps since they result in some

probability remaining in r. Any element in r that has now surpassed the threshold is appended

to the queue. We repeat until
rðuÞ
dðuÞ < ε, 8u 2 V. We formalize the above generalized technique in

Alg 4. We denote by ./ the elementwise division operation and by deg the array of vertex degrees.

The reason we perform this element-wise division is to get a similarity measure that is more

focused on the locality of a target vertex to the seed than its high degree and is explained in S3

Appendix. One can substitute the Alg 5 for the lazy random walk PageRank [32]. In order to uti-

lize our improved versions without a laziness factor one must substitute Algs 6 and 7 for
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PageRank and cumulative PageRank differences respectively. We also denote by wvu the transi-

tion probability from vertex v to u.

Algorithm 4 Vertex-centric Similarity Vector Calculation

INPUT:W, vseed, ρ, ε
OUTPUT:k(t+1), r(t+1)

1: initializek(0) 0, kð0ÞðvseedÞ  
0 if PageRank

1 if Cumulative PageRank differences

(

2: initializerð0Þ  �0, r(0)(vseed) 1

3: loop[while9Vr � V : 8v 2 Vr;
rðtÞðvÞ
dðvÞ � ε]

4: loop[8v2 Vr]
5: k(t+1), r(t+1) update(k(t), r(t), v, ρ) ▷ Algs 5, 6 or 7
6: end loop
7: end loop
8: k(t+1) k(t+1)./d ▷ Calculateregularized commute-times

Algorithm 5 PageRank Lazy Update

INPUT:W, kðtÞlpr, r
(t), v, ρ, λ

OUTPUT:kðtþ1Þ

lpr , r(t+1)

1: loop[while rðtÞ

dðvÞ � ε]

2: kðtþ1Þ

lpr ðvÞ  kðtÞlprðvÞ þ rrðtÞ

3: loop[8u2 N(v)]
4: r(t+1)(u) r(t)(u) + (1 − ρ)(1 − λ)r(t)(v)wvu
5: end loop
6: r(t+1) (1 − ρ)λr(t)

7: end loop

Algorithm 6 PageRank Limit Update

INPUT:W, kðtÞpr, r
(t), v, ρeff

OUTPUT:kðtþ1Þ
pr , r(t+1)

1: kðtþ1Þ
pr ðvÞ  kðtÞpr ðvÞ þ reffr

ðtÞðvÞ
2: loop[8u2 N(v)]
3: r(t+1)(u) r(t)(u) + (1 − ρeff)r

(t)(v)wvu
4: end loop
5: r(t+1)(v) 0

Algorithm 7 Cumulative PageRank Differences Update

INPUT:W, ckðtÞdpr, r
(t), v, ρeff

OUTPUT:ckðtþ1Þ

dpr , r(t+1)

1: loop[8u2 N(v)]
2: ckðtþ1Þ

dpr ðuÞ  ckðtÞdprðuÞ þ ð1 � reffÞr
ðtÞðvÞwvu

3: r(t+1)(u) r(t)(u) + (1 − ρeff)r
(t)(v)wvu

4: end loop
5: r(t+1)(v) 0

Finally, we perform a local search only for seed vertices with degree above 1. Given that the

similarity vector k is an approximation of a degree-normalized random walk with restart, it is

impossible for any vertex to have a larger similarity score than thxze unit degree seed or the

adjacent. Naturally, we extract only the base community for such seed vertices, although their

representation can also be improved with ARCTE. As shown in Fig 3, these one-degree
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vertices may still participate in the extended user-centric community of some other vertex, as

the adjacent vertices may be penalized due to high degree.

Threshold parameter selection. The threshold parameter � regulates the approximation

to the true PageRank vector. No formal methodology has been proposed regarding its selection

in vertex-centric methods. In a recent empirical discussion [34] the authors claim that � 2

[10−5, 10−6] offers good local exploration without increasing the computational complexity

prohibitively. We frame this rule by further observations of our own. We denote by dave(v),
dmax(v), dmin(v) the average, maximum and minimum degrees of the neighborhood N(v). For

example, we give the definition of the maximum neighborhood degree: dmax(N(v)) = max(d
(u)), 8u 2 N(v).

a). We calculate an effective threshold value �eff that takes into account the one-hop structure

around each seed vertex vseed. Specifically, we calculate �eff ¼ �
log ð1þdðvseedÞÞ
log ð1þdaveðvÞÞ to encourage

a more strict approximation in case the degrees of the adjacent vertices are relatively

larger than the degree of the seed. This accommodates for the greater complexity in the

local graph structure.

b). There is an implicit, hard upper bound �max. Consider the residual distribution r after

one iteration. An amount of probability averaging to (1 − ρ)/d(vseed) will be on the adjacent

vertex positions in r. At least one such value must be higher than the corresponding ver-

tex’s degree normalized threshold �eff/d(vadj)
in order for a second iteration to take place. As

such, �max = dmax(v)/d(vseed).

