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Abstract—In this work, we address the problem of audio-based
near-duplicate video retrieval. We propose the Audio Similarity
Learning (AuSiL) approach that effectively captures temporal
patterns of audio similarity between video pairs. For the robust
similarity calculation between two videos, we first extract rep-
resentative audio-based video descriptors by leveraging transfer
learning based on a Convolutional Neural Network (CNN) trained
on a large scale dataset of audio events, and then we calculate the
similarity matrix derived from the pairwise similarity of these
descriptors. The similarity matrix is subsequently fed to a CNN
network that captures the temporal structures existing within
its content. We train our network following a triplet generation
process and optimizing the triplet loss function. To evaluate
the effectiveness of the proposed approach, we have manually
annotated two publicly available video datasets based on the
audio duplicity between their videos. The proposed approach
achieves very competitive results compared to three state-of-
the-art methods. Also, unlike the competing methods, it is very
robust to the retrieval of audio duplicates generated with speed
transformations.

Index Terms—video retrieval, convolutional neural networks,
deep learning, audio processing

I. INTRODUCTION

The increasing availability of affordable recording devices

and the rapid growth of online video platforms, such as

YouTube1 and TikTok2, has led to the explosive increase of

the volume of video data. In tandem, there is an overwhelming

growth of duplicate video content shared online, e.g., by users

who re-post processed or edited versions of original videos

on social media platforms. This makes near-duplicate video

retrieval (NDVR) a research topic of growing importance in

the last few years. In this paper, we address a special case

of the NDVR problem, which is the retrieval of videos that

are duplicate in terms of their audio content. The manipulated

audio content of videos may have undergone various transfor-

mations, i.e., mp3 compression, bandwidth limitation, or mix

with speech. We will refer to this instance of the problem as

Duplicate Audio Video Retrieval (DAVR).

Although many NDVR methods exist that exploit the visual

content of videos to perform retrieval, to the best of our

knowledge, no method that addresses the DAVR problem

1https://www.youtube.com/
2https://www.tiktok.com/

has been proposed. Nevertheless, there are approaches in

the literature that tackle similar audio-based retrieval prob-

lems, such as Content-Based Copy Detection (CBCD). Such

methods usually extract audio fingerprints using handcrafted

processes. However, no CBCD method employs deep learning

techniques, which is a common practice in the correspond-

ing visual-based version of the problem. Moreover, transfer

learning is widely used in the computer vision field because

of the availability of large datasets such as ImageNet [1]. In

the case of audio, transfer learning has been less explored

until recently due to the unavailability of similar large-scale

datasets. Additionally, there is no publicly available video

dataset with user-generated content that is annotated based on

audio duplicity to evaluate DAVR methods.

Recently, some methods have been proposed that can be em-

ployed in order to address the problem of DAVR. Kumar et al.

[2] proposed a method to effectively transfer knowledge from

a sound event classification model based on a Convolutional

Neural Network (CNN). They trained their model on AudioSet

[3], a recently released weakly labeled dataset with sound

events. The knowledge transfer capability of the pretrained

CNN was evaluated on several audio recognition tasks and

was found to generalize well, reaching human-level accuracy

on environmental sound classification. Moreover, Kordopatis

et al. [4] recently introduced ViSiL, a video similarity learning

architecture that exploits spatio-temporal relations of the visual

content to calculate the similarity between pairs of videos. It

is a CNN-based approach trained to compute video-to-video

similarity from frame-to-frame similarity matrices, considering

intra- and inter-frame relations. The proposed method was

evaluated on several visual-based video retrieval problems

exceeding the state-of-the-art.

Our motivation in this paper is to build an audio-based

approach that employs transfer learning and video similarity

learning in order to address the DAVR problem. Additionally,

due to the lack of a suitable dataset for the evaluation of

such approaches, our goal is to compose annotated corpora

that serve as evaluation testbeds for DAVR. To this end, we

propose AuSiL, an audio similarity learning approach. In the

proposed approach, we extract features from the activations of

the intermediate convolutional layers of the pretrained CNN

http://arxiv.org/abs/2010.08737v1


architecture [2] that is fed with the Mel-spectrograms of the

audio signals of videos. In that way, we extract compact audio

descriptors for the video frames. The audio-based video repre-

sentations are further refined by applying PCA whitening and

attention weighting. To compute the similarity between video

pairs, we first calculate the similarity matrix that contains

the pairwise similarity scores between the audio descriptors.

