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Figure 1: FaceX employs 19 facial regions and accessories to provide explanations (left: face regions, right: hat and glasses). Blue
to red colors indicate low to high importance, respectively. The provided illustration answers the questions “where does a model
focus on?” and “what visual features trigger its focus?” through heatmap and high-impact patches visualizations, respectively.
This example depicts a biased gender classifier trained on CelebA that effectively uses the Wearing_Lipstick attribute as a
shortcut to predict Gender. Note that FaceX is compatible with any face dataset.

ABSTRACT
EXplainable Artificial Intelligence (XAI) approaches are widely ap-
plied for identifying fairness issues in Artificial Intelligence (AI)
systems. However, in the context of facial analysis, existing XAI
approaches, such as pixel attribution methods, offer explanations
for individual images, posing challenges in assessing the overall
behavior of a model, which would require labor-intensive manual
inspection of a very large number of instances and leaving to the
human the task of drawing a general impression of the model be-
havior from the individual outputs. Addressing this limitation, we
introduce FaceX, the first method that provides a comprehensive
understanding of face attribute classifiers through summary model
explanations. Specifically, FaceX leverages the presence of distinct
regions across all facial images to compute a region-level aggre-
gation of model activations, allowing for the visualization of the
model’s region attribution across 19 predefined regions of interest
in facial images, such as hair, ears, or skin. Beyond spatial explana-
tions, FaceX enhances interpretability by visualizing specific image
patches with the highest impact on the model’s decisions for each
facial region within a test benchmark. Through extensive evalua-
tion in various experimental setups, including scenarios with or
without intentional biases and mitigation efforts on four bench-
marks, namely CelebA, FairFace, CelebAMask-HQ, and Racial Faces
in the Wild, FaceX demonstrates high effectiveness in identifying
the models’ biases.

1 INTRODUCTION
In the quickly evolving landscape of Artificial Intelligence (AI), fa-
cial image processing models have seen unprecedented integration
into applications affecting billions of users worldwide. From un-
locking smartphones [37] to emotion recognition technologies [42],
computer vision based face analysis has become an integral part
of our daily lives. Although such advancements have ushered in a
new era of possibilities, they also raise several ethical and societal
concerns.

AI bias has been among the key concerns in relation to the wide
deployment of facial AI systems in high-stakes contexts, ranging
from influencing law enforcement decisions [8] to shaping hir-
ing processes [27] and impacting identity verification procedures
[23, 24, 31], which could disproportionately affect certain popu-
lation groups. In an effort to delve deeper into the reasons of AI
bias, Explainable Artificial Intelligence (XAI) methods [2, 13, 32]
aims at shedding light on the decision making mechanisms of AI
models. However, in the realm of computer vision models, exist-
ing XAI methods, especially those providing visual explanations
in the form of pixel attribution maps, with Grad-CAM [33] being
the most popular, are limited to individual explanations for model
decisions. This poses challenges in assessing the overall behavior
of a model. Specifically, while individual explanations can indeed
point to biased model decisions in given examples, they cannot
help with more general statements about the behavior of an AI
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Figure 2: Grad-CAM instance-level explanations for six ran-
dom samples for a gender classifier biased towards the
Wearing_Lipstick attribute. Two key limitations are evident:
a) there is an inconsistent attribution on the mouth region,
hindering the user’s ability to pinpoint where the biased at-
tribute occurs; b) interpreting the visual characteristics of
the region of interest (i.e., lipstick) is not straightforward.
The corresponding FaceX summary model explanation is
provided in Figure 1.

model, as this would require a labor-intensive manual inspection of
many images in a test set, and then the synthesis of the individual
outputs into a general assessment of model behavior. This manual
process is not objective, repeatable, or feasible in many cases. This
limitation is prominent in the context of facial analysis, where the
correlation between the target attribute (e.g., gender, race, and
age) and certain other attributes within the training data can lead to
biased models [30]. For instance, CelebA [21], a widely used dataset
for facial analysis tasks, exhibits high correlation between gender
and several attributes, such as Blond_Hair, Wearing_Earrings,
and Wearing_Lipstick [41]. Such correlations are exploited by
facial classifiers and, consequently, the resulting models heavily
rely on these proxy attributes (i.e., “shortcuts”) - which are easier to
learn than the actual target - to make their decisions [41]. In such
cases, XAI methodologies that rely on instance-level explanations
cannot accurately depict the overall behavior of a model. Figure 2
illustrates an example of a biased gender classifier (i.e., it focuses
on the Wearing_Lipstick attribute) to highlight the limitations of
instance-level explanations: solely inspecting a few test instances
cannot adequately capture the overall region attribution or the
visual features influencing the model’s decisions.