Fig 3. Vertex-centric communities on degree-1 vertices. We do not calculate extended vertex-centric communities for seed vertices of

degree equal to 1. However, they may be included in extended communities centered on other vertices.

doi:10.1371/journal.pone.0173347.g003
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c). We also apply a soft lower bound. Since we are interested in local graph exploration, we

do not want to overly spend computational resources by propagating values needlessly

further away from each seed vertex. As such, we penalize the �eff if it is larger than the

value that guarantees a probability push on all adjacent to the seed vertices. Specifically,

we calculate �eff = �eff+dmin(v)/2

Parallelization. We note that each user-centric similarity vector and subsequent commu-

nity detection is independently calculated. Furthermore, the transition probability matrix W is

read-only for the purpose of ARCTE and does not require the acquisition of a lock in order to

read from it. Under a shared physical memorymodel, ARCTE is an embarassingly parallel algo-

rithm, which means that each vertex seed may be mapped to a separate processor (such exploi-

tation of independent processes in graphs for parallelism has been successfully used before,

e.g., in the calculation of shortest paths [45]). The reduction of the parallel outputs to a single

feature matrix is identical to the serial result. For instance, if the machine used for the experi-

ments had 8 cores we would theoretically expect a speed-up of up to 8x for 8 parallel tasks

(threads, processes), which is never observed in practice given the overhead required to pre-

pare and initiate the tasks as well as to reduce the results into a single matrix. Fig 4 depicts the

execution time versus number of tasks. Given the fact that multiprocessors are capable of han-

dling an additional small number of asynchronous tasks, we observe that there is no further

noticeable degradation of performance as one creates tasks beyond 8.

Fig 4. Parallelized feature extraction time. ARCTE execution time versus number of parallel tasks on ASU-Flickr dataset.

doi:10.1371/journal.pone.0173347.g004
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We adopt the following simple parallelization scheme. Let tnum be the number of tasks we

want to initiate. We sort the degree array in increasing order. We then map to the task t the

vertices corresponding to the degree values found in the sorted degree array positions t + i ×
tnum where i 2 [0, |V|/tnum − 1]. This way, vertices are distributed in a degree-wise balanced way

among tasks.

Supervised community weighting

In the previous sub-section we described an unsupervised method for extracting user-centric

communities for embedding users in a latent space. Depending on the annotation, some of the

vertices participating in these communities might be very important predictors, whereas oth-

ers may be completely uncorrelated to all labels. We introduce a community weighting step

for boosting the importance of communities in the latent representation, before learning a

hypothesis for multilabel user classification.

The features extracted by ARCTE are high-dimensional, extremely sparse binary represen-

tations. Therefore, we base our approach on term weighting methods from the text classifica-

tion literature [46], where binary representations are commonly used. We multiply each

feature j with a weighting value wj that encodes the significance of the corresponding commu-

nity. The value wj is calculated such that it addresses the following natural observations:

• Large communities imply weaker vertex intra-community participation.

• Communities with multiple labeled vertices are probably potent predictors.

We address the first point via inverse vertex frequency weighting [23] and the second by cal-

culating the dependence between features and labels via the χ2 statistical test. For every feature

j we calculate wj = ivf(j) × χ2(j).
The first term is calculated as follows: We divide all non-zero elements of column X:j by a

function of the number of vertices in the corresponding community cj, i.e. X:j 
X:j/f(|cj|). After

empirical experiments we conclude that a good choice for f(.) is the square root of the loga-

rithm, although other functions (e.g., the logarithm) also produce adequate results.

For the second term, we first form a contingency matrix M, that holds a statistical depen-

dence score for all feature/label (dim × l) combinations. We use the χ2 test over alternatives

such as mutual information and information gain, due to its simplicity and success in text-

based feature selection [47] and weighting [46]. We calculate each Mjl as in Eq 7:

Mjl ¼ w2
j;l ¼

jVjðA � E � D � BÞ2

ðAþ DÞðBþ EÞðAþ BÞðDþ EÞ
; ð7Þ

where A is the number of co-occurences between j and l, B the number of times j occurs with-

out l,D is the number of times l occurs without j and E the number of times neither j nor l
occur. Aggregating the scores across labels to extract one value per feature can be done in mul-

tiple ways e.g., by getting the maximum or the average value. We opted for a more principled

method by using the peak signal-to-noise ratio. Each aggregated χ2(j) value is calculated as in

Eq 8, normalized by within-label variability (wlv) as in Eq 9:

w2

j ¼
maxðw2

j;lÞ � minðw2
j;lÞ

wlvðMÞ
ð8Þ

wlvðMÞ ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

jLj

X

l2L

s2ðM:lÞ

s

; ð9Þ
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We further pass the χ2 term through a logarithmic function ( log ð1þ w2
j Þ), in order to

avoid imbalanced boosting weights. The community weighting process is summarized in Alg

8. We note that we store the binary feature matrix X and the community weight vector w sepa-

rately in order to keep the unsupervised and supervised parts of the user classification frame-

work separated. We only apply the weighting before training the classifier.

Algorithm 8 Community weighting

INPUT:X
OUTPUT:Xw

Step 1: ivf term calculation
1: loop[8cj 2 C]
2: ivfðjÞ  1ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

logðjcj jÞ
p

3: end loop
Step 2: χ2 term calculation

4: loop[8cj 2 C]
5: loop[8l2 L]
6: Mjl  w2

jl ▷ Contingencymatrix—Eq7
7: end loop
8: end loop
9: loop[8cj 2 C]
10: χ2(j) PSNR(Mj:) ▷ Peak signal-to-noiseratio—Eqs8 and 9
11: end loop

Step 3: Communityweighting
12: loop[8cj 2 C]
13: X:j, w X:j × ivf(j)× log(1+χ

2(j))
14: end loop

As a final note, we also mention that there exist related supervised methods (see recent sur-

vey [48]), such as wrappers that search for a good feature subset. These methods employ heu-

ristic searches in the feature power-set space and are thus computationally expensive. We

followed a simpler approach, as the matrix M is calculated in O(|L||C|). Of course, substituting

our own community weighting step with such a method could be a possible extension.

