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Abstract—This paper introduces the problem of Fine-grained
Incident Video Retrieval (FIVR). Given a query video, the
objective is to retrieve all associated videos, considering several
types of associations that range from duplicate videos to videos
from the same incident. FIVR offers a single framework that
contains several retrieval tasks as special cases. To address the
benchmarking needs of all such tasks, we construct and present
a large-scale annotated video dataset, which we call FIVR-200K,
and it comprises 225,960 videos. To create the dataset, we devise
a process for the collection of YouTube videos based on major
news events from recent years crawled from Wikipedia and
deploy a retrieval pipeline for the automatic selection of query
videos based on their estimated suitability as benchmarks. We
also devise a protocol for the annotation of the dataset with
respect to the four types of video associations defined by FIVR.
Finally, we report the results of an experimental study on the
dataset comparing five state-of-the-art methods developed based
on a variety of visual descriptors, highlighting the challenges of
the current problem.

Index Terms—incident video retrieval, near-duplicate videos,
video retrieval, video dataset

I. INTRODUCTION

Video retrieval is a very important, yet highly challenging
problem that is exacerbated by the massive growth of social
media applications and video sharing platforms. As a result of
the uncontrolled number of videos published in platforms, such
as YouTube, it is very common to find multiple videos about
the same incident (e.g., terrorist attack, plane crash), which are
either near-duplicates of some original video, or simply depict
the same incident from different viewpoints or at different
times. Being able to efficiently retrieve all videos around an
incident of interest is indispensable for numerous applications
ranging from copy detection for copyright protection [11], [29]
to event reconstruction [6], [13], [33] and news verification
[24], [39].

However, different instances of the video retrieval problem
pose different requirements. In the copy detection problem,
given a query video, only videos containing nearly identical
copies of the video should be retrieved. In such a scenario,
similar videos from the same incident should be considered
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irrelevant. However, tasks such as journalistic investigations
around an incident pose different requirements. Being able to
efficiently and accurately retrieve i) videos that originate from
the same video source (duplicate videos), and ii) videos that
capture the same incident from different viewpoints and at
different times, would be of great value for such tasks. In this
paper, we denote the overall problem as Fine-grained Incident
Video Retrieval (FIVR) and construct a large scale dataset to
simulate its different instances.

There are several application areas where the FIVR prob-
lem can prove relevant. A number of such relevant retrieval
applications are presented in [12]. For instance, news media
analysis and reporting would greatly benefit from an effective
solution to the FIVR problem. In a recent work, journalists
from the New York Times [6] managed to reconstruct the
Las Vegas shootings based on content from both amateur and
police videos that had been captured during the incident. In
another relevant work, the research group Forensic Architec-
ture [33] created a 3D video of the Grenfell Tower fire to
help understand how the disaster unfolded. Moreover, Gao et
al. [13] developed an approach that automatically processes
a set of collected web videos and generates a short video
that summarizes the storyline of an event. Other application
scenarios and use cases that may benefit from solutions to the
FIVR problem include safety and security applications [31],
[34], [36]. Such applications could considerably benefit from
methods that, given a query video, retrieve similar videos,
based on the different definitions of FIVR association.

We address two fundamental associations between similar
videos: a) duplicate videos, and b) videos of the same incident.
By duplicate videos we refer to videos that have been captured
by the same camera and depict exactly the same scene, but
may have undergone some visual transformations (e.g., bright-
ness/contrast, colour, recompression, noise addition, cropping).
The second type of similar videos that we consider are videos
capturing the same incident. This category may be split into
subcategories: a) videos that depict the same incident scene
from complementary viewpoints, and b) videos that capture
the same incident at different time intervals. In particular,
two videos in the first category must have at least one video
segment where there is temporal overlap between the depicted
incident. Videos in the second subcategory need to depict
the same incident but do not need to have temporal overlap.
Figure 1 illustrates three example videos that capture the same
incident along with their FIVR associations.

The goal of this paper is to propose and formulate the
Fine-grained Incident Video Retrieval (FIVR) problem through
the composition of a challenging dataset that will serve the
benchmarking needs for different variants of the problem. To
accurately represent the problem, this dataset is composed of
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Fig. 1. Examples of a query video (QV) with one complementary scene video (CSV) and one incident scene video (ISV) on the timeline of an incident. The
following colour coding is used: i) red for QV, ii) green for CSV, and ii) blue for ISV.

user-generated videos related to a large number of real-world
events. The events were selected to be of the same nature
for the collected videos to be visually similar and thus to
include more challenging distractors in the dataset. Moreover,
a number of videos have been selected as queries through a
principled process. The ideal benchmark query should have
many duplicates and videos from the same incident, but at
the same time, there should also be many visually similar
distractor videos from different events to make the retrieval
of relevant videos more challenging.

The main contributions of this work can be summarized in
the following:
• The introduction of the Fine-grained Incident Video Re-

trieval (FIVR) problem and the definition of different
associations between pairs of videos.

• The creation and availability of a large-scale dataset
(FIVR-200K)1 consisting of 225,960 videos.

• The development of a process for the collection and
annotation of videos based on major news events crawled
from Wikipedia and a principled process for the automatic
selection of suitable video queries.

• A comprehensive experimental study comparing five
state-of-the-art approaches implemented with several vi-
sual descriptors (handcrafted and deep features).

The rest of the paper is organized as follows. Section II-A
presents related research and datasets. Section III introduces
the necessary notation and definitions. Section IV describes the
dataset construction process, including the video collection,
query selection and result annotation. Section V reports on
the results of the experimental study on the dataset. Section
VI concludes the paper.

II. RELATED WORK

A. Video Datasets

There is a variety of retrieval tasks and definitions in the
multimedia community in relation to the FIVR problem. These
vary with respect to the degree of similarity that determines

1http://ndd.iti.gr/fivr/

whether a pair of videos are considered related, and range from
Near-Duplicate Video Retrieval (NDVR) with very narrow
scope where only almost identical videos are considered
positive pairs [49], to very broad definitions, where videos
from the same event [35] or with the same semantics [3]
are labelled as related. However, there does not seem to be
strong consensus among researchers about which videos are
considered near-duplicate videos and none of the existing
definitions addresses the retrieval of same incident videos; in
this paper, we attempt to address these issues and provide solid
definitions for all types of associations between videos related
to the FIVR problem.

Additionally, although there are a few video collections
that capture different aspects of this problem, all of them are
limited in different ways. More specifically, related datasets
include CC WEB VIDEO [49], UQ VIDEO [42], MUSCLE-
VCD [30], TRECVID-CBCD 2011 [29], VCDB [21] and
EVVE [35]. The first two datasets were collected for the
problem of near-duplicate video retrieval, the next three for
the video copy detection problem, and the last one for the
problem of event retrieval. The query videos for the MUSCLE-
VCD and TRECVID-CBCD datasets were artificially gener-
ated, whereas the rest of the datasets contain actual user-
generated videos as queries. Table I provides an overview of
the aforementioned datasets and associated retrieval tasks.