To bridge this gap, we present FaceX, a methodology designed to
provide a comprehensive understanding of model decisions in facial
analysis. FaceX aims at summarizing the behavior of a model with
respect to 19 predefined regions of interest in facial images, such
as hair, ears, and skin [43], and additionally provides appearance-
oriented insights through high-impact image patches, drawn from
test set samples, aiming to not only highlight where the model
focuses but also show which visual appearances trigger high model
activations.

Specifically, FaceX computes a region-level aggregation of model
instance-level attributions, summarizing the model’s output with
respect to each region of interest. Then, spatial explanations, offered
through a heatmap visualization over an abstract face prototype,
provide in-depth understanding of the weight of each facial region
(or accessory) on the model decision. Additionally, FaceX visual-
izes the high-impact image patches for each region, revealing not
only where the model focuses but also helping the human analyst
understand why certain features are influential (see Figure 1). This
dual approach of spatial explanation (understanding where the
model focuses) and appearance-oriented insights (understanding
the impact of specific image patches) sets FaceX apart as a pow-
erful tool for identifying biases in facial analysis systems and acts
as a comprehensive lens, allowing practitioners, researchers, and
developers to scrutinize the entire spectrum of model behavior. In
extensive evaluation, FaceX is tested on controlled scenarios with
several combinations of targets and biased attributes, achieving
high precision in discovering both single and multi-attribute bi-
ases. Furthermore, real scenarios with known biases are considered
- without intentionally injecting bias - where FaceX successfully
uncovers the biases introduced by data.

In summary, the paper makes the following contributions: (i)
Introduces FaceX, a methodology that, for the first time, provides
summary model explanations for face attribute classifiers, (ii) Pro-
vides both facial region attribution and insights into the specific
features influencing the model’s focus by visualizing high-impact
image patches within activated regions, (iii) Provides analysis for
controlled single-attribute bias scenarios involving four datasets,
namely CelebA [21], FairFace [14], CelebAMask-HQ [18], and Racial
Faces in the Wild (RFW) [39], and (iv) Provides a comprehensive
analysis involving controlled multi-attribute bias scenarios, exper-
iments on real use cases, and comparison between models before
and after applying a bias mitigation approach. The extensive eval-
uation provides a thorough understanding of FaceX’s effectiveness
in discovering biases of different type in various scenarios. Code
is available at https://github.com/gsarridis/faceX.

2 RELATEDWORK
Bias in facial analysis. Numerous works highlight the bias ex-
istence in facial analysis models and data [7, 12, 15, 31]. A study
presented in [40] suggests using facial phenotype attributes to dis-
cover and assess racial bias in face recognition tasks. Also, biases
in gender classifiers are investigated in [26], revealing that middle-
aged males are more likely to be correctly classified than other
age or gender groups. An in-depth analysis of intersectional biases
across gender, age, and race in face recognition models is presented
in [31], suggesting that models discriminate against certain popula-
tion groups, with Asian females suffering from the most severe bias.
Similarly, an analysis presented in [16] highlights the impact of
imbalanced training data on gender classifiers across race-gender
intersections. Furthermore, [36] explores biases against clinical pop-
ulations in landmark detection and expression recognition models.
The findings suggest that these models exhibit lower accuracy when
applied to older individuals with dementia. A study in [3] revealed
significant disparities in classification performance between darker-
skinned females and lighter-skinned males in commercial gender
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classifiers. Similarly, the impact of skin tone and gender in facial
expression detection is investigated in [5].

Explainable Artificial Intelligence. In the landscape of XAI,
numerous methodologies have emerged to illuminate the intricate
behavior of complex machine learning models [19, 20, 22, 29, 33? ].
In considering explanations for computer visionmodels, approaches
like Grad-CAM [33], Grad-CAM++ [4], HiRes-CAM [6], Layer-CAM
[11], Score-CAM [38], SmoothGrad [34], LIME [28], Layer-wise Rel-
evance Propagation (LRP) [25], and Axiomatic Attribution [35] offer
diverse visual formats as a means of explaining the outputs of a
model. However, all of these approaches pertain to individual expla-
nations, which constitutes a significant limitation when it comes to
the overall behavior assessment of a facial analysis model. Our pro-
posed FaceX aims to build on top of such individual explanations
to synthesize summary model explanations.