Then, we propagate the similarity matrix to a CNN network

that captures the temporal similarity patterns and calculates

the final similarity between the two videos. Furthermore, we

develop a triplet generation process to form video triplets, and

we train our model by optimizing the triplet loss function.

To cover the benchmarking needs of the DAVR task, we

have manually annotated the publicly available FIVR-200K [5]

and SVD [6] datasets by labeling videos that share duplicate

audio segments with the queries. The proposed approach is

compared against three competing methods. It demonstrates

very competitive performance and proves to be very robust

to the retrieval of audio duplicates generated with speed

transformations, in contrast to the competing approaches.

II. RELATED WORK

In this section, we briefly discuss several audio-based meth-

ods proposed for the CBCD problem, which is closely related

to the DAVR. Typical CBCD methods consist of two parts: i)

a process for the extraction of fingerprints that encode signal

properties derived from the audio channels of videos, and ii)

a search algorithm that calculates the similarity between the

videos in a database and a given query video based on the

extracted fingerprints. Additionally, we present several works

that exploit transfer learning on audio-based problems.

A large variety of audio descriptors have been proposed

in the literature. Roopalakshmi et al. [7] proposed a video

copy detection method based on audio fingerprints composed

by the Mel-Frequency Cepstral Coefficients (MFCC) features

and four spectral descriptors, reduced based on PCA. Jegou et

al. [8] extracted features for short-term time windows based

on 64 filter banks. The audio descriptors are created from the

concatenation of the features of three successive time win-

dows, resulting in a single descriptor of 192 dimensions that

represents 83 ms of the audio signal. Another popular audio

descriptor is the band energy difference [9]–[11]. Haitsma et

al. [9] generated fingerprints for short term time windows,

based on the monotonicity between 33 successive frequency

sub-bands, resulting in a 32 bits hash descriptor. Saracoglu

et al. [10] used energy differences between 16 sub-bands in

order to reduce search time. Wang et al. [11] expanded this

method by computing the differences between all sub-bands,

not just successive ones, and choosing a subset that contains

the most representative differences. One of the most popular

audio fingerprints is proposed by the Shazam system [12]. It

generates binary audio descriptors by encoding the relations

between two spectral peaks. To make the system more robust,

Anguera et al. [13] proposed an approach that selects salient

points of the Mel-filtered spectrogram and then applies a mask

centered at each of them, to define regions of interest. The

audio fingerprints are encoded by comparing the energy of

the regions. Ouali et al. [14]–[16] extracted audio descriptors

by producing various versions of the spectrogram matrix of

the audio signal, using values based on the average of spectral

values for thresholding, resulting in 2-D binary images. They

proposed two different schemes for the extraction of audio

descriptors. In [14], the binary image is divided into horizontal

and vertical slides. The fingerprint is composed of the sum of

the elements of each slide. In [15], [16], the binary image is

divided into tiles. The fingerprint is generated based on the

positions of the tiles with the highest sum in the image.

Furthermore, many algorithms have been proposed for the

calculation of the similarity between videos. To search the

audio fingerprints in the database, the method in [7] calcu-

lates the similarity between fingerprints, using weighted L2-

Euclidean distance, while in [8] the similarity is estimated by

exploiting the reciprocal nearest neighbors. In [9], various sub-

fingerprints are produced by altering the most unreliable bits

of the original fingerprint in order to calculate the bit error

rate between the sub-fingerprints of the audio descriptors of

a query and reference video. In [10], [11], a voting system

is employed that counts votes for the equal time differences

of the matching fingerprints between a query and a reference

video. The reference sequence with the highest vote count is

regarded as a match. In the cases of binary images, every fin-

gerprint of the query video is linked with the nearest neighbor

fingerprint of the reference [14]–[16]. To quantify the distance

between fingerprints, the authors employed the Manhattan

distance in [14] and the total number of coexisting positions in

[15], [16]. Then, the query shifts over the reference, and for

each alignment, the number of matching query frames with

their nearest neighbor is counted. The similarity between two

compared videos is then computed according to the reference

segment with the highest count.