The most relevant, publicly available and widely used
dataset is the CC WEB VIDEO [49]. The dataset consists of
user-generated videos collected from the Internet; in particular,
it contains a total of 12,790 videos consisting of 397,965
keyframes. The videos were collected by submitting 24 pop-
ular text queries to popular video sharing websites (YouTube,
Google Video, and Yahoo! Video). For every query, a set
of video clips were aggregated, and the most popular video
was considered as the query video. Subsequently, all retrieved
videos in the video sets were manually annotated by three
annotators based on their near-duplicate relation to the query
video. The near-duplicate rate of the collected sets ranges from
6% to 93%. On average, 27% of the videos in each set are
considered near-duplicates.

http://ndd.iti.gr/fivr/
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TABLE I
COMPARISON OF FIVR WITH EXISTING DATASETS AND RETRIEVAL TASKS.

Dataset Queries Videos Hours User-generated Retrieval Task
CC WEB VIDEO [49] 24 12,790 551 X Near-Duplicate Video Retrieval
UQ VIDEO [42] 24 169,952 N/A X Near-Duplicate Video Retrieval
MUSCLE-VCD [30] 18 101 100 7 Video Copy Detection
TRECVID 2011 [29] 11,256 11,503 420 7 Video Copy Detection
VCDB [20] 528 100,528 2,038 X Partial Video Copy Detection
EVVE [35] 620 102,375 5,536 X Event Video Retrieval
FIVR-200K 100 225,960 7,100 X Fine-grained Incident Video Retrieval

Several variations of the CC WEB VIDEO dataset have
been developed by researchers in the NDVR field [7], [9],
[37], [42]. To make the NDVR problem more challenging
and benchmark the scalability of their approaches, researchers
usually extend the core CC WEB VIDEO dataset with thou-
sands of distractor videos [9], [42]. The most well-known
and publicly available dataset that has been created through
this process is UQ VIDEO [42]. For the composition of
the background dataset, they chose the 400 most popular
queries based on Google Zeitgeist Archives from the years
2004 to 2009. Each query was submitted to YouTube and
up to 1,000 video results were collected. After filtering out
videos of duration longer than 10 minutes, the combined
dataset is composed of 169,952 videos (including those of
the CC WEB VIDEO) comprising 3,305,525 keyframes. The
same 24 query videos contained in CC WEB VIDEO are used
for benchmarking.

Another popular public dataset is the MUSCLE-VCD, cre-
ated by Law-To et al. [30]. This dataset was created for the
problem of video copy detection. It consists of 100 hours of
videos including Web video clips, TV archives, and movies
of different bitrates, resolutions and video formats. A set of
original videos and their corresponding transformed queries
are given for evaluation. Two types of transformation are
applied on the queries: a) ST1: copy of the entire video with
a single transformation, where the videos may be slightly
recoded and/or subjected to noise addition; b) ST2: partial
copy of videos, where two videos share one or more video
segments. Both transformations were artificially applied using
video-editing software. The transformed videos or segments
were used as queries to search their original versions in the
dataset.

The annual TRECVID [1] evaluation included a task on
copy detection in years 2008 to 2011. Each year a benchmark
dataset was generated and released only to the registered par-
ticipants of the task. The TRECVID datasets were constructed
following the same process as the MUSCLE-VCD dataset. The
latest edition of the dataset [29] contains 11,503 reference
videos of over 420 hours and 11,256 queries. Query videos
are categorized into three types: a reference video only, a
reference video embedded into a non-reference video, and a
non-reference video only. Only the first two types of query
video are copies of videos in the dataset. The queries were au-
tomatically generated by randomly extracting a segment from a
dataset video and imposing a few predefined transformations.
The contestants were asked to find the original videos and

detect the copied segment.
A more recent dataset that is relevant to our problem is

VCDB [20]. It is composed of videos from popular video
platforms (YouTube and Metacafe) and has been compiled
and annotated as a benchmark for the partial copy detection
problem. VCDB contains two subsets, the core and distractor.
The core subset contains 28 discrete sets of videos composed
of 528 videos with over 9,000 pairs of partial copies. Each
video set was manually annotated by seven annotators, and
the video chunks of the video copies were extracted. The dis-
tractor subset is a corpus of approximately 100,000 distractor
videos that is used to make the video copy detection problem
more challenging. In total, VCDB contains 100,528 videos
amounting to more than 2,000 hours of video.

Finally, the EVVE dataset [35] was developed for the
problem of event video retrieval. The main task on this dataset
is the retrieval of all videos that capture the event depicted by
a query video. The dataset contains 13 major events that were
provided as queries to YouTube. A total of 2,375 videos were
collected, and 620 of them were selected as queries. Each event
was annotated by one annotator, who first produced a precise
definition of the event. In addition to the videos collected for
the specific events, the authors also retrieved a set of 100,000
distractor videos by querying YouTube with unrelated terms.
These videos were all collected before a certain date, which
ensures that the distractor set does not contain any of the
relevant events of EVVE since all events occurred after that
date.

All aforementioned datasets have limitations. For instance,
the volume and query set of CC WEB VIDEO are relatively
small (12,790 videos and 24 queries), and the dataset lacks
challenging distractors given that the queries are very different
from each other. The main limitation of TRECVID-CBCD
2011 is that the video copies are artificially generated by
applying standard transformations to a corpus of videos.
Regarding the VCDB dataset, only a limited number of its
videos have been annotated (528 videos in the core dataset). In
EVVE, the definition of the related videos is much more fuzzy,
and additionally, the dataset contains annotations only for
videos from the same event, and not for its near-duplicates. In
short, none of the above datasets can satisfy the requirements
posed by the FIVR problem. For that reason, we built a new
large-scale video dataset (FIVR-200K) according to the FIVR
definition. The dataset consists of videos depicting a variety
of real-world news events, challenging cases of positive video
pairs, and a large number of distractor videos.



4

B. Video Retrieval Methods

There are several related works in the literature dealing
with the problem of similarity-based video retrieval. In gen-
eral, a typical video retrieval framework consists of two key
components: (i) feature extraction, where visual descriptors
are extracted from video frames, (ii) feature aggregation and
similarity calculation, where frame descriptors are processed
to calculate the video similarity between the query and all
videos in the dataset. In this context, we present the main
trends in the literature for each component separately.

There is a wide variety of features that have been crafted
to capture the visual information of video content. A common
strategy is to extract some frames from videos via uniform
sampling and then extract their visual descriptors based on the
global and/or local information contained in the frames. Early
approaches employed handcrafted features including HSV
Colour Histograms [16], [25], [42], [49], Local Binary Patterns
(LBP) [51] [25], [37], [42], [50], fuzzy multidimensional
histograms of colour and motion video segments [10], Auto
Colour Correlograms (ACC) [7], [18], and several keypoint
descriptors (such as SIFT [22], [32], [49], [52] and SURF [4],
[9]) combined with Vector of Locally Aggregated Descriptors
(VLAD) [19], [35]. Additionally, several recent approaches in
related video retrieval fields have employed features extracted
from the activations of deep Convolutional Neural Network
(CNN) architectures due to their high effectiveness. Common
feature extraction techniques include the extraction from the
activations of one of the fully connected layers of CNN archi-
tectures [23], [48], the application of the Maximum Activation
of Convolution (MAC) pooling function on the activations of
the intermediate CNN layers [27], [28], or using Regional
Maximum Activations of Convolutions (RMAC) [45] based
on the output of a Region Of Interest (ROI) pooling layer
applied on the final convolutional layer [2], [14].