The inherent limitations of instance-level approaches have mo-
tivated several works to build on them for generating summary
model explanations. While such methods are often referred to as
“global” in the literature, we prefer the term “summary”model expla-
nations as the distinction between “global” and “local” is ambiguous
for methods offering model explanations through multiple instance-
level explanations. SP-LIME [28] reduces numerous instance-level
attributions into a concise set by selecting the most important of
them. Similarly, Concept Relevance Propagation (CRP) [1] visual-
izes only a few reference samples for each class. In the same way,
Spray [17], ACE [9], and GAM [10] leverage clustering techniques
to provide a summary of instance-level attributions. The common
drawback of these methods is their inability to offer a single com-
prehensive explanation that encapsulates all instance-level insights.
Instead, they yield multiple instance-level explanations in struc-
tures that aid user interpretation of the model’s overall behavior
(e.g., clusters). Capitalizing on this geometrical consistency, FaceX
addresses the aforementioned limitations and offers for the first
time a single summary model explanation through facial region
attribution. It should be highlighted that FaceX can be employed on
any domain demonstrating a similar geometrical abstraction (e.g.,
fine-grained vehicle classification).

3 METHODOLOGY
3.1 Problem formulation
The problem of providing explanations pertaining to the model’s
region attribution can be formulated as follows. Let (X𝑖 , 𝑦𝑖 , t𝑖 ) be
the 𝑖-th sample of the dataset D, where X𝑖 ∈ R𝐻×𝑊 ×3 is an input
color image with height 𝐻 and width𝑊 , 𝑦𝑖 ∈ Y the target label,
and t𝑖 ⊆ T a set of attributes potentially introducing bias. Then,
the classification model is denoted as 𝑓 (·) and its predictions as
𝑦𝑖 = 𝑓 (X𝑖 ). To provide summary model explanations we need
to map instance-level attributions onto certain facial regions, so
let us also define the region masks for the 𝑖-th sample, M𝑖𝑟 ∈
{0, 1}𝐻×𝑊 , 𝑟 ∈ (0, 1, . . . , 𝑅) where 𝑅 is the number of the facial
regions of interest (e.g., hair) and M𝑖𝑟 is a binary mask, where a
pixel is assigned the value 1 if it belongs to the region of interest
(0 otherwise). Collectively, all region masks for the 𝑖-th sample
are denoted as M𝑖 . Additionally, the normalized attribution values
provided by an XAI approach, such as Grad-CAM, are denoted
as G𝑖 ∈ [0, 1]𝐻×𝑊 . Having defined M𝑖 and G𝑖 , the target is to

exploit this information to map the pixel attribution to certain
regions and thus, allow for generating a summary map (i.e., for
all the test samples) involving all the 𝑅 facial regions of interest.
Complementary to region attribution, visual features attribution is
provided through visualizing the image patches with the highest
impact on the model’s decision for each facial region. Let 𝑍 denote
the length of a square patch, then we partition uniformly X𝑖 into
patches of size 𝑍 × 𝑍 , i.e., P𝑖,𝑞 ∈ R𝑍×𝑍×3, 𝑞 ∈ {1, 2, . . . 𝑄}, where
𝑄 is the number of patches. The set of patches for 𝑖-th image can
be defined as P𝑖 = {P𝑖,1, P𝑖,2, . . . , P𝑖,𝑄 }. Then, the target is to derive
the set of top-𝑘 patches for each region 𝑟 , which is defined as
S𝑟 = {S1𝑟 , S2𝑟 , . . . , S𝑘𝑟 }, where S

𝑗
𝑟 represents the 𝑗-th highest activated

patch in region 𝑟 across all test samples.

3.2 Face Parsing
FaceX relies on the facial region masks,M𝑖 , to produce explanations
for facial analysis models. The task of generating these masks is
termed “face parsing” and can be considered as a segmentation
problem. To the best of our knowledge, among the datasets used
for face parsing, the CelebAMask-HQ [18] offers the richest annota-
tions in terms of the number 𝑅, of facial regions (i.e., skin, left/right
brow, left/right eye, eyeglasses, left/right ear, earrings, nose, mouth,
upper/lower lip, neck, necklace, cloth, hair, hat, and background).
Thus, without loss of generality, we define facial regions in align-
ment with this dataset. However, note that FaceX is compatible with
any other face parsing protocol (i.e., set of regions). In instances
where CelebAMask-HQ serves as the test benchmark for FaceX,
with the desired targets Y and protected attributes T inherent to
CelebAMask-HQ, we set the masksM𝑖 equal to the ground truth
masks provided by the dataset. In the more general case, however,
where FaceX is applied to arbitrary test face images, a face parsing
model becomes essential for predictingM𝑖 . To this end, we opted for
utilizing the Facial Representation Learning (FaRL) [43] approach
that offers powerful pre-trained transformer backbones for several
face analysis tasks, including face parsing.

3.3 Individual explanations
After obtaining masksM𝑖 , the next task is to derive individual ex-
planations for each sample in D. This process can be accomplished
by employing any local XAI method that generates activations in
the form of a heatmap as output. In the context of this paper, we
focus on CNN model architectures, and thus we utilize Grad-CAM,
a widely applied and robust approach. The Grad-CAMmethod com-
putes the gradient of the score for a particular class with respect to
the feature maps of a convolutional layer. This gradient information
is then used to produce a weighted combination of the feature maps,
highlighting regions in the input image that strongly influence the
model’s decision for the given class.