Evaluation

In this section we describe the annotated datasets, evaluation measures, competing methods

and experimental setup.

Datasets

For our comparative study, we introduce a new dataset for graph-based classification, called

SNOW 2014 Graph (https://github.com/MKLab-ITI/reveal-graph-embedding). We also utilize

datasets accessed from the Arizona State University (ASU) repository (http://socialcomputing.

asu.edu) and the Insight Resources (IR) repository (http://mlg.ucd.ie/index.html#data). It

should be noted that user connections in the relevant OSNs are directed, whereas the ASU

graphs provided are undirected and as such some kind of edge post-processing is assumed to

have been applied. Table 3 presents some basic statistics for these datasets.

SNOW 2014 Graph (SNOW2014G). We extracted mention and retweet social interac-

tions to form the graph edges from the tweet collection introduced in the SNOW 2014 Data

Challenge [49]. The labels we gathered belong to various types of user attribute, as depicted in

Fig 5. The procedure for extracting and annotating the graph is described in S1 Appendix. We

opted for a connected and undirected graph of users in order to make the method comparisons
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fair. We required the former quality since disconnected graphs are problematic for the applica-
tion of spectral methods (see ASU-YouTube) and the latter because not all competing methods
are applicable to directed graphs.

ASU-Flickr (ASU-FR) [14]. Graph vertices represent users in the Flickr (https://www.

flickr.com/) image and video hosting platform. Flickr users may follow each other and also

subscribe to specific interest groups.

ASU-YouTube (ASU-YT) [50]. Graph vertices represent users in the YouTube (https://

www.youtube.com/) video sharing website. Apart from uploading videos, users form a sub-

scription graph among them and also subscribe to various interest groups. It was introduced

in [50] and has been used to evaluate scalable algorithms [20] by keeping the labels with more

than 500 vertices as ground truth. Since the graph used in [20] was disconnected, we perform

one more post-processing step and keep only the largest connected component, since the spec-

tral methods in our comparative study could not converge for a disconnected graph even after 4

days of continuous execution.

Table 3. Basic graph dataset statistics. We denote by dmax, dave and lave the maximum degree, average degree and average number of labels per

user respectively.

Datasets Vertices Edges Labels dmax dave Labeled Users (#) lave

SNOW2014G 533,874 949,661 90 16,287 4 10,992 2.53

ASU-Flickr 80,513 5,899,882 195 5,706 146 80,513 1.4

ASU-YouTube 1,134,890 2,987,624 47 28,754 5 31,684 1.6

IRMV-PoliticsUK 419 11,349 5 317 110 419 1

doi:10.1371/journal.pone.0173347.t003

Fig 5. User labels in SNOW2014G. Starting from upper-left word cloud and going clockwise: A: Attributes (e.g., occupation). B:

Geographical association. C: Religious or political stance. D: Associated themes. E: News story relevance.

doi:10.1371/journal.pone.0173347.g005
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Insight Resource Multiview (IRMV) [51]. These are five multi-view datasets with man-

ual annotation of user stances (e.g., political or sports). In order to perform similar experi-

ments as with our own SNOW2014G dataset, we extracted an undirected graph that integrates

two social interaction graph views, namely a mention and a retweet graph (see S1 Appendix).

Since they are all small and of similar size, we will report only on results from the IRMV-Poli-

ticsUK dataset.

Measures

Since we are dealing with multi-label classification, we report micro- and macro-averages of

the F1 measure. We count for each label l 2 L the number of true positives (tpl), false positives

(fpl) and false negatives (fnl). If the denominator in F1 is zero for a label in the case of macro-

averaging, we consider it undefined but we equal it to zero in order to get a numerical average.

The F1 micro- and macro-averages are defined in Eqs 10 and 11 respectively.

F1micro ¼

2
X

l2L

tpl

2
X

l2L

tpl þ
X

l2L

fpl þ
X

l2L

fnl
ð10Þ

F1macro ¼
1

jLj

X

l2L

2tpl
2tpl þ fpl þ fnl

; ð11Þ

Competing methods

We present a short description of the competing methods. Wherever the implementation

source is not stated, we used our own Python implementations.

Laplacian Eigenmaps (LapEig) [21]. This technique has been used for embedding OSNs

[16]. We calculate the dim eigenvectors corresponding to the dim smallest eigenvalues of the

symmetric normalized Laplacian D� 1=2LD� 1=2 , where L = D − A is the Laplacian; excluding the

one corresponding to the zero-valued eigenvalue.

Replicator Eigenmaps (RepEig) [52]. This is the name we give to the computation of the

eigenmaps of the Replicator matrix R = λmax I − A, where λmax is the largest eigenvalue of A.

While the Laplacian is related to probability preserving random walks, the Replicator describes

a diffusion process of an agent that transitions simultaneously to all adjacent vertices.