A wide variety of feature aggregation and similarity cal-
culation schemes have been implemented. One of the earliest
schemes is the generation of a global vector, where all frame
descriptors are averaged to a single vector for the entire video.
Video similarity is then calculated based on the dot product
between the respective vectors, as proposed in [49]. A very
popular feature aggregation technique among the research
community is the Bag-of-Words (BoW) scheme. Every frame
descriptor is mapped to one or more visual words and the
final video representation is the tf-idf representation of these
visual words. Video ranking is performed based on the cosine
similarity between the tf-idf representations. Variants of the
BoW scheme have been used in [7], [9], [22], [27], [37], [52].
For instance, Layer Bag-of-Words (LBoW) [27] is a variant
of the BoW scheme based on the intermediate CNN features,
where the feature vectors extracted from each convolutional
layer are mapped to a word of a visual codebook (a different
codebook is generated per layer), and then aggregated using
tf-idf. Another popular aggregation practice is the generation
of a hash code that represents the entire video. Such methods
usually combine multiple image features to learn a group of
hash functions that project video frames into the Hamming
space and then combine them to a single video representation.

Hamming distance is employed to determine the similarity
between videos. Some representative approaches include [16],
[25], [41]–[43], [48]. Finally, there are some recent works
that employ supervised learning for improved video similarity
calculation, most often relying on Deep Metric Learning
(DML). A network is fed with pairs or triplets of videos
and is trained based on a loss function that minimizes the
distance between related videos and maximizes the distance
between irrelevant videos. Jiang et al. [23] trained a CNN
for partial video copy detection using the pairwise contrastive
loss function that minimizes the distance between sampled
frame patches and their manually transformed versions and
maximizes the distance between irrelevant frame patches. They
employ Euclidean distance to measure frame distances and a
temporal alignment method to detect copied video segments.
In [28], a deep neural network is trained to find an embedding
function that maps videos in a feature space where near-
duplicates are closer to each other than to irrelevant videos.
The distance between videos is determined by their Euclidean
distance in the embedding space. In another work, Baraldi
et al. [2] introduced a temporal layer in a deep network
that calculates the temporal alignment between videos. They
trained the network minimizing the triplet loss that takes into
account both localization accuracy and recognition rate.

III. DEFINITIONS

We consider that a real-world incident determines a unique
spatio-temporal span, i.e. there is a function f : H → Z
that maps the incidents from an incident space H to a
continuous spatio-temporal space Z . Furthermore, a video can
be perceived as the mapping of the real world to a sequence
of two-dimensional raster images with three colour channels.
Additionally, as defined in the field of temporal video seg-
mentation [15], a video can be decomposed in a sequence of
scenes or temporal segments, each covering either a single
event or several related events taking place in parallel. Thus,
an arbitrary video x with a sequence of n non-overlapping
scenes may be denoted as x = [x1 x2 ... xn], where xi ∈ S
and S is the space of scenes. We may also consider a function
g : Z,V → S that maps a real-world spatio-temporal span
from space Z and given a specific viewpoint from space V ,
where V is the viewpoint space, to a video scene. Note that
knowing functions f and g is not our objective; instead, they
are solely used for the proper formulation of our problem.

For the accurate definition of the associations between
videos, we consider that each scene xi of an arbitrary video x
has the corresponding attributes: the captured spatio-temporal
span zxi ∈ Z , the viewpoint vxi ∈ V of the camera and the
incident hx

i ∈ H that corresponds to the captured spatio-
temporal span. By aggregating all attributes of the scenes of
video x, we can derive the attributes for the entire video: the
entire captured spatio-temporal span zx ∈ Z , all viewpoints
vx ∈ V of the video scenes and the different incidents hx ∈ H
occurring during the captured spatio-temporal span.

To properly define the relations between videos, we define
three fundamental types of association between videos, which
are summarized in Table II. These are defined based on the
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TABLE II
DEFINITIONS OF THE DIFFERENT TYPES OF ASSOCIATIONS BETWEEN VIDEO PAIRS.

Duplicate
Scene Videos
(DSV)

Videos that share at
least one scene (cap-
tured by the same cam-
era) regardless of any
applied transformation.

Definition 1: Given a query video q with a number of n scenes q = [q1 q2 ... qn], spatio-
temporal span zq and viewpoints vq , and a candidate video p with a number of m scenes
p = [p1 p2 ... pm], spatio-temporal span zq and viewpoints vp , there is a binary function
DS(·, ·) that indicates whether the two videos are DSVs

DS(q, p) =
{
1 ∃i ∈ [1,m] (zp

i
⊆ zq ∧ v

p
i
∈ vq)

0 otherwise
(1)

Complementary
Scene Videos
(CSV)

Videos that contain part
of the same spatio-
temporal segment, but
captured from different
viewpoints.

Definition 2: Given a query video q with a number of n scenes q = [q1 q2 ... qn], spatio-
temporal span zq and viewpoints vq , and a candidate video p with a number of m scenes
p = [p1 p2 ... pm], spatio-temporal span zq and viewpoints vp , there is a binary function
CS(·, ·) that indicates whether the two videos are CSVs.

CS(q, p) =
{
1 ∃i ∈ [1,m] (zp

i
⊆ zq ∧ v

p
i
< vq)

0 otherwise
(2)

Incident Scene
Videos (ISV)

Videos that capture the
same incident, i.e. they
are spatially and tem-
porally close, but have
no overlap.

Definition 3: Given a query video q with a number of n scenes q = [q1 q2 ... qn], spatio-
temporal span zq and incidents hq , and a candidate video p with a number of m scenes
p = [p1 p2 ... pm], spatio-temporal span zq and incidents hp , there is a binary function
IS(·, ·) that indicates whether the two videos are ISVs.

IS(q, p) =
{

1 ∃i ∈ [1,m] hp
i
∈ hq ∧ � j ∈ [1, n] zp

j
⊆ zq

0 otherwise
(3)

TABLE III
BACKGROUND NOTATION AND DEFINITIONS.

Term Description
x an arbitrary video
xi ith scene of x
zxi spatio-temporal span of the ith scene of x
vxi viewpoint of the ith scene of x
hx
i incident captured in the ith scene of x

zx spatio-temporal span of the entire video x
vx viewpoints of the entire video x
hx incidents captured in the entire video x
S space of scenes
Z space of spatio-temporal span
V space of viewpoint
H space of incidents

f
function that maps an incident to a unique
spatio-temporal span

g
function that, given a viewpoint, maps a
spatio-temporal span to a scene

relation between the viewpoints and spatio-temporal spans of
the compared videos.

We denote as Duplicate Scene Videos (DSVs), two videos
that share at least one scene (as captured by the same camera)
regardless of any applied transformation. The shared scenes
must be close to exact duplicates of each other but can be
different in terms of photometric variations, editing operations,
length, and other modifications. More precisely, they have to
originate from the same spatio-temporal span and viewpoint.
Videos that contain semantically similar scenes are not con-
sidered DSVs. Definition 1 provides a formal definition of the

DSVs. A special case of the Definition 1 is when Equation 1
is valid for all scenes of the candidate video. Such cases are
denoted as Near-Duplicate Videos (NDVs).