In particular, to compute the Grad-CAM score 𝑔𝑦 (X𝑖 ) for a class
𝑦 ∈ Y and an input image X𝑖 , first the gradient of the classification
layer’s output score for class 𝑦, 𝑙𝑦 , w.r.t. the feature map activations
𝐴𝑘 (𝑘 denotes the channel index) is calculated and then, global
average pooling is applied to these gradients to derive the neuron
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importance weights:

𝑎
𝑦

𝑘
=

1
𝑍

∑︁
𝑖

∑︁
𝑗

𝜕𝑙𝑦

𝜕𝐴𝑘
𝑖,𝑗

(1)

The final score is obtained by applying a ReLU activation to the
weighted combination of feature maps:

𝑔𝑦 (X𝑖 ) = ReLU

(∑︁
𝑘

𝛼
𝑦

𝑘
· 𝐴𝑘

)
(2)

This score represents the regions in the input image that contribute
the most to the model’s decision for a specific class.

Notably, there is a direct connection between the resolution of the
input image and the resolution of the Grad-CAM output. As the in-
put image progresses through convolutional layers of a CNN, under-
going successive convolutions and pooling operations, the spatial
dimensions of the feature map gradually decrease. Consequently,
the resulting Grad-CAM heatmap is directly influenced by the re-
duced spatial resolution of the feature map. This interdependence
highlights the need to consider the initial resolution of the input im-
age when interpreting and analyzing the Grad-CAM visualizations,
as finer details may be affected by the downscaling process inherent
in the convolutional neural network architecture. Therefore, we
suggest resizing the test samples to an adequate size (e.g. 512x512),
even if the model is trained with images of lower dimensions, in
cases where the model architecture allows for it (e.g., ResNets).

3.4 Summary model explanations
After obtaining facial region masks M𝑖 and instance-level activa-
tions values G𝑖 for each sample in the dataset D, we leverage these
components to produce comprehensive explanations. The goal is
to assess how much the model’s attribution aligns with the 𝑅 facial
regions with respect to a certain class.

Particularly, we compute the Hadamard product between the
instance-level scores and the corresponding region mask for each
region 𝑟 ∈ {1, 2, · · · , 𝑅} and divide by the total number of active
pixels within the region mask. This measure can be referred to as
Intersection over Region (IoR):

IoR𝑖,𝑟 =

∑
ℎ,𝑤

(
G𝑖 ⊙ M𝑖,𝑟

)
ℎ,𝑤∑

ℎ,𝑤

(
M𝑖,𝑟

)
ℎ,𝑤

(3)

where operator ⊙ denotes the Hadamard product and the sum is
over all image pixels (ℎ = 1, . . . , 𝐻 ,𝑤 = 1, . . . ,𝑊 ). In other words,
IoR𝑖,𝑟 measures the focus within region 𝑟 for the 𝑖-th sample, as a
percentage of the maximum possible focus for that region. Then,
the average IoR𝑟 across all relevant (i.e., samples involving 𝑟 ) test
samples represents the overall attribution of region 𝑟 :

IoR𝑟 =

∑
𝑖∈D IoR𝑖,𝑟

𝑁𝑟
(4)

where 𝑁𝑟 denotes the total number of masks pertaining to region 𝑟 .
It should be noted that dividing by𝑁𝑟 is important, considering that
not all regions of interest may be present in every test sample (e.g.,
some samples may depict individuals without earrings, eyeglasses,
etc.). Collectively, the IoR values are defined as:

IoR = {IoR1, IoR2, . . . , IoR𝑅} (5)

The obtained normalized IoR values allow FaceX to provide a
comprehensive understanding of the model’s focus on different
facial regions with respect to certain decisions, e.g., positive class.
To facilitate a more intuitive understanding of these values and to
highlight the differences between regions, we have created a face
prototype, which is an abstract face partitioned in 19 facial regions.
By visualizing these IoR values in the form of a heatmap on this
standardized face prototype, FaceX provides an intuitive means to
compare and interpret region attribution for an attribute classifier.

3.5 High-impact image patches
While IoR values offer valuable insights into where the model di-
rects its attention, they inherently lack information regarding the
specific features within these regions that contribute to a model’s
decisions. In other words, IoR provides the “where” but not the
“what” of the model’s focus. For example, IoR can effectively high-
light the hair region for a gender classifier biased toward hair color,
but it cannot provide insights into the visual characteristics within
that region that affect the model’s decisions (e.g., blond hair).