Yet, none of the related works in the CBCD field have

experimented with features extracted from deep learning net-

works, a practice that has wide success in visual-based retrieval

problems. In this paper, we evaluate the application of such

features extracted from a CNN-based architecture proposed for

transfer learning [2]. Additionally, the proposed solutions for

similarity calculation cannot capture a large variety of tempo-

ral similarity patterns due to their rigid aggregation approach.

Therefore, to tackle this limitation, we build a similarity

learning network to robustly compute the similarity between

videos. For comparing our method with related works, we

have reimplemented the [14], [16] approaches, because they

reported competitive results, outperforming prior methods. We

also compare against the Dejavu open-source framework [17],

which reimplements the popular Shazam system [12].

III. PROPOSED METHOD

The proposed system comprises two parts, the extraction

of representative audio descriptors and the audio similarity

calculation between pairs of video. First, we extract features

from the intermediate convolutional layers of a CNN, which

takes as input time segments of the audio spectrogram. Then,



TABLE I
NUMBER OF FEATURES EXTRACTED FROM THE INTERMEDIATE

CONVOLUTIONAL LAYERS OF EACH BLOCK OF THE CNN, BY APPLYING

MAC. THESE FEATURES COMPOSE THE FINAL 2,528-DIMENSIONS

FEATURE VECTOR.

CNN Block Filter Size

B1 16 + 16 = 32

B2 32 + 32 = 64

B3 64 + 64 = 128

B4 128 + 128 = 256

B5 256 + 256 = 512

B6 512

F1 1, 024

Total 2,528

the extracted features are PCA whitened and weighted based

on an attention mechanism. To estimate the similarity between

videos, a similarity matrix with the pairwise segment similar-

ities of two compared videos is propagated to a similarity

learning CNN to capture the temporal patterns. The final

similarity score is computed based on the Chamfer Similarity

(CS) of the network’s output. The model is trained using

carefully selected triplets of video from a training dataset

based on a triplet loss scheme.

A. Feature Extraction

To generate audio-based descriptors, we first extract the

Mel-filtered spectrogram from the audio of videos. All audio

signals are resampled at 44.1 kHz sampling frequency. For the

spectrogram generation, we use 128 Mel-bands and a window

size of 23 ms (1024 samples at 44.1 kHz) with an overlap

of 11.5 ms (512 hop size). The generated spectrograms are

divided into overlapping time segments of 2 seconds with t
seconds time step. We consider t as a system hyperparameter

and we measure its effect on Section V-A.

Further, we feed the generated spectrogram segments to a

feature extraction CNN designed for transfer learning, pro-

posed by Kumar et al. [2]. The CNN model is trained on the

large-scale AudioSet [3] dataset, consisting of approximately

2.1 million weakly labeled videos from YouTube with 527

audio event classes. The backbone CNN contains seven blocks,

i.e., blocks B1-B6 and block F1. Each of B1-B5 blocks con-

sists of two convolutional layers followed by a max-pooling

layer. B6 consists of one convolutional layer, followed by max-

pooling, and F1 consists of one convolutional layer. Batch

normalization and a ReLU activation function are applied on

the output of each convolutional layer.

To extract compact audio representations, we apply Max-

imum Activation of Convolution (MAC) on the activations

of the intermediate convolutional layers of the feature ex-

traction CNN model [18], [19]. Given a CNN architecture

with K convolutional layers, MAC generates K feature vectors

hk ∈ R
Ck , where Ck the number of channels of the kth

convolutional layer. The extracted vectors are concatenated in

a single feature vector h ∈ R
C , where C = C1+C2+...+CK .

We applied MAC on the intermediate layers of parts B1-B6

and F1 of the CNN. The dimensionality of the concatenated

TABLE II
ARCHITECTURE OF THE PROPOSED NETWORK. WE ASSUME THAT THE

SIMILARITY MATRIX OF TWO VIDEOS WITH A TOTAL NUMBER OF X AND

Y AUDIO SEGMENTS IS PROVIDED AS INPUT.

Type Kernel size / stride Output size Activ.