Videos in the second category have to share at least one
common segment of the same incident. These are denoted as
Complementary Scene Videos (CSVs). In particular, each
of the two videos of a CSV pair needs to contain a spatio-
temporal segment that is temporally overlapping with the
spatio-temporal segment of the other. However, to be included
in this category, the two video segments need to be captured
from different cameras, and hence, offer complementary view-
points of the incident. Since the identification of temporal
overlap is a challenging task, any audio or visual cue may
be taken into consideration to make such an inference. The
formal definition of CSVs is provided in Definition 2.

Videos in the third category depict the same incident but
have no temporal overlap. These are referred to as Incident
Scene Videos (ISVs), and they are formalized in Definition 3.
Such videos still need to be spatially and temporally related,
i.e., their spatio-temporal span should originate from the same
incident. Additionally, if the query depicts a particular incident
in a long event or a sequence of incidents, then only the
videos that capture the particular incident are included in this
category. Additionally, the inference that two videos originate
from the same incident may derive from video metadata (e.g.,
title, description) or audio, i.e., it is not necessary to associate
the two videos with the event solely on the basis of their
visual content. There are some rare cases where ISVs have
no obvious visual cues linking them to each other, and no
such inference can be made without outside knowledge. An
example is a case where the query captures an incident from
the outside of a building, and there are ISVs from the inside
of the same building captured during the same incident.
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Query Video Duplicate Scene Complementary Scene Incident Scene

Fig. 2. Examples of queries and retrieved associated videos from FIVR-200K.

Figure 1 illustrates selected frames of a query video and
one candidate video from each category (CSV, ISV). The video
fragments have been coloured accordingly, with red indicating
the query video, green the CSV and blue the ISV. Also, a
sample timeline is presented to illustrate the time span where
each type of video occurs. The example video depicts the
fire in the American Airlines flight 383 at Chicago O’Hare
airport2. There are a number of videos in FIVR-200K from
that incident, capturing various viewpoints and different time
spans. The query video depicts the passengers standing outside
the plane and the firefighters trying to put out the fire. The CSV
is captured from a slightly different viewpoint. The overlap
between the two videos can be determined from the movement
of the firefighter truck passing in front of the plane and the
position of the people. The ISV is in a distinct time span
relative to the query. It is captured before the query video and
at the moment when the passengers exit the plane through the
emergency exits. Figure 2 illustrates some additional examples
of FIVR associations.

IV. DATASET

A. Video Collection

The FIVR-200K dataset was designed with the following
goals in mind: a) the videos should be associated with a

2https://en.wikipedia.org/wiki/American Airlines Flight 383 (2016)

large number of news events, b) the categories of these news
events should be the same, and c) the dataset size needs
to be sufficiently large to make retrieval of relevant results
challenging.

Based on the above requirements, we set up the process
depicted in Figure 3 to retrieve videos about major news
events that took place during recent years. First, we crawled
Wikipedia’s ‘Current Event’ page3 to build a collection of
the major news events since the beginning of 2013. Each
news event is associated with a topic, headline, text, date,
and hyperlinks. Five examples of collected news events are
displayed in Table IV. For the remaining steps of the process,
we retained only news events categorized as ‘Armed conflicts
and attacks’ or ‘Disasters and accidents’. We selected these
two categories to find multiple videos on YouTube that report
on the same news event, and ultimately to collect numerous
pairs of videos that are associated with each other through the
relations of interest (DSV, CSV and ISV). The time interval
used for crawling the news events was from January 1st 2013
to December 31st 2017. A total of 9,431 news events were
collected, and 4,687 news events were retained after filtering.

In the next step, the public YouTube API4 was used to
collect videos by providing event headlines as queries. The
results were filtered to contain only videos published at the

3https://en.wikipedia.org/wiki/Portal:Current events
4https://developers.google.com/youtube/

https://en.wikipedia.org/wiki/American_Airlines_Flight_383_(2016)
https://en.wikipedia.org/wiki/Portal:Current_events
https://developers.google.com/youtube/
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Fig. 3. Overview of the video collection process.

TABLE IV
EXAMPLES OF CRAWLED NEWS EVENTS.

Headline Date Category Text Source
Syrian civil war 2013-01-01 Armed conflicts and attacks Fierce clashes erupt near the Aleppo ... BBC
Greek debt crisis 2015-07-07 Business and economics Eurozone leaders hold a crisis meeting ... Reuters
Hurricane Harvey 2017-08-29 Disasters and accidents The death toll from Hurricane Harvey ... New York Times
United States elections 2016-11-08 Politics Voters in the United States go to polls ... ABC
Artificial intelligence 2016-01-27 Science and technology A computer program called AlphaGo ... MIT Technology Review
Boston Marathon Bombing 2014-07-21 Law and Crime Azamat Tazhayakov, a friend of accused ... MSN News
2016 Summer Olympics 2016-08-12 Sports Singaporean swimmer Joseph Schooling ... New York Times

corresponding event start date and up to one week after the
event. Furthermore, they were filtered to contain only videos
with a duration of up to five minutes, which resulted in the
collection of 225,960 videos (∼48 videos/event). At this point,
it is worth noting that several of the news event headlines
in Wikipedia describe long-running news events (e.g., Syrian
civil war), which is not an issue for our data collection process
since the combination of the general event headline, and the
particular event date is often sufficient to retrieve a variety of
videos that depict the incidents of interest that are alluded by
the respective Wikipedia entries.

B. Query Selection

Selecting “appropriate” queries is important for ensuring
that the dataset annotations and evaluation protocol are repre-
sentative of the challenges arising in real-world search tasks.
To this end, the query selection process was designed with
two goals in mind: a) to generate challenging queries, i.e.
queries that will lead to many distractor videos and challenge
content-based retrieval systems, and b) to find queries that will
lead to the retrieval of videos with various modifications that
will not only be trivial NDV cases but also contain interesting
variations (e.g., different viewpoints of the same scene), i.e.,
CSV and ISV. To achieve those two goals, we implemented a
largely automatic process that is described below.

First, the visual similarity between videos was computed
as the cosine similarity between the tf-idf representations
of their visual words. The visual words are derived from
the NDVR method described in [28] and modified based on
a Bag-of-Word (BoW) scheme. We sample one frame per
second and extract the embedding vectors using a trained
Deep Metric Learning (DML) network, which are then mapped
and aggregated to the three closest visual words from a
codebook of size 10k. The DML network was trained on the
VCDB dataset [21], and the visual codebook was built by
sampling one frame per video in the dataset and extracting
the corresponding embedding vector. Next, the textual simi-
larity between videos was computed as the cosine similarity

between the tf-idf representations of their titles. To perform the
similarity calculation, we first pre-processed video titles with
the NLTK toolkit [5], applying part-of-speech (PoS) tagging,
removing all verbs (which we found to introduce unnecessary
noise) and providing the results to the NLTK WordNet-based
lemmatizer to extract the lemmas, which constitute the word-
based representation of the titles. The overall video similarity
derives from the average of the visual and textual similarity.
Bag of words was selected as a representation for both visual
and text words because of its sparsity, which was practical for
fast similarity calculation and efficient dataset annotation.