Random Walk Modularity Maximization (RWModMax) [17]. Circumventing the mod-

ularity measure’s resolution limit [53], the random walk modularity measure assesses statistical

significance of communities based on random walk paths instead of edges. The top dim eigen-

vectors of the random walk modularity matrix are computed. We used the implementation

provided by the authors (https://github.com/rdevooght/RWModMax).

Deepwalk [18]. This method treats random walk paths as documents and then applies

deep representation learning to embed the users in a low-dimensional space. We used the

implementation provided by the authors (https://github.com/phanein/deepwalk).

LINE [19]. This is an efficient method that attempts to preserve both the first and the sec-

ond order connectivity of the vertices in a low-rank matrix embedding. We used the imple-

mentation provided by the authors (https://github.com/tangjianpku/LINE).

Louvain [54]. A hierarchical disjoint community detection method considered state-of-

the-art in terms of both speed and community quality [22]. We used a Python implementation

available online (https://bitbucket.org/taynaud/python-louvain).
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Edge Clustering (EdgeCluster) [20]. This is an overlapping community detection

method, specifically designed for extracting features from OSN graphs. It is an edge-centric k-

means variant that exploits the adjacency matrix sparsity to calculate only relevant similarities.

We used the implementation provided by the authors (http://leitang.net/social_dimension.

html).

Multiple Resolution Overlapping Communities (MROC) [23]. A hierarchical commu-

nity detection algorithm also designed for OSN graphs. It iteratively merges communities

from highest to lowest resolution based on their similarity. In order to avoid the calculation of

all possible pairs, the merging is based on heuristics such that a binary tree community hierar-

chy is produced.

Cluster Affiliation Model For Big Networks (BigClam) [55]. A fast, overlapping com-

munity detection method based on a generative matrix factorization model. We used the

implementation from the Stanford Network Analysis Project (SNAP) website (http://snap.

stanford.edu/).

Order Statistics Local Optimization Method (OSLOM) [56]. A hierarchical, overlap-

ping community detection method. A number of clean-ups can be ran for each level to better

assess community significance, although this increases runtime. We used the authors’ refer-

ence implementation (http://www.oslom.org/).

Base Communities (BaseComm). These are defined as: X = Asup + I, where Asup is the

binary support matrix of A.

For OSLOM, Louvain and MROC we used the hierarchy of communities for the formation

of X. For the eigenvector calculations performed in the spectral methods LapEig and RepEig

we used the ARPACK [57] package implementation of the Implicitly Restarted Lanczos

method. For sparse matrices, the method complexity may reach O(i|E|), otherwise it scales as

O(i|V|2), where i is the number of iterations. Finally, some discussion on further alternative

competing methods and the reasons for not including them in our study were discussed in the

related work sub-sub-section Relational classification.

Supervised learning

We opted for the use of the LIBLINEAR [58] linear Support Vector Machine classifier due to

its linear complexity. We use it as the base of a One-vs-All multi-label scheme to produce a

ranking of labels for each vertex. We opted for One-vs-All for the experiments in this study

due to its low execution time, since multiple methods and parameter combinations were

tested. Of course, there are other, more elaborate alternatives [15]. Following [14, 17], we

assume the true number of labels for each vertex to be known. Our validation framework is as

follows: we split the dataset into a training Vl and a testing Vu set via random sampling, ascer-

taining there is at least one training sample for each label in each set. We report performance

measures across multiple training sample percentages. We perform 10 trials for each percent-

age in order to assess with good confidence the reported F-measure. The data-splits in these

trials are shared across the competing methods in order to ensure a fair comparison.

Parameter selection

All experiments were performed on an Intel© Core™i7-4770K, with 8 cores at 3.50GHz and

15.6 GiB main memory. The parameters θ per algorithm are summarized in Table 4. An x-

mark (✘) symbol means that the method failed to extract features even after days of execution.

Wherever available, we used the parameters proposed in the respective studies [16–20, 23]. For

Deepwalk, γ is the number of sampled walks, w the window size and λ the latent dimension

number and we used the parameters proposed in the original paper [18]. For LINE, dim is the

Community based online user classification

PLOS ONE | DOI:10.1371/journal.pone.0173347 March 9, 2017 19 / 34

http://leitang.net/social_dimension.html
http://leitang.net/social_dimension.html
http://snap.stanford.edu/
http://snap.stanford.edu/
http://www.oslom.org/


dimensionality of the embedding, ρ0 is the learning rate, K is the number of negative samples

and T the number of mini-batches. As for the dimensionality, the value we report refers to the

LINE embedding based on one order graph similarity. Following the original article, we use

the first and second order version and as such the total dimensionality is twice the number we

report. Regarding OSLOM, r and hr refer to the number of clean-up runs for the lowest and

the higher hierarchical levels respectively. We selected as high values as possible, being con-

strained by the increase in runtime. As for BigClam, we tried different numbers of clusters in

the range [10, 10000] and we kept the ones that led to the best results. For MROC, a parameter

defines the maximum community size for which merging is allowed; we set α = 1000 as

advised by the authors. As for RepEig and LapEig, we selected the best dimensionality dim 2
{50, 100, 200, 300, 500, 1000} where possible. We considered the SVM hardness C as an addi-

tional parameter and we tried the following values: C 2 {1, 5, 10, 50, 100, 200, 500, 1000}.