To address this limitation and enhance the interpretability of
the model’s decisions, we propose the visualization of high-impact
patches within the activated regions. Each patch, P𝑖,𝑞 , can also
be represented by a binary mask indicating its position in the im-
age, i.e., P′

𝑖,𝑞
∈ {0, 1}𝐻×𝑊 , 𝑞 ∈ {1, 2, . . . 𝑄}. Then, the set of patch

masks are defined as P′
𝑖
= {P′

𝑖,1, P
′
𝑖,2, . . . , P

′
𝑖,𝑄

}. Next, we leverage
the extracted instance-level scores, denoted as G𝑖 , to measure the
attribution within these patches concerning specific facial regions:

𝑉𝑖,𝑞,𝑟 =
∑︁
ℎ,𝑤

(
G𝑖 ⊙ M𝑖,𝑟 ⊙ P′𝑖,𝑞

)
ℎ,𝑤

(6)

with the 𝑘-highest values across all samples for region 𝑟 defining
the setV𝑚𝑎𝑥𝑟 . Then, the most influential patches for region 𝑟 are
defined as follows:

S𝑟 = {P𝑖,𝑞 |𝑉𝑖,𝑞,𝑟 ∈ V𝑚𝑎𝑥𝑟 } (7)

This patch-based approach allows us to pinpoint the specific image
patches contributing most significantly to the model’s decisions
within each facial region.

4 EXPERIMENTAL SETUP
Evaluation of FaceX involves a set of experiments to assess its per-
formance in detecting biases present in a model. We curated subsets
of the CelebA dataset that exhibit high correlations between target
attributes (Gender and Age) and specific facial features, introducing
a deliberate bias into the data. The overarching aim is to evaluate
FaceX’s ability to identify these biases, reflected in high IoR values
for pertinent facial regions. Beyond the controlled experiments that
explore correlations between the target and individual attributes,
we consider evaluation to scenarios involving multiple attribute
correlations. This expanded scope enables us to assess FaceX’s per-
formance in more complex bias scenarios, where the interplay of
multiple attributes contributes to the model’s predictions. More-
over, evaluation involves experiments conducted on established
benchmarks to showcase the practical utility of FaceX in real-world
scenarios, illustrating its effectiveness in unveiling model biases
beyond the confines of controlled experiments.
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4.1 Datasets
For the evaluation of the proposed approach, we employ four
datasets, namely CelebA [21], CelebAMask-HQ [18], FairFace [14],
and RFW [39].

Training datasets. CelebA and FairFace are used for training a
variety of attribute classifiers. CelebA consists of more than 200,000
facial images annotated with 40 binary attributes, we consider
Gender and Age as the target attributes. For the controlled exper-
iments, we inject bias by selecting a subset of images such that
there is a 99% correlation between the target attribute and a certain
facial attribute. For example, in the case of Gender as the target and
Wearing_Lipstick as the correlated attribute, 99% of females wear
lipstick, while 99% of males do not. The FairFace dataset consists
of 108,000 facial images and is designed to be balanced in terms
of Gender and Race. Here, Gender is the target and Race is the
protected attribute. For the controlled experiments on FairFace, we
force a 99% correlation between Gender and Race.

Test benchmarks. CelebAMask-HQ and RFW are used as test
datasets. In particular, CelebAMask-HQ is a subset of CelebA, con-
sisting of 30,000 images with 19 facial region annotations. Note
that the samples belonging to both CelebA and CelebAMask-HQ
are removed from the training data. Finally, the RFW dataset is a
test benchmark consisting of 40,000 facial images and it equally
represents the different races.

4.2 Implementation details and evaluation
protocol

For controlled experiments, we artificially inject bias by selecting
a dataset subset that demonstrates 99% co-occurrence between
the target class and a facial attribute. In particular, we consid-
ered facial attributes that are directly connected with certain facial
regions, i.e., Blond_Hair, Eyeglasses, Smiling, Wearing_Earrings,
Wearing_Lipstick, Wearing_Necklace, and Wearing_Hat, to facili-
tate the evaluation. All models involved in the evaluation are trained
using the Adam optimizer with an initial learning rate of 0.001 that
decays by a factor of 0.1 at 1/3 and 2/3 of the total training epochs,
the weight decay is equal to 10−4 and the batch size is set to 128.
Models are trained for 20 epochs in total. For the controlled experi-
ments, we test them on a balanced (fair) subset of the test dataset
with respect to the target and the attribute introducing the bias.
As evaluation metric, we use the ranking position, which refers to
the position of the target region in the FaceX output ranking. Note
that this performance metric operates under the assumption that
biased models should consistently prioritize the biased region over
other regions, a premise that might not align with the behavior of
deep learning models given their inherent characteristics. In other
words, when training a deep learning model with data containing a
spurious correlation in a specific region, there is no guarantee that
the model will exclusively focus on this region to make decisions.
However, due to the lack of a solid ground truth, we make this
assumption to enable a quantitative evaluation of FaceX, rather
than relying solely on qualitative results. All the experiments were
conducted on a single NVIDIA RTX-3090 GPU.