In the next step, we computed all non-zero similarities
between video pairs. Only video pairs that share at least
one visual or text word were considered, which resulted in
complexity much lower than O(n2). Afterwards, we created a
video graph G by connecting with an edge video pairs with
similarity greater than a certain threshold ts (empirically set
to 0.7). To identify meaningful video groups, we extracted
the connected components C of the video graph G with more
than two videos. Then, we defined the uploader ratio rc of
each component c ∈ C using Equation 4.

rc =
|{uv |v ∈ c, uv ∈ U}|

Nc
(4)

where the numerator is the number of unique uploaders in the
component, v is a video in the component, uv is the uploader
of video v, U is the set of uploaders in the dataset, and Nc is
the number of videos in the component. We empirically found
that components with a low uploader ratio usually contain
videos from a single specific channel (e.g., news channel)
with titles that are very similar (e.g., exactly the same title
with a different date) or with content that is visually highly
similar (e.g., the same presenter reporting news in the same
background). However, based on our definition, such videos
are neither considered DSV nor CSV or ISV. For that reason,
we discard components with an uploader ratio less than a
threshold tr (empirically set to 0.75). Additionally, since we
need components consisting of videos that refer to the same
incident, we applied another criterion on the component set

http://www.bbc.co.uk/news/world-middle-east-20882790
https://www.reuters.com/article/2015/07/07/us-eurozone-greece-idUSKBN0P40EO20150707
https://www.nytimes.com/2017/08/29/us/hurricane-harvey-storm-flooding.html
http://www.abc.net.au/news/2016-11-08/us-election-what-time-will-we-know-the-result/7943894
https://www.technologyreview.com/s/546066/googles-ai-masters-the-game-of-go-a-decade-earlier-than-expected/
http://news.msn.com/crime-justice/friend-convicted-of-impeding-boston-marathon-probe
https://www.nytimes.com/2016/08/13/sports/olympics/michael-phelps-joseph-schooling-200-butterfly-gold.html?_r=0
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Fig. 4. Overview of the annotation process. Two groups of videos are created based on their visual and textual similarity to the query. Three annotation
phases take place and two filtering steps are applied. ãv stands for the average of visual and textual similarity between videos.

based on the publication date of their videos and retained only
components consisting of videos that were published within a
time window of two weeks.

Our goal was to find queries that lead to result sets with
many DSV, CSV and ISV. Intuitively, large components with
many (visually and textually) similar videos have a better
chance of containing such videos. For that reason, we ranked
connected components based on their size and selected one
query video per component. We considered that short videos
with few shots were the most suitable candidates for having
been modified and reposted several times (both as single
videos or as part of mash-ups). Therefore, we selected videos
with a duration of less than a threshold td (empirically set to
90 seconds). Attempting to find the original version of videos
in each cluster, we chose the video that was published earliest
as the query video.

The total number of queries using the above process was
635. Since it would be overly time consuming to annotate all
of them, we selected the top 100 as the final query set (ranked
based on the size of the corresponding graph component).

C. Annotation Process

Figure 4 depicts the entire annotation process, which is
carried out in three steps. Given a query, two groups of videos
are retrieved, one based on visual similarity and one based
on textual similarity. In the first step, we annotate the videos
contained in the “visual” group. The end of the first step
occurs when a total number of 100 irrelevant videos have been
annotated after the last relevant result (i.e., annotated as NDV,
DSV, CSV or ISV) or after the first 1000 videos have been
annotated (whichever of the two criteria applies first). In the
second step, videos in the “textual” group that have already
been annotated as part of the visual group are removed. The
annotation process continues with the remaining videos in the
textual group. Similarly, this step ends either when a total
number of 100 irrelevant videos have been annotated after
the last relevant video or after the first 1000 videos have
been annotated. To minimize the possibility of having missed
relevant videos, in the third and final step, the remaining
videos of the two groups are merged and filtered based on
their publication date. We retained only videos that were
published within a time window of a week before and after the

publication date of the query. These were ranked based on the
average visual-textual similarity, and the annotation proceeded
until either 100 irrelevant videos were found after the last
relevant video, or no videos were left in the merged group.

The annotation labels and corresponding definitions, which
were used by the annotators, are as follows:
• Near-Duplicate (ND): These are a special case of DSVs,

as specified in Definition 1.
• Duplicate Scene (DS): DSVs are annotated with this

label based on Definition 1.
• Complementary Scene (CS): CSVs are annotated with

this label based on Definition 2.
• Incident Scene (IS): ISVs are annotated with this label

based on Definition 3.
• Distractors (DI): Videos that do not fall in any of the

above cases are annotated as distractors.
For the annotation of the dataset, the extracted queries were
split into two parts, each assigned to a different annotator.
After the end of the annotation process, all annotated videos
(excluding those labelled as DI) were revisited and tested for
their consistency to the definitions by the lead author.

D. Dataset Statistics

In total, the dataset comprises 225,960 videos associated
with 4,687 Wikipedia news events and 100 selected video
queries. Figure 5 illustrates the monthly distribution of the
collected news events, videos and queries. There is a note-
worthy peak of news events during the last quarter of 2015.
During that period, major wars (e.g., the Syrian civil war, the
war in Afghanistan, the Yemeni civil war) and a number of
devastating natural disasters (e.g., hurricane Joaquin, Hindu
Kush earthquake and an intense Pacific typhoon season) took
place leading to daily newsworthy incidents. From the tem-
poral video distribution, one may notice an increase in video
sharing in the last two years which does not correspond to
the trend in the timeline of major news events. A possible
explanation may be the increasing trend in video capturing and
sharing on YouTube. Finally, it is noteworthy that the temporal
distribution of queries approximately follows the one of videos
over time with more query videos published during the last two
years of the dataset. This confirms that the employed query
selection process does not introduce temporal bias.
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Fig. 5. Monthly distribution of a) news events, b) videos and c) queries.

Table V presents the top news events based on their duration
and number of collected videos. The duration of a news event
is computed as the total number of days when it occurred
in the collection. As expected, the longest news events, are
wars or war-related events that usually last several years.
The longest news event was the Syrian Civil War, which
covered almost 500 days. However, news events with the most
collected videos are breaking news events with large media
coverage and live footage from multiple sources. The news
event with the most collected videos was the terrorist attack
in Paris, France on 13 November 2015, where multiple suicide
bombers struck followed by several mass shootings. Figure 6
illustrates the distributions of video categories and duration.
From the first, it is evident that the majority of collected videos
are news related, which was expected due to the nature of
the searched events. Additionally, the ‘People’ category has
a sizable portion of the collected videos. Regarding video
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Fig. 6. Distribution of videos based on their category and duration.

TABLE V
(LEFT) THE TOP 10 LONGEST NEWS EVENTS (RIGHT) THE TOP 10 NEWS

EVENTS WITH THE MOST VIDEOS.

Long-running news events days
Syrian civil war 499
War in Afghanistan 250
Iraqi insurgency 137
War in NW Pakistan 118
Iraqi civil war 116
War in Somalia 101
Yemeni civil war 89
Israel-Palestine conflict 64
War in Donbass 62
Libyan civil war 61

Breaking news events videos
November 2015 Paris attacks 651
2017 Atlantic hurricane season 572
Charlottesville riots 569
Charlie Hebdo shooting 546
2017 Las Vegas shooting 542
Umpqua College shooting 486
Assassination of Andrei Karlov 476
2016 central Italy earthquake 475
2014 Peshawar school massacre 459
2017 Manchester arena bombing 457

duration, the majority of videos have a length between 30
to 120 seconds.