Greater C values significantly slow down model fitting. We found that for the majority of meth-

ods, C = 1 was the choice that yielded the best performance, balanced between Macro and

Micro F1. Our observation was that specifically for the spectral methods (i.e. LapEig, RepEig

and RWModMax) an increase in C brought consistent improvement. Furthermore, for the

low-rank representation approaches we found that it is best not to fit the intercept parameter

since the features were centered. Conversely, for community-based embeddings we did fit the

intercept after normalizing each row to 1. Parameter selection for ARCTE is described in the

next section.

Results

Similarity vector comparison

Similarity vector calculation for user classification. We compare the performance of

our fast Cumulative PageRank differences (Fast-CPRD) method with the fast PageRank (Fast-

PR) method, which we derive by substituting the similarity vector calculation step with Algs 7

and 6 respectively. Fig 6 depicts the results for the SNOW2014G dataset and we use for both

methods the parameters from Table 4. We note that the Fast-CPRD method pushes probability

values to the positions of the similarity vector k that correspond to the neighbors of the seed

vertex from the first iteration. This guarantees that the neighbors will have non-zero values

when the truncation operation is attempted. In our ARCTE variation that utilizes the Fast-PR

Table 4. Method parameters.

Methods θ SNOW2014G ASU-FR ASU-YT IRMV-PoliticsUK

ARCTE ρ, ε, C 0.1, 10−5, 1 0.1, 10−5, 1 0.1, 10−5, 1 0.1, 10−5, 200

LapEig dim, C 1000, 10 500, 50 500, 1000 50, 10 [16]

RepEig dim, C 500, 10 1000, 50 500, 100 50, 50

RWModMax dim, C ✘ 1000, 500 [17] ✘ 50, 10

Deepwalk γ, w, λ, C 80, 10, 120, 1 80, 10, 120, 1 [18] 80, 10, 120, 1 [18] 80, 10, 120, 1

LINE dim, ρ0, K, T, C 128, 0.025, 5, 10, 1 128, 0.025, 5, 10, 1 128, 0.025, 5, 10, 1 [19] 128, 0.025, 5, 10, 1

EdgeCluster dim, C 5000, 1 10000, 1 [20] 1000, 1 [20] 200, 5

MROC α, C 1000, 1 1000, 1 [23] 1000, 1 [23] 1000, 200

Louvain C 1 1 1 100

BigClam dim, C 1000, 1 50, 1 500, 1 50, 1

OSLOM r, hr, C 10, 10, 1 10, 10, 1 10, 10, 1 50, 50, 1

BaseComm C 1 1 1 100

doi:10.1371/journal.pone.0173347.t004
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method, we only try to extract an extended vertex-centric community around a seed vertex

only when its neighbors have non-zero values; otherwise only the base vertex-centric commu-

nity is extracted.

Similarity vector calculation efficiency. We also report the efficiency of vertex-centric

similarity vector calculations. We made comparisons for the ARCTE parameters given in

Table 4 for the three datasets. In the case of PageRank calculation with a restart probability ρeff
and a laziness factor, we assume λ = 1/2, which implies ρ = ρeff(1 − λ)/1 − ρeff λ. We do this so that

both the Lazy-PR [32] and the Fast-PR method calculate an approximation to the same PageR-

ank vector. We notice both a significant speed-up in execution time and a smaller number of

operations for the PageRank comparison. Furthermore, we also compare the times with our

Cumulative PageRank differences adaptation, which requires the exact same number of limit

push operations as the fast PageRank method. We expect it to be marginally slower than the

fast PageRank because the Cumulative PageRank differences push operation is a little heavier

in computations. Evidently, the slightly slower execution of Fast-CPRD is justified by its

increased predictive performance over Fast-PR (see previous paragraph). The execution times

reported are averaged across 5 runs for each dataset and the measurements were performed

using the Python profiler (https://docs.python.org/3.4/library/profile.html). The results are

given in Table 5. The speed-up reported is with respect to the Lazy-PR method [32].

Fig 6. Similarity vector method comparison for user classification on SNOW2014G.

doi:10.1371/journal.pone.0173347.g006
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Parameter perturbation

ARCTE parameter selection. The calculation of our vertex-centric similarity vector is

dependent on two variables: a) the restart probability ρ, and b) the threshold �. A smaller

restart probability encourages exploration such that vertices further from the seed have the

chance to be ranked higher. As ρ! 0, the random walker performs a random walk without

restart. A smaller threshold parameter leads to a better approximation to the true similarity

vector as defined in Eq 2. Fig 7 depicts the performance of ARCTE for � = 10−5 and variable ρ
and Fig 8 depicts the performance of ARCTE for ρ = 0.1 and variable � for a 4% training set in

the SNOW2014G dataset. As a general rule, smaller ρ and � values lead to better results. The

only caveat here is that this also leads to larger execution times. Specifically, for our implemen-

tation, we note a 26.61% decrease in feature extraction time for ARCTE with ρ = 0.1, � = 10−4

and a 30.83% increase for ρ = 0.1, � = 10−6 compared to the parameters we report in Table 4.