Table 1: Evaluation of single attribute bias experiments on
CelebA (train) and CelebAMask-HQ (test). FaceX’s output
ranking position for each target attribute w.r.t. the IoR values
is reported.

Target Attribute Ranking Position

Gender Blond_Hair 3
Gender Eyeglasses 6
Gender Smiling 1
Gender Wearing_Earrings 5
Gender Wearing_Lipstick 1
Gender Wearing_Necklace 2
Age Blond_Hair 2
Age Eyeglasses 3
Age Smiling 1
Age Wearing_Earrings 1
Age Wearing_Lipstick 1
Age Wearing_Necklace 1

Mean 2.25

5 RESULTS
5.1 Single attribute correlation
In this set of experiments, we examine scenarios where a single
facial attribute demonstrated a strong correlation, i.e., 99%, with
the target attributes - Gender and Age. Given that the chosen fa-
cial attributes, such as Wearing_Lipstick, are inherently easier for
models to learn than the actual targets (e.g., Gender), the models are
expected to exploit these shortcuts. In such instances, FaceX is antic-
ipated to effectively identify biases stemming from these attribute-
target correlations. Figure 3 demonstrates the heatmap explanations
provided by FaceX, while Table 1 presents the ranking position of
the region connected to the biased attribute. As one may observe,
FaceX achieves a mean ranking position of 2.25 with a lowest pos-
sible rank of 6, which underscores FaceX’s ability to consistently
position the regions of interest within the top activated regions.

Specifically, for the correlation between Gender and Blond_Hair,
the region of hair is placed 3rd. Here, note that lips and eyebrows are
also in the top activated regions possibly due to the correlation be-
tween Gender and Wearing_Lipstick attribute and the correlation
between the hair color and the eyebrows color. In the case of Age tar-
get and Blond_Hair attribute, the hair region is the second higher
activated region. As regards the Gender-Wearing_Eyeglasses ex-
periment, the region of eyeglasses is placed 6th, suggesting that
FaceX struggles to effectively capture the presence of bias related
to eyeglasses. Here, the top activated regions are eyes, eyebrows,
and nose, implying that the model focuses on areas close to the
eyeglasses or behind them, possibly due to limited training samples
used for this experiment (i.e., 3114 positive training samples). For
the Age-Wearing_Eyeglasses experiment, the number of training
samples depicting faces wearing eyeglasses is quite larger (i.e., 5322)
and the eyeglasses are the 3rd higher activated region. Regarding
the experiments involving the Smiling attribute, the mouth is the
top activated region for both Age and Gender targets. In this case,
models demonstrate a clear focus on the region that introduces
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(a) Gender - Blond_Hair (b) Gender - Eyeglasses (c) Gender - Earrings (d) Gender - Lipstick (e) Gender - Necklace (f) Gender - Smiling

(g) Age - Blond_Hair (h) Age - Eyeglasses (i) Age - Earrings (j) Age - Lipstick (k) Age - Necklace (l) Age - Smiling

Figure 3: FaceX heatmap output for single attribute bias experiments on CelebA (train) and CelebAMask-HQ (test). Heatmap’s
color scale is from blue to red, corresponding to the lowest and highest activations, respectively.

the bias. Table 2 illustrates the appearance of high-impact patches
belonging to the regions of interest, where it is clear that the high-
impact patches depict smiles. For Gender-Wearing_Earrings case,
like eyeglasses, the desired attribute is not placed in the top acti-
vated regions. The model’s focus on the lips, as indicated by the top
activated regions, suggests that the model is possibly affected by the
correlation between Wearing_Earrings and Wearing_Lipstick
for the female class. This might be attributed to the model finding
it easier to learn Wearing_Lipstick than Wearing_Earrings, re-
sulting in lower activations for the latter. This is not the case for the
Age-Wearing_Earrings experiment, where earrings are the top ac-
tivate region. In the case of Wearing_Lipstick experiments, FaceX
performs notably well as lips is the top activated region for both
Gender and Age targets, respectively. Note that Wearing_Lipstick
is connected to two regions (e.g., upper lip and lower lip), and thus
FaceX is expected to provide high activations for at least one of them.
Finally, the region of the necklace is the second highest activated
region for the Gender-Wearing_Necklace experiment and the high-
est activated region for the Age-Wearing_Necklace case. Here,
both models demonstrate high activations in the region of interest.