Conv 3× 3 / 1 X × Y × 32 ReLU

Max-Pool 2× 2 / 2 X/2 × Y/2× 32 -

Conv 3× 3 / 1 X/2 × Y/2× 64 ReLU

Max-Pool 2× 2 / 2 X/4 × Y/4× 64 -

Conv 3× 3 / 1 X/4× Y/4× 128 ReLU

Conv 1× 1 / 1 X/4× Y/4× 1 -

feature vector amounts to 2, 528 dimensions. Table I presents

the dimensionality of the feature vectors extracted from each

block of the CNN. Then, we apply PCA whitening [20] to

decorrelate the feature vectors. The feature vectors are ℓ2-

normalized before and after the concatenation and also, after

the PCA whitening.

Applying ℓ2-normalization on the extracted feature vectors

results in all audio segments having equal contribution to the

similarity calculation. This could mean that, for instance, a

silent segment would have the same impact as a segment with

rich audio content. To overcome this issue, we employ a self-

attention mechanism [21] to weigh the audio segments based

on their captured information. Given a feature vector h, we use

a context vector u to measure its importance. A weight score

a is derived by calculating the dot product between the feature

vector h and the context vector u. The resulting weight score

will be in the range [−1, 1] since all vectors have unit norm.

However, to avoid the direction change of the feature vectors,

we rescale the calculated weight scores in the [0, 1] range, by

dividing a by 2 and adding 0.5. The weighting procedure is

formulated in Equation 1.

a = uT h

h′ = (a/2 + 0.5)h
(1)

B. Similarity calculation

To calculate video similarity, we first calculate the pairwise

similarity matrix that contains the similarity scores between

the audio feature vectors of two compared videos. More

specifically, given two videos q, p, with X and Y audio seg-

ments respectively, we apply dot product between the feature

vectors of the corresponding video descriptors Q ∈ R
X×C and

P ∈ R
Y ×C , where C is the dimensionality of feature vectors.

This process produces a matrix Sqp ∈ R
X×Y containing the

pairwise similarities between all vectors of the two videos, and

can be formulated as a matrix multiplication in Equation 2.

Sqp = Q · P⊤ (2)

Then, the generated similarity matrix Sqp is provided to a

four-layer similarity learning CNN network [4]. The net-

work has the capability of capturing the temporal patterns

of segment-level within-video similarities. The architecture of

the proposed CNN is displayed in Table II. Figure 1 depicts

a visual example of the input and the output of the AuSiL



Fig. 1. Similarity calculation process of the proposed architecture. The spectrogram of each video is provided to the feature extraction process, where feature
vectors are extracted for each audio segment. Then, a similarity matrix is generated from the dot product between the feature vectors of the two videos.
The generated matrix is provided to AuSiL CNN to capture the temporal patterns of the segment-level within-video similarities. The final similarity score is
aggregated by applying Chamfer Similarity.

CNN. The network can detect temporal patterns and assign

high similarity scores in the corresponding segments, i.e., the

diagonal part existing in the center of the similarity matrix. At

the same time, the noise in the input matrix, introduced by the

similarity calculation process, has been significantly reduced

in the output. Next, we apply the hard tanh activation function

on the network output values to clip them in range [−1, 1]. The

final similarity score is derived by applying Chamfer Similarity

(CS), which is formulated as a max operation followed by a

mean operation, as in Equation 3.

CS(q, p) =
1

X ′

X′∑

i=1

max
j∈[1,Y ′]

Htanh(Sqp
υ (i, j)), (3)

where Sqp
υ ∈ R

X′
×Y ′

is the output of the CNN network and

Htanh indicates the element-wise hard tanh function.

C. Training process

Ideally, the video similarity score that derives from Equation

3 should be higher for videos that are relevant and lower for

irrelevant ones. Therefore, we train our network by organis-

ing the training dataset in video triplets (υ, υ+, υ−), where

υ, υ+, υ− stand for an anchor, a positive (relevant) and a

negative (irrelevant) video respectively. For this purpose, we

use the triplet loss function [22], as formulated in Equation 4.

Ltr = max{0,CS(υ, υ−)− CS(υ, υ+) + γ}, (4)

where γ is a margin parameter. Triplet loss forces the network

to assign higher similarity scores to relevant pairs of video and

lower scores to irrelevant ones. Additionally, we employ the

similarity regularization loss described in [4], since it provides

significant performance improvement. This loss function pe-

nalizes the network activations that are out of the clipping

range of the hard tanh activation function, as in Equation 5.