Similarly, we get a 39.37% decrease for ρ = 0.2, � = 10−5 and a 183.06% increase for ρ = 0.01, � =

10−5. In order to balance a performance showcasing the strength of ARCTE and manageable

execution times, we opted for more moderate parameter values (ρ = 0.1, � = 10−5) for the series

of comparative experiments in sub-sub-section User classification performance.
Classifier parameter perturbation. The SVM hardness C is also an important parameter

in this series of experiments, as shown also in the RWModMax paper [17]. We show the effects

of varying this parameter in Fig 9 for the ASU-Flickr dataset. On the x-axis, we perturb the lin-

ear SVM C parameter and we show the Macro-F1 measure on the y-axis. The results are simi-

lar for all training sets, but for reasons of space consumption we elected to report results only

for the 4% training set. Generally, the perturbation of C does not lead to extreme variations,

although we see that ARCTE is somewhat less dependent on this parameter when compared

with the most competitive low-rank representation methods for the ASU-Flickr dataset.

Feature weighting impact

We show the impact of the community weighting method we introduced in sub-section

Supervised community weighting. We report ARCTE F1-Macro in Fig 10. By the label

Table 5. Similarity vector calculation speed-up.

SNOW2014G ASU-FR ASU-YT IRMV-PoliticsUK

Lazy-PR Total # op 608,001,748 22,258,525 1,773,052,180 1,139,681

T sec 1,381.92 74.37 4,125.85 3.42

Per Node # op 1,138.85 276.46 1,562.31 2,766.22

T sec 2.59 �10−3 0.92 �10−3 3.64 �10−3 8.31 �10−3

Fast-PR Total # op 387,201,722 11,636,097 1,153,653,890 619,010

T sec 817.91 43.02 2,476.17 1.73

Per Node # op 725.27 144.52 1,016.53 1,502.45

T sec 1.53 �10−3 0.53 �10−3 2.18 �10−3 4.19 �10−3

Speed-up # op 36.32% 47.72% 34.94% 45.69%

T sec 40.81% 42.15% 39.98% 49.61%

Fast-CPRD Total # op 387,201,722 11,636,097 1,153,653,890 619,010

T sec 820.09 48.06 2,590.37 1.92

Per Node # op 725.27 144.52 1,016.53 1,502.45

T sec 1.54 �10−3 0.6 �10−3 2.28 �10−3 4.66 �10−3

Speed-up # op 36.32% 47.72% 34.94% 45.69%

T sec 40.66% 35.38% 37.22% 43.91%

doi:10.1371/journal.pone.0173347.t005

Community based online user classification

PLOS ONE | DOI:10.1371/journal.pone.0173347 March 9, 2017 22 / 34



“ARCTE” we denote the performance based on features without any weighting. By “ARCTE

+ UW” we denote ivf community normalization and by “ARCTE + SW + UW” we denote

both supervised and unsupervised weighting as described in sub-section Supervised commu-
nity weighting. We see that in all cases, the supervised community weighting step improves

the F-score performance consistently and is a clear improvement compared to simple unsu-

pervised weighting [23].

Comparison with existing methods

User classification performance. The results for the SNOW2014G, ASU-Flickr,

ASU-YouTube datasets and IRMV-PoliticsUK are depicted in Figs 11, 12, 13 and 14 respec-

tively. In Table 6 we show for all cases depicted in Figs 11–14 the winner and runner-up meth-

ods. We further report the training set percentages for which the improvement of the highest

ranked method over the second highest is statistically significant (p< 0.01) as calculated via a

paired t-test. A fair comparison was ensured by using common training-test set partitions for

each training set percentage among the different methods. Finally, for each training set per-

centage we calculate the maximum absolute and relative F1 score improvement percentages of

the winner method over the runner-up and we report the largest for each case.

Firstly, we note that we used our improved cumulative PageRank differences method (Alg

7) for the similarity calculation in the ARCTE algorithm. Furthermore, we applied supervised

Fig 7. ARCTE performance on SNOW2014G: restart probability perturbation.

doi:10.1371/journal.pone.0173347.g007
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community weighting as described in sub-section Supervised community weighting to all com-

munity detection methods in order to improve the results.

According to the results, ARCTE outperforms all the competing methods, with the excep-

tion of the F1-Macro measure for ASU-Flickr, where it is still competitive with respect to the

winners (MROC and BaseComm) as the score difference is not significant for all training set

percentages. Specifically, BaseComm surpasses ARCTE with p< 0.01 for training set percent-

ages in {4–10} and ARCTE is actually the leading method with p< 0.01 for a 1% training set.

Furthermore, ARCTE clearly surpasses BaseComm and MROC in F1-Micro. We note that for

the three other datasets, ARCTE dominates by reaching even 4.29% above the runner-up for

SNOW2014G, 3.44% for ASU-YouTube and 14.24% for IRMV-PoliticsUK in terms of Macro-

F1 score. The maximum relative improvements reach 22.49%, 11.92% and 26.72% for the

three datasets respectively. Finally, the winning performance of ARCTE is also significant with

p< 0.01 for the majority of cases (except for the F1-Macro on ASU-Flickr) as can be seen in

Table 6. Another observation of note is that ARCTE performs comparatively well for small

training set percentages, as is mostly evident on ASU-Flickr, ASU-YouTube and IRMV-Poli-

ticsUK and less so on SNOW2014G since the improvement of ARCTE gets larger for bigger

percentages. As for ASU-Flickr, ARCTE surpasses MROC and BaseComm even in the Macro-

F1 measure for 1% training set.