5.2 Multiple attributes correlation
In this subsection, we present experiments exploring correlations
between multiple facial attributes and the target attributes - Gender
and Age. The objective is to evaluate FaceX’s performance in sce-
narios where biases arise from the combined influence of multiple
attributes. Similarly to the single attribute correlation, we assign
a 99% correlation between the target and two facial attributes. The
results, summarized in Table 3, FaceX consistently positions at least
one of the regions of interest within the top positions of the re-
gion ranking, with a mean ranking position of 1.25. However, only
33.33% of the experiments position the regions related to both facial
attributes to the top 3 regions, resulting in a mean ranking value
of 6.67. This behavior can be attributed to inherent characteristics
of deep learning models, where they tend to prioritize regions that
can enhance their accuracy. In cases where focusing on one facial
attribute alone is sufficient for accurate predictions, the model tends

to do so. More accurately, the model’s prioritization strategy de-
pends on the relative difficulty of learning each attribute. In other
words, a model is expected to focus on both facial attributes if they
are both difficult to learn and on the easiest one, otherwise. Con-
sequently, FaceX often positions only one attribute in the top acti-
vated regions, a phenomenon expected in the context of deep learn-
ing models. Particularly, for Gender - {Eyeglasses - Wearing_Hat,
Wearing_Lipstick - Wearing_Necklace} and Age - {Eyeglasses -
Wearing_Hat, Wearing_Earrings - Wearing_Necklace, Smiling
- Wearing_Necklace} both facial attributes are placed in the top-
ranked positions, while for the remaining experiments, models tend
to rely on either first or the second facial attribute.

5.3 Evaluation on RFW test benchmark
In this subsection, our attention shifts to the RFW test benchmark.
Unlike CelebAMask-HQ, RFW lacks explicit information about the
regions of interest. To predict these regions without explicit masks,
FaRL is utilized (see Section 3.2). The goal remains the exploration
of biases, and to achieve this, we intentionally inject a strong corre-
lation (99%) between Gender and Race into the training data, i.e.,
FairFace, simulating a biased scenario. The objective is to assess
whether FaceX can discern and highlight regions associated with
this introduced bias. As presented in Figure 4, FaceX successfully
highlights the region of skin. Here the appearance of the skin region
plays a crucial role in identifying the racial bias. As can be easily no-
ticed, the high-impact patches associated with the identified region
suggest a pronounced association with dark-skinned individuals.

5.4 Impact of bias mitigation approaches
Here, we explore the behavior of models on biased data with or with-
out leveraging bias mitigation algorithms, simulating a scenario
where a significant co-occurrence (99%) exists between female indi-
viduals and Blond_Hair attribute. The purpose of this experiment
is to demonstrate the shift in FaceX’s output distribution when
applied to a fair model and a biased one. Initially, the vanilla model
tends to emphasize the hair and brow regions during predictions,
aligning with the biased correlation introduced in the training data.
To address and mitigate this bias, we employ FLAC [30], a method
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Table 2: Appearance explanations for single attribute bias experiments on CelebA (train) and CelebAMask-HQ (test). The top
20 high-impact patches of the biased regions are reported.

Target Attribute High-Impact Patches

Age Blond_Hair

Age Wearing_Lipstick

Age Smiling

Gender Blond_Hair

Gender Wearing_Lipstick

Gender Smiling

Table 3: Evaluation of multi-attribute bias experiments on
CelebA (train) and CelebAMask-HQ (test). FaceX’s output
Ranking Position (RP) for each target attribute w.r.t. the IoR
values is reported. RP 1 and RP2 stand for the ranking posi-
tion of the target region found first and second, respectively.

Target Attribute 1 Attribute 2 RP 1 RP 2

Gender Blond_Hair Smiling 1 11
Gender Wearing_Earrings Smiling 1 11
Gender Eyeglasses Wearing_Hat 1 2
Gender Wearing_Earrings Wearing_Necklace 4 7
Gender Wearing_Lipstick Wearing_Necklace 1 2
Gender Smiling Wearing_Necklace 1 12
Age Blond_Hair Smiling 1 10
Age Wearing_Earrings Smiling 1 6
Age Eyeglasses Wearing_Hat 1 4
Age Wearing_Earrings Wearing_Necklace 1 2
Age Wearing_Lipstick Wearing_Necklace 1 11
Age Smiling Wearing_Necklace 1 2

Mean 1.25 6.67

that demonstrates state-of-the-art performance on training fair
models using biased data. FLAC is introduced to counteract the in-
fluence of the biased correlation between Gender and Blond_Hair,
to foster fairer predictions. The impact of FLAC becomes evident as
there is a significant shift in the model’s behavior, as presented in
Figure 5. Specifically, contrary to the initial training phase where
hair and brows were among the top-activated regions, FLAC suc-
cessfully mitigates this bias by significantly reducing the activations
in the regions related to the Blond_Hair attribute. It is worth noting,
that further analyzing the FaceX outputs (e.g., inspecting the high-
impact patches) for the FLAC-basedmodel could reveal unknown bi-
ases that are ignored, however, this is beyond the scope of this paper.