Lreg =

X′∑

i=1

Y ′∑

j=1

|max{0,Sqp
υ (i, j)− 1}|

+|min{0,Sqp
υ (i, j) + 1}|

(5)

The total loss function is defined in Equation 6.

L = Ltr + r · Lreg, (6)

where r is a hyperparameter that determines the contribution

of the similarity regularization to the total loss.

Training the architecture described above requires the or-

ganisation of the dataset used for training in video triplets.

So, we extract pairs of videos with related audio content,

to serve as anchor-positive pairs during training. Due to the

unavailability of datasets with ground truth annotations in

terms of audio content, we extract the positive pairs from a

dataset with visual annotations. The videos that have not been

labeled as positives are considered negatives. From all positive

pairs in terms of visual content, we select only the ones whose

global audio feature vectors’ distance is smaller than a certain

value. The global audio feature vectors of videos result from

the application of global average pooling on the concatenated

feature vectors (Section III-A). The upper threshold value was

empirically set to 0.175. We then create video triplets based on

the positive pairs by selecting videos that are hard negative

examples. More precisely, we select all the anchor-negative

pairs whose Euclidean distance in the feature space is less than

the distance between the anchor-positive pair plus a margin

value d, i.e., D(υ, υ−) < D(υ, υ+)+d, where D(·, ·) indicates

the Euclidean distance between two arbitrary videos. Value d
was empirically set to 0.15.

IV. EVALUATION SETUP

A. Datasets

We employ the VCDB (Video Copy DataBase) [23] to

train our AuSiL network. This consists of videos collected

from popular video platforms (YouTube and Metacafe) and

has been compiled and annotated for the problem of partial

copy detection. It contains 528 videos with 9, 236 copied

segments in the core set, and 100, 000 distractor videos in

the background set. We use the videos in the core set to



TABLE III
ANNOTATION LABELS OF THE FIVR-200K DATASET ALONG WITH THEIR

ABBREVIATIONS AND DEFINITIONS.

Label Abb. Definition

Near-Duplicate ND
Videos that contain only duplicate scenes
with the query

Duplicate Scene DS
Videos that contain at least one duplicate
scene with the query

Complementary
Scene

CS
Videos that depict the same incident mo-
ments with the query, but from a different
viewpoint

Incident Scene IS
Videos that depict the same incident with
the query, but has no temporal overlap

form the anchor-positive pairs, and we draw negatives from

the background set. A total of 5.8 million triplets is formed

from the triplet selection process.

To build an evaluation corpus that simulates DAVR, we

employ the FIVR-200K [5] dataset3, which was originally

composed for the problem of Fine-grained Incident Video

Retrieval (FIVR). It contains 225,960 videos and 100 video

queries collected from YouTube based on the major news

events from recent years. Table III depicts the annotation

labels used in the FIVR-200K, along with their definitions.

For the simulation of the DAVR problem, we have set the

following annotation procedure. We first select the queries

that are suitable for the simulation of the DAVR problem;

we excluded 24 queries that were completely silent or noisy,

resulting in a set of 76 out of 100 queries. For each of them,

we manually annotate the videos with ND, DS, and CS labels

according to their audio duplicity with the query. The videos

that share audio content with the queries are labeled with the

Duplicate Audio (DA) label. In total, we validate 9,345 videos,

from which 3,392 are labeled as DA. From this point on,

we will refer to this audio-based annotated dataset as FIVR-

200Kα. Also, for quick comparisons of the different variants

of our proposed approach, we sample a subset of the original

dataset, which we call FIVR-5Kα. For its composition, we

first randomly select 50 queries, and then for each one, we

randomly draw the 35% of the videos labeled as DA. To make

retrieval more challenging, we also add 5,000 distractor videos

that are not related to the queries.