We also note that while ARCTE is consistently near the top of the competition, no other

competing method can boast a similar behavior. Indeed, while Deepwalk, LINE and LapEig

Fig 8. ARCTE performance on SNOW2014G: approximation threshold perturbation.

doi:10.1371/journal.pone.0173347.g008
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score quite well on SNOW2014G, albeit quite lower than ARCTE, their performance is not

competitive in the other datasets. Similarly, the performance of MROC on SNOW2014G is

not comparable to the rest of the competition. ARCTE also outperforms two methods based

on neural word representation learning, Deepwalk and LINE, in all datasets. We chose as rep-

resentatives of state-of-the-art community detection techniques the following: Louvain,

OSLOM and BigClam. Generally, they are shown not to perform competitively to either low-

rank matrix representations or specifically crafted community detection techniques for user

classification. Indeed, the methods that are distinguished by their results are ARCTE, MROC

and to a lesser extent the BaseComm approach. The latter technique requires far lower compu-

tational cost compared to the rest and is easy to implement but its performance deteriorates

significantly in sparsely labeled datasets, such as SNOW2014G. Finally, although ARCTE wins

the competition, MROC is a notable competitor, achieving high F1 scores for all datasets,

although its behavior seems very similar to BaseComm and its quadratic complexity makes it

impractical for very large graphs.

We also performed the same experiments on these datasets for a subset of the better per-

forming methods for training set percentages up to 90%. The figures and discussion can be

found in S1 Fig.

Feature extraction method execution times. As an empirical benchmark, we report exe-

cution times in seconds for all the competing methods in Table 7. There is an implicit caveat

though: as mentioned before, we used some optimized implementations available online (e.g.,

Fig 9. SVM C parameter perturbation on ASU-Flickr.

doi:10.1371/journal.pone.0173347.g009
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BigClam) or utilized linear algebra packages (e.g., LapEig and RepEig). Our own Python

implementations of ARCTE and MROC are without any effort at any noteworthy software

optimization techniques, with the exception of simple coarse-grained parallelism in ARCTE.

Finally, the OSLOM times reported correspond to all the clean-up runs (we noticed improved

accuracy for more runs). The results from Table 7 indicate that apart from accomplishing a

good performance in terms of accuracy for user classification, ARCTE is also one of the fastest

methods.

Summary of results

We now discuss five key findings based on our experimental results.

ARCTE parameter selection. With ARCTE, we see that as one decreases the restart prob-

ability ρ and the threshold parameter �, the performance further improves with the caveat of

increased execution time. By increasing them, the performance drops as it becomes more diffi-

cult to capture extended vertex-centric communities. However, even if no extended vertex-

centric communities are captured, ARCTE behaves similar to the Base Communities algo-

rithm, which performs reasonably well across datasets. This behavior, in addition to ARCTE’s

robustness with respect to SVM hardness C perturbation attest that ARCTE is a reliable

approach to user classification.

Fig 10. Community weighting impact.

doi:10.1371/journal.pone.0173347.g010
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Cumulative PageRank differences. The promising results reported in sub-section Simi-
larity vector comparison led us to an interesting observation. User-centric community detec-

tion via thresholding the PageRank vector has been used extensively in problems such as local

community detection methods [34], matrix sparsification [33] and nearly linear time solution

Fig 11. Performance on SNOW2014G (best viewed in color).

doi:10.1371/journal.pone.0173347.g011

Fig 12. Performance on ASU-Flickr (best viewed in color).

doi:10.1371/journal.pone.0173347.g012
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of symmetric, diagonally dominant systems [29]. Our improvement may seamlessly substitute

the PageRank calculation in any of these applications, leading to faster and improved results.

Feature weighting for low-rank matrix representations. During the experimental

design, we attempted to use feature weighting/selection also for the low-rank matrix represen-

tation methods. However, the continuous valued nature of the features produced by such

Fig 13. Performance on ASU-YouTube (best viewed in color).

doi:10.1371/journal.pone.0173347.g013

Fig 14. Performance on IRMV-PoliticsUK (best viewed in color).

doi:10.1371/journal.pone.0173347.g014
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methods requires additional computational steps. For example, one might try to first discretize

the features and then apply feature weighting as normal. We tried discretization via bidimen-

sional histograms along with χ2 weighting in order to weigh or remove weak features, but we

did not notice any improvement; in fact there was a decrease in performance in some cases.

We did not try advanced approaches, such as Parzen window discretization or numerical inte-

gration, as this would increase execution time significantly and introduce more tunable

parameters, thus defeating the purpose of using a light-weight method to boost the importance

of potent features.

Community detection for graph embedding. As was shown in section Results, ARCTE is

a very appealing feature extraction approach for user classification. In most cases it outper-

forms all the competing methods and is consistently at least of comparable performance. This

is especially apparent in the larger datasets (i.e. SNOW2014G, ASU-YouTube) where it signifi-

cantly exceeds the performance of the main competitors, i.e. MROC, Deepwalk, LINE and

LapEig. The comparison with LapEig on the ASU-YouTube dataset was missing from many

recent studies [16, 18, 19, 23] that utilized the dataset. It further exhibits robustness to

Table 6. Top two performing methods comparison.