To further delve into the dataset content, we processed
the videos titles and extracted summary statistics. Initially,
the language of the titles was detected using the detection
approach by [38]. As expected, the predominant language was
English with 81.16%, followed by German with 2.58%. It is
noteworthy that Indonesian ranked third with 1.74%, possibly
due to several terrorist attacks that occurred in the region
during the period of interest. Additionally, the most used
nouns and locations are reported in Table VI. We extracted
the nouns using the NLTK toolkit [5] and the mentioned
countries using the method described in [26]. Unsurprisingly,
the most used nouns were the ones related to wars and natural
disasters, as well as the general words ‘news’ and ‘video’. The
most frequently mentioned countries were the ones related to
long-lasting wars or major incidents with considerable media
coverage.
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TABLE VI
(LEFT) THE TOP 10 MOST USED NOUNS (RIGHT) THE TOP 10 MOST

REFEREED COUNTRIES.

Nouns videos
attack 18192
news 12133
earthquake 8016
fire 7121
hurricane 6447
crash 6304
video 5790
flood 5394
force 4702
army 4464

Locations videos
Syria 13952
Ukraine 4545
Iraq 4545
Russia 3990
Yemen 3988
Turkey 3653
Israel 2776
Afghanistan 2691
China 2604
Egypt 2306
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Fig. 7. Distribution of annotation labels per query (best viewed in colour).

In terms of content source, the dataset contains videos
from 66,919 unique channels. As expected, the most prolific
channels are news-related, including Wochit News, Ruptly,
AP, and Al Jazeera, which constantly upload breaking-news
content. Additionally, we grouped videos based on year of
publication and found that the median of views per video
remained approximately the same through the years.

Regarding the annotation labels, we found that the selected
queries have on average 13 NDV, 57 DSV, 18 CSV and 35 ISV.
Figure 7 illustrates the distribution of annotation labels per
query. Queries were ranked by the size of the cluster they were
associated with (cf. Section IV-B). As expected, there was
a considerable correlation (Pearson correlation=0.62) between
cluster size and the number of videos that were annotated
with one of the four relevant labels. For all 100 queries,
the total number of unique videos annotated (including DIs)
was approximately 140 thousand. Some videos were annotated
multiple times because they had different labels for different
queries.

V. COMPARATIVE STUDY

A. Experimental Setup

In this section, we conduct a comparative study to evalu-
ate the performance of several state-of-the-art video retrieval
systems. We compare five state-of-the-art approaches based on
different feature extraction, aggregation and similarity calcula-
tion schemes of those presented in Section II-B. Additionally,
three tasks are defined based on the labels that are considered
relevant per task.

1) Evaluation Metrics: To evaluate retrieval performance,
we build on the evaluation scheme described in [49]. We first
employ the interpolated Precision-Recall (PR) curve. Precision
is determined as the fraction of retrieved videos that are
relevant to the query, while Recall is the fraction of the total
relevant videos retrieved (Equation 5).

Precision =
TP

TP + FP
Recall =

TP
TP + FN

(5)

where TP, FP and FN are the true positives (correctly
retrieved), false positives (incorrectly retrieved) and false
negatives (missed matches), respectively. The interpolated PR-
curve derives from averaging the Precision scores of all queries
for given Recall ranges. The maximum Precision score is
selected as the representative value for each Recall range. We
further use mean Average Precision (mAP) as defined in [49]
to evaluate the quality of video rankings. For each query, the
Average Precision (AP) is calculated based on Equation 6.

AP =
1
n

n∑
i=0

i
ri

(6)

where n is the number of relevant videos to the query video,
and ri is the rank of the i-th retrieved relevant video. The mAP
is computed by averaging the AP scores across all queries.

2) Benchmarked Approaches: Of the feature aggregation
and similarity calculation techniques described in Section II-B,
we benchmark the following state-of-the-art approaches:
• Global Vectors: In the approach by [49], the HSV

histograms are extracted for each video frame, and all
frame descriptors are averaged to a single vector for the
entire video. Video similarity is calculated based on the
dot product between the respective vectors. This approach
is denoted as GV.

• Bag-of-Words: We select two methods using this feature
aggregation scheme. The first [7] is a traditional BoW
approach that employs the ACC [18] features as frame
descriptors. Every frame descriptor is mapped to a single
visual word of a visual codebook. The second approach
[27] is a variant of the traditional BoW scheme based
on the intermediate CNN features. The feature vectors
extracted from each convolutional layer are mapped to
a word of a visual codebook (one codebook per layer).
For both methods, the final video representation is the
tf-idf representation of these visual words. Video ranking
is performed based on the cosine similarity between the
tf-idf video representations. The two methods are denoted
as BoW and LBoW, respectively.

• Deep Metric Learning: The approach by [28] is selected
as representative of this feature aggregation scheme. The
intermediate CNN features [27] are extracted from the
video frames and combined into global video descriptors,
similar to GV. These descriptors are fed to a DML
network to calculate video embeddings. Video similarity
is calculated based on the Euclidean distance between
these embeddings. This approach is denoted as DML.

• Hashing Codes: The approach by [43] is selected as
representative of this feature aggregation scheme. Multi-
ple frame features are extracted, i.e., HSV and LBP [51]
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and used to learn a group of hash functions that project
video frames into the Hamming space and then combined
to a single video representation. Hamming distance is
employed to determine the similarity between videos.
Here, we use the public implementation provided by the
authors. This approach is denoted as HC.

For all methods, we extract one frame per second to generate
the frame descriptors. For the Bag-of-Words methods, the
codebooks are created by sampling one frame per video
in the dataset and extracting their visual descriptors. The
selection of appropriate codebook size is important, so we
experimented with 1K and 10K visual words per codebook.
Only the results for the 10K codebook size are presented,
since there is a large performance gap in favour of 10K words.
For the DML and HC, the most important tuning parameter
is the dimensionality of the output vectors. Yet, from our
experiments we concluded that it does not have a decisive
impact on the performance of the approach. The DML is
a supervised approach, so it is trained on the VCDB [21]
dataset. The HC is an unsupervised approach, but a sample
of 50K frame descriptors is still required to learn a set of
hash functions. An extensive evaluation of the sensitivity to
the parameters of the benchmarked methods is beyond the
scope of this work; hence we selected those parameter values
suggested by the authors or ones that gave better results in our
initial experiments.

3) Visual Descriptors: For a more comprehensive and
fair comparison, we also implemented the benchmarked ap-
proaches with the following visual descriptors.
• Hand-crafted Features: We experiment with four widely

used hand-crafted features in the literature: HSV his-
tograms, LBP [51], ACC [18] and VLAD-SURF [19].

• Intermediate CNN Features: We employ three popular
architectures for the extraction of intermediate CNN
features [27]: VGG-16 (VGG) [40], ResNet-152 (RES)
[17] and Inception-V4 (INC) [44].

• 3D CNN Features: We employ two popular architectures
for the extraction of 3D CNN features: C3D [46] and
I3D [8]. To extract one visual descriptor per second,
we feed the network with the corresponding number of
frames suggested by the authors. We extract features
with two techniques: (i) from the activations of the first
fully connected layer after the convolutional layers, and
(ii) from the intermediate 3D convolutional layers by
applying MAC pooling in the spatial (similar to the CNN
features) and temporal axis.