(a) Heatmap

(b) Skin high-impact patches

Figure 4: FaceX heatmap output and high impact patches for
single attribute bias experiment on FairFace (train) and RFW
(test). Model’s target is gender and the correlated attribute is
race. Heatmap’s color scale is fromblue to red, corresponding
to the lowest and highest activations, respectively.

(a) Vanilla (b) FLAC

Figure 5: FaceX heatmap outputs for single attribute bias
experiment on CelebA (train) and CelebAMask-HQ (test),
before (i.e., Vanilla model) and after applying a bias mit-
igation approach (i.e., FLAC [30]). The model’s target is
gender and the correlated attribute is the Blond_Hair at-
tribute. Heatmap’s color scale is from blue to red, correspond-
ing to the lowest and highest activations, respectively.

5.5 Experiments on standard benchmarks
In addition to the controlled scenarios, experiments are conducted
on standard benchmarks without intentionally incorporating biases
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Table 4: Evaluation on CelebA and FairFace training dataset
with CelebAMask-HQ as test benchmark. The target regions
are defined as the regions of the top 5 correlated attributes in
CelebA, i.e., skin, lips, earrings, hair, and necklace. The RP
values (RP 1-5) represent the ranking positions of the target
regions’ IoR values in ascending order. Notably, for CelebA,
higher RP values suggest that the model is reproducing the
biases inherent in CelebA. In contrast, for FairFace, lower RP
values indicate that the model is less inclined to exhibit the
biases observed in CelebA.

Dataset Target RP 1 RP 2 RP 3 RP 4 RP 5

CelebA Gender 1 (lips) 3 (necklace) 6 (earrings) 7 (skin) 18 (hair)
FairFace Gender 4 (earrings) 6 (necklace) 7 (skin) 13 (lips) 16 (hair)

into the training data. Two models are trained, one on the CelebA
dataset and another on FairFace, each serving as a representative of
datasets with potentially biased and unbiased training data, respec-
tively. The ground truth regions to recall are determined as the top
5 regions associated with facial attributes that most frequently co-
occur with the target in the CelebA training data. These regions are
computed based on the ground truth annotations. The objective is
to assess FaceX’s effectiveness in identifying potential biases within
the CelebA dataset when applied to a model trained on CelebA,
where the presence of biases is indicated by high-ranking positions
for the target regions. When FaceX is applied to the model trained
on FairFace, it is expected to observe low-ranking positions for the
target regions (representing the CelebA biases), as FairFace does
not exhibit the same biases found in CelebA.

Table 4 outlines the results of these experiments. Focusing on
Gender prediction within the CelebA dataset, four out of five target
regions are placed in the top 7 ranking positions, indicating that
FaceX effectively identifies four out of the five biased regions as-
sociated with Gender prediction. In contrast, the evaluation of the
FairFace model, acknowledged for its fairness concerning Gender
and Race, demonstrates different behavior, with the first target
region placed 4th in the ranking. This aligns with expectations, il-
lustrating that the model trained on FairFace does not demonstrate
the biases present in CelebA. However, the heatmap provided by
FaceX (see Figure 6) allows for identifying other potential biases
involved in FairFace data. In particular, the model shows high acti-
vations on the regions of earrings, necklaces, and eyeglasses, which
ideally should not be determinant features for Gender classification.

6 CONCLUSION
In summary, FaceX, our XAI methodology for facial analysis, ad-
dresses the critical need for comprehensive insights into model
decisions. By providing spatial explanations across 19 facial regions
and introducing appearance-oriented explanations through high-
impact image patches, FaceX goes beyond individual explanations.
Through extensive evaluation in various controlled experiments,
including scenarios with intentional biases and mitigation efforts,
FaceX demonstrates robustness and adaptability. Its application
to real-world benchmarks, such as RFW, underlines its practical
utility where explicit facial regions information may be lacking. In

(a) CelebA (b) FairFace

Figure 6: FaceX heatmap outputs for experiments on de-
fault on CelebA and FairFace training dataset with target
the Gender attribute and CelebAMask-HQ as test benchmark.
Heatmap’s color scale is from blue to red, corresponding to
the lowest and highest activations, respectively.

contrast to existing XAI approaches, FaceX’s holistic view of model
behavior contributes to the ongoing quest for fair and unbiased
facial analysis systems. Future work could extend its application
to other computer vision domains characterized by geometrical
abstraction, fostering the development of fairer and more robust AI
systems. Finally, potential research directions could focus on devel-
oping fairness-aware approaches that leverage FaceX explanations
to mitigate biases during the training stage.
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