SNOW2014G ASU-FR ASU-YT IRMV-PoliticsUK

Macro-F1 Winner ARCTE BaseComm ARCTE ARCTE

Runner-up LINE MROC MROC MROC

tr%: p < 0.01 {2–10} {3–10} {1–10} {3–4}

Max Improvement Abs. 4.29% 0.74% 3.44% 14.24%

Max Improvement Rel. 22.49% 2.61% 11.92% 26.72%

Micro-F1 Winner ARCTE ARCTE ARCTE ARCTE

Runner-up LapEig MROC MROC MROC

tr%: p < 0.01 {2–10} {1–10} {1–10} {3–9}

Max Improvement Abs. 6.34% 1.43% 3.97% 17.49%

Max Improvement Rel. 24.13% 4.59% 10.51% 26.06%

We report the inclusive training set percentages (tr%) for which there is a significant difference between the paired trial sets with p < 0.01 and the max

absolute and relative improvement percentage. In the Macro-F1 case on ASU-Flickr ARCTE is ranked third, though it is ranked first for 1% training set with

p < 0.01.

doi:10.1371/journal.pone.0173347.t006

Table 7. Feature extraction method execution times (in seconds).

Methods Implementation SNOW2014G ASU-FR ASU-YT IRMV-PoliticsUK

ARCTE Python 1,562 94 5,059 5

LapEig Python/ARPACK 27,601 732 34,284 1

RepEig Python/ARPACK 3,056 2,075 10,234 1

RWModMax Matlab/ARPACK ✘ 95,092 ✘ 3

Deepwalk Python 7,010 1,615 25,151 5

LINE C++ 8,030 6,863 11,650 4,453

EdgeCluster Matlab/C++ 25 355 377 3

MROC Python 29,263 23,748 104,954 2

BigClam C++/openmp 181 353 274 2

OSLOM C++ 26,945 243,246 157,029 19

BaseComm Python 1 1 1 1

doi:10.1371/journal.pone.0173347.t007
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parameter perturbation and as a community detection method it lends itself to simple, but

very effective supervised community feature weighting. The latter enables us to avoid placing

confidence in features/communities for which we do not have significant evidence of their pre-

dictive power. Another way to view this is as a kind of automatic matrix dimensionality deter-

mination, which has been mentioned as an open problem for user classification before [16].

Since features that are independent of a label’s presence are weighted by 0, they are practically

discarded for the specific experiment.

Insights on user classification comparative study. Among the community detection

methods, ARCTE, MROC and BaseComm were significantly better performing than Edge-

Cluster, BigClam and OSLOM. We attribute this gap in performance to the fact that the for-

mer three also focus on high-resolution structure in the graph, whereas the latter three are

designed to produce a mesoscopic representation of a graph. We further believe that the

leading performance of ARCTE compared to the community-based methods in the majority

of cases is due to the fact that it focuses on utilizing multiple resolution user-centric commu-

nities, thus providing more informative representations for each user. The better perfor-

mance of ARCTE compared to all the low-rank matrix representation methods can also be

attributed to the aforementioned idea, as well as to the improvement brought by the super-

vised community weighting. This combination allows for the exploitation of both the graph

structure and the known label similarities within communities, for all community-based

methods. The recent LINE and DeepWalk exhibited similar performances in all the datasets.

By adopting the parameter selection of the original articles we found that DeepWalk outper-

forms LINE on the ASU-YouTube dataset, although LINE performs better on our own

SNOW2014G dataset. LINE is the most recent method included in the comparison. The idea

behind LINE is to preserve graph similarities, based on both first and second order connec-

tions in the graph. We believe that this concept is not as sound as ARCTE’s ability to capture

extended user-centric communities, which may extend beyond or even exclude second order

connected vertices in a principled way, i.e. based on the regularized commute-times similar-

ity measure.

Conclusion

In this study we leveraged the predictive potential of user-centric communities in Online

Social Network user graphs for multilabel user classification. Our framework combines: a) the

strengths of user-centric community detection for capturing local graph structure from the

point of view of each user, b) an improvement of user-centric PageRank calculation that is tai-

lored to local graph exploration and community detection and c) a supervised computational

step that boosts community features based on their predictive potential. We compared our

user classification framework against several state-of-the-art methods for graph-based feature

extraction by applying them on a series of OSN user graph datasets. We have additionally

introduced a new graph dataset for user classification.

Whereas our community weighting method can be applied to features produced by any

community detection method, we saw after extensive comparisons that ARCTE, a community

detection method tailored to the user classification problem, clearly outperforms methods that

aim to a mesoscopic representation of a graph. The comparison was also against a number of

spectral low-rank matrix representation methods, plus a recent deep representation method.

Although some of these methods fared better than the baseline community detection methods,

they were still exceeded by ARCTE in the majority of cases. Furthermore, ARCTE’s robustness

with respect to parameter perturbation both in the feature extraction and model training steps

is another reason for its success.

Community based online user classification

PLOS ONE | DOI:10.1371/journal.pone.0173347 March 9, 2017 30 / 34



An additional contribution of this study is the improvement of user-centric PageRank

calculation by the removal of self-loops in the random walk and the approximation of

cumulative PageRank differences. This leads to a mathematically equivalent similarity vec-

tor, although with fewer iterations than existing methods, something that is crucial in our

case; i.e. when we want to calculate accurate PageRank approximations for all vertices in a

graph.

It should be noted that there is significant space for future research. We would like to assess

our method’s effectiveness in identifying other kinds of behaviours, such as spam accounts

based on the proximity of spam accounts in the graph due to link-farming practices [37], [36]

and to investigate possible ways of further improving classification accuracy, e.g. via the seam-

less integration of other information modalities, such as text.
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