The ResNet, Inception and I3D architectures are very deep,
which made the utilization of all convolutional layers imprac-
tical. Hence, we extracted features from the activations of
the convolutions before max-pooling. For the HC method, we
set up three runs based on i) hand-crafted features, ii) CNN
features extracted from the three architectures, and iii) 3D
CNN features extracted from the two architectures. For more
information regarding the implementation of the benchmarked
approaches, we direct readers to the Supplementary Material
of the paper.

4) Retrieval tasks: We evaluate three different retrieval
tasks. Table VII indicates the positive labels for each task.

• Duplicate Scene Video Retrieval (DSVR): this task
represents the NDVR problem so it only accepts the
videos annotated with ND or DS as relevant.

• Complementary Scene Video Retrieval (CSVR): this
scenario is a strict variation of the FIVR problem where
only the ND, DS and CS are accepted as relevant.

• Incident Scene Video Retrieval (ISVR): this represents
the general FIVR problem, and all labels (with the
exception of DI) are considered relevant.

TABLE VII
POSITIVE LABELS FOR EACH EVALUATION SETUP.

Task
DSVR
CSVR
ISVR

Accepted Labels
ND DS CS IS
X X
X X X
X X X X

B. Experiments

1) Benchmarked approaches: In this paragraph, we evalu-
ate the performance of the five compared approaches. Table
VIII illustrates the mAP of the benchmarked approaches on
the three evaluation tasks of the FIVR-200K dataset and
the CC WEB VIDEO dataset. LBoW outperforms all other
approaches in all cases by a considerable margin. The second
best performance is achieved by DML, followed by HC and
BoW. GV had the worst results in all cases. In particular,
LBoW achieves a mAP score of 0.710 in the DSVR task,
followed by DML and HC with 0.398 and 0.265 respectively.
BoW and GV are the two worst performing approaches with
0.240 and 0.165 mAP values, respectively. For the CSVR task,
all approaches exhibit a drop in mAP, between 0.018 and 0.04.
The performance is significantly worse in the ISVR task for all
benchmarked approaches. The best method (LBoW) achieves
a mAP score of 0.572, whereas the worst (GV) only 0.118.

The results make clear that the DSVR task of the proposed
framework is closely related to the NDVR problem which
is simulated by the CC WEB VIDEO dataset. It is evident
that the performances of all methods on FIVR-200K are sig-
nificantly lower compared to CC WEB VIDEO, highlighting
that the newly proposed dataset is much more challenging. All
methods report very high mAP scores on CC WEB VIDEO,
achieving values as high as 0.976. Even the GV approach
achieves a score close to 0.9. The main reason for the
performance gap is that the vast majority of positive video
pairs in FIVR-200K are partially similar, not in their entirety

TABLE VIII
MAP OF THE BENCHMARKED APPROACHES FOR THE THREE RETRIEVAL

TASKS AND THE CC WEB VIDEO DATASET.

Run DSVR CSVR ISVR CC WEB
GV [49] 0.165 0.153 0.118 0.892
BoW [7] 0.240 0.220 0.171 0.944

LBoW [27] 0.710 0.675 0.572 0.976
DML [28] 0.398 0.378 0.309 0.971
HC [43] 0.265 0.247 0.193 0.958
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TABLE IX
MAP OF THE BENCHMARKED APPROACHES AND THE DIFFERENT VISUAL

FEATURES FOR THREE RETRIEVAL TASKS.

DSVR
Run GV BoW LBoW DML HC
HSV 0.165 0.202 N/A 0.163

0.360LBP 0.112 0.158 N/A 0.097
ACC 0.196 0.240 N/A 0.182

VLAD 0.294 0.323 N/A 0.285
VGG 0.366 0.575 0.710 0.398

0.470RES 0.350 0.523 0.596 0.374
INC 0.333 0.500 0.608 0.367

C3D f c 0.244 0.341 N/A 0.266

0.434C3Dint 0.355 0.541 0.658 0.387
I3D f c 0.321 0.464 N/A 0.336
I3Dint 0.366 0.574 0.665 0.425

CSVR
Run GV BoW LBoW DML HC
HSV 0.153 0.189 N/A 0.150

0.339LBP 0.106 0.146 N/A 0.091
ACC 0.183 0.220 N/A 0.169

VLAD 0.275 0.311 N/A 0.265
VGG 0.347 0.543 0.675 0.378

0.454RES 0.333 0.499 0.572 0.358
INC 0.313 0.473 0.571 0.348

C3D f c 0.231 0.314 N/A 0.252

0.415C3Dint 0.336 0.502 0.628 0.374
I3D f c 0.312 0.444 N/A 0.325
I3Dint 0.345 0.544 0.634 0.405

ISVR
Run GV BoW LBoW DML HC
HSV 0.118 0.143 N/A 0.116

0.262LBP 0.087 0.113 N/A 0.074
ACC 0.142 0.171 N/A 0.128

VLAD 0.214 0.236 N/A 0.206
VGG 0.281 0.450 0.572 0.309

0.382RES 0.274 0.414 0.488 0.296
INC 0.257 0.406 0.488 0.290

C3D f c 0.176 0.242 N/A 0.194

0.334C3Dint 0.261 0.398 0.510 0.295
I3D f c 0.253 0.364 N/A 0.265
I3Dint 0.280 0.450 0.527 0.332

but in particular segments. Additionally, FIVR-200K contains
a wide variety of user-generated videos about news events of
similar nature resulting to many challenging distractors.

2) Comprehensive experiments: Table IX presents the mAP
performance of all possible feature-aggregation combinations.

To begin with the DSVR task, similar to the previous
section, the LBoW aggregation scheme in combination with
the VGG CNN features achieves the best result (mAP= 0.710)
at a considerable margin from the second. Notably, VGG
performs consistently better than the other two CNN architec-
tures for all aggregation schemes. Additionally, LBoW clearly
outperforms the regular BoW aggregation irrespective of CNN
or 3D CNN architecture. The same conclusions apply in the
case of 3D CNN features. The intermediate I3D features
achieve the best results for all methods, with performance
close to or better than the performance of VGG features. For
instance, in the case of DML, the I3Dint achieves 0.425 mAP,
while VGG 0.398. Among the handcrafted features, VLAD-
SURF provides the best results (mAP= 0.323); however, the
performance gap with deep features is considerable.

Fig. 8. mAP of the queries in the dataset based on LBoW with VGG features
run for the three retrieval tasks. The queries are ranked in descending order.

Similar conclusions apply in the case of the CSVR task,
with the LBoW-VGG combination achieving the best results
(mAP= 0.675). The performance for all runs decreases slightly
compared to the DSVR task, indicating that it presents a more
challenging problem.

The performance is notably worse in the case of the ISVR
task for every approach-feature combination, with the decrease
ranging from 0.03 to 0.13 in mAP. This reveals that ISVR
is a much more challenging problem and new systems need
to be devised to effectively address it. Overall, deep network
features (either CNN or 3D CNN) outperform the handcrafted
features by a significant margin. Moreover, DML boosts the
performance of deep features compared to the GV runs.
However, this is not the case for handcrafted features where
the performance drops. Moreover, for 3D CNN architectures,
the runs with intermediate features consistently report better
performance compared to the runs with features from the
fully connected layers. HC in combination with CNN features
achieves the best performance compared to the other feature
bundles, for all evaluation tasks. Additionally, GV performs
poorly for all features compared to the other three schemes.
For the rest of this paper, we are going to refer to each
method in relation to its combination with the best-performing
features, i.e., VGG features for GV, BoW and LBoW, I3Dint

features for DML, and the CNN features for HC.
Figure 8 illustrates the mAP per query of the best-

performing run (LBoW with VGG features) for the three
different tasks. The queries are ranked in descending order
based on their mAP. For the DSVR task, 50% of the queries
achieve higher than a 0.8 mAP, while the performance is
significantly lower for the remaining queries. There is a
notable drop in performance in the CSVR task, with 80% of
the queries having higher than a 0.5 mAP. Finally, it is evident
that ISVR is a much harder task than the other two, with the
majority of queries having lower than 0.6 mAP.

Figure 9 illustrates the interpolated PR-curves of the best-
performing runs for each method and for each evaluation
task. Similar conclusions apply as in the case of their mAP
comparison. LBoW outperforms other runs consistently for
all three tasks by a significant margin. However, there is a
large gap between BoW and the other three runs. A reason-
able explanation is that the BoW representation retains local
information from the video frames, in contrast to the other
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(a) DSVR (b) CSVR (c) ISVR

Fig. 9. Interpolated PR-curves of the best-performing features for each approach in the three retrieval tasks.

TABLE X
STORAGE AND COMPUTATION REQUIREMENTS PER VIDEO FOR THE

BEST-PERFORMING RUN FOR EACH APPROACH. THE STORAGE
REQUIREMENTS ARE MEASURED IN BYTES (B) AND THE RETRIEVAL TIME

IN MILLISECONDS (MS).

Method GV BoW LBoW DML HC
Storage space 16,384 209 3,050 2,048 512
Retrieval time 499 152 1,155 333 51

aggregation methods that average frame descriptors in a global
video representation. This is of critical importance for all three
tasks since only a minority of similar videos share their entire
content to the queries. Similar to the mAP evaluation, GV
performs poorly for all retrieval tasks compared to the other
schemes.

Table X presents the requirements in terms of storage space
and computation time for the best-performing run of each
method. The results of all methods have been measured using
the open source library Scikit-learn [47] in Python, on a
Linux PC with a 4-core i7-4770K and 32GB of RAM. It
is noteworthy that LBoW’s superior performance comes at a
high computational and storage cost. In particular, it needs
approximately 1.2s per query to perform retrieval (being the
slowest among the five approaches) and 3KB per video to store
the video representations. The fastest method is the HC with
51ms per query, followed by BoW with three times slower
retrieval time. The method that requires the least memory
space in RAM is BoW reserving only 209B per video. DML
is in the middle of the rank for both measures. The most
demanding method in terms of storage space is GV requiring
approximately 16KB for each video descriptor. Note that these
figures are derived from computing video similarities for one
query at a time, without vectorizing all query descriptors in
a single matrix. This practice would significantly decrease
retrieval time for all methods.

3) Within-dataset retrieval: Our initial goal for the con-
struction of the FIVR-200K is to be used for evaluation
purposes in its entirety. However, it is not always possible
to have access to a separate dataset that simulates the same
or a similar retrieval problem. To overcome this issue, we
have also devised a within-dataset experimental setup, where
we split the dataset into two separate video sets, one for the

development/training of the methods and one for evaluation5.
To do so, we order the videos based on their publication time
and then split them in half, resulting in two sets of videos
from different time periods. We select the early period video
set for training and the late period video set for testing. The
total number of queries in the training and test set are 31 and
69 respectively.

TABLE XI
MAP OF THE BENCHMARKED APPROACHES BUILT BASED ON THE

FIVR-200K TRAINING SET AND EVALUATED ON THE FIVR-200K TEST
SET FOR THE THREE RETRIEVAL TASKS.

Run DSVR CSVR ISVR
GV 0.389 0.370 0.301

BoW 0.302 0.287 0.237
LBoW 0.362 0.344 0.280
DML 0.465 0.443 0.381
HC 0.468 0.444 0.382

Table XI presents the performance of the benchmarked ap-
proaches in the three evaluation tasks. There is a considerable
decrease in terms of mAP for BoW and LBoW runs reaching
approximately half their performance compared to the previous
runs for all three tasks (≈46-51%). We observed similar
decreases in performance when using VCDB for development
(i.e., generation of visual codebooks) and the whole FIVR-
200K for testing. This makes clear that BoW-based schemes
are quite sensitive to the dataset that is used for generating the
underlying visual codebooks. There is also a negligible drop
in performance for the HC scheme (less than 0.01 in terms
of mAP); hence, in this setting HC achieves the best results
among all methods for all three tasks. As expected, DML is
boosted when using part of the FIVR-200K for training. The
improvement for DML in all tasks ranges between 0.03 and
0.05. Finally, the GV approach also sees a small improvement
in all evaluation tasks compared to the initial results.

VI. CONCLUSION

In this paper, we introduced the problem of Fine-grained
Incident Video Retrieval (FIVR). First, we provided definitions
for the various types of video associations arising in the more
general problem setting of FIVR. Next, we built a large-
scale dataset, FIVR-200K, with the aim of addressing the

5The dataset split is only applied in this subsection.
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benchmarking needs of the problem. The dataset comprises
225,960 YouTube videos, collected based on approximately
5,000 global news events crawled from Wikipedia over five
years (2013-2017). Then, we selected 100 queries based on a
principled approach that automatically assessed the suitability
of a query video for performing evaluations for the current
problem. We also devised a protocol for annotating the dataset
according to four labels for video pairs. Finally, we conducted
a thorough experimental study on the dataset comparing five
state-of-the-art methods, six feature extraction methods and
five CNN/3D CNN architectures and four video descriptor
aggregation schemes. For the benchmark, we considered three
retrieval tasks that represented different instances of the prob-
lem and accepted different labels as relevant, i.e., DSVR,
CSVR and ISVR. The best-performing methods achieved mAP
scores of 0.710, 0.675 and 0.572, respectively.

In general, retrieval performance across all experiments
was not very high compared to performance values that have
been reported for related datasets, such as CC WEB VIDEO.
This demonstrates that the proposed problem and associated
dataset offer a challenging setting with considerable room for
improvement, especially in the case of the ISVR task.

We see several opportunities for future research on improved
methods. Global video representations appear to have strong
limits in terms of performance; one way to improve perfor-
mance is to investigate frame-level matching practices that take
into account the temporal alignment between videos. Addi-
tionally, end-to-end training approaches of CNN or 3D CNN
networks could have a significant impact on the performance
of systems, especially in the case of the ISVR task. Finally,
query expansion approaches have been successfully applied
on various retrieval problems, so they could potentially offer
an option for achieving further improvements. However, all
suggested alternatives are computationally complex, so they
have to be carefully designed to be practical in a large-scale
dataset such as FIVR-200K.

Due to its large size and wide variety of user-generated
videos and news events, FIVR-200K could also facilitate many
similar research problems, such as event reconstruction and
synchronization. In the future, we will consider extending the
dataset annotation to cover the needs of such problems.
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