To build our second evaluation corpus, we employ the SVD

(Short Video Dataset) [6] dataset4 that has been composed

for the NDVR problem. The dataset consists of over 500,000

short videos collected from a large video platform (TikTok)

and includes 1,206 query videos, 34,020 labeled videos, and

526,787 unlabeled videos that are likely not related to the

queries. However, due to TikTok’s nature, we empirically

found that a large number of audio duplicates exist in the

unlabeled set. Therefore, for the composition of an evaluation

set that simulates DAVR, we consider only the videos in the

labeled set of the SVD dataset. The annotation of the dataset

is performed according to the following procedure. We first

acquire all the query-candidate video pairs that have been

3http://ndd.iti.gr/fivr/
4https://svdbase.github.io/

labeled as positives by the original authors of the dataset, and

we annotate the video pairs that share audio content. At the

end of this process, we discard all queries with no video pairs

annotated as positives, resulting in a query set of 167 out of

206 queries. To find potential audio duplicates that are not

included in the labeled set, we manually annotate all query-

candidate pairs that have not been labeled and have similarity

greater than 0.4. To compute the similarity scores, we follow

the process described in Section III-A to extract global feature

vectors, and then use the dot product to measure similarity.

Based on the described process, we composed an evaluation

dataset consisting of 6,118 videos, 167 queries with 1,492

video pairs labeled as audio duplicates. From this point on,

we will refer to this audio-based annotated dataset as SVDα.

B. Evaluation metrics

For the evaluation of retrieval performance, we utilize mean

average precision (mAP), which quantifies the ranking of the

database items given a query and thus is widely used as a

measure for retrieval performance. For the computation of the

mAP, we calculate the average precision (AP) for every video

query, according to Equation 7.

AP =
1

n

n∑

i=1

i

ri
(7)

where n is the number of relevant videos to the query and ri
is the rank, based on the similarity score, of the i-th retrieved

relevant video. The mAP is calculated by averaging the AP

scores of all queries.

Additionally, to gain a better understanding about the meth-

ods’ performance, we employ the interpolated precision-recall

(PR) curve, which shows the trade-off between precision and

recall for different thresholds.

C. Implementation Details

To train the network, we employ the Adam optimizer [24]

with learning rate l = 10−3 and regularization parameter

r = 0.1. Also, we consider as the default values of the

hyperparameters t = 1s and γ = 1. The parameters of PCA

whitening are learned from a corpus of one million feature

vectors sampled from the VCDB dataset. All experiments were

conducted on a machine with Intel Xeon @2.10 GHz CPU

and an Nvidia GTX1070 GPU. We trained the network for

about 30 hours until convergence. For videos with average

duration 100 s, the proposed system needs, on average, 100

ms for feature extraction per video, and 3 ms for the similarity

calculation between a video pair.

V. EXPERIMENTS AND RESULTS

In this section, we present an ablation study by examining

different configurations of the proposed approach (Section

V-A). Also, we compare AuSiL against three methods from the

literature on the DAVR problem (Section V-B). We evaluate

the proposed approach to retrieval settings where audio speed

transformations have been applied to the query videos (Section

V-C). Lastly, we report results on the more challenging settings

of three visual-based video retrieval tasks (Section V-D).



A. Ablation study

Initially, we study the impact of time step t on the perfor-

mance of AuSiL on the subset FIVR-5Kα and SVDα. Table

IV illustrates the mAP of the proposed method for different

time step values. The time step appears to have a detrimental

impact on the system’s performance on SVDα. The smaller

time step values report clearly better results compared to the

larger ones. Instead, this is not the case for FIVR-5Kα, where

the selection of the time step seems to have limited impact

on the system’s performance. A possible explanation for this

could be that SVD mainly consists of short duration videos,

i.e., 17 seconds duration on average, unlike FIVR-200K, where

the average duration is 117 seconds. Also, using smaller time

step values generates larger similarity matrices with richer

temporal patterns captured by the AuSiL, leading to more

accurate similarity calculation. For the rest sections, we use a

time step of 125 ms on the SVD dataset, and a time step of

1 s for all the others.

TABLE IV
MAP COMPARISON FOR VARIOUS TIME STEPS (MS) ON FIVR-5Kα AND

SVDα

Time step FIVR-5Kα SVDα

1000 0.794 0.903
500 0.789 0.915
250 0.787 0.928
125 0.790 0.940

We also examine the contribution of each AuSiL compo-

nent. Table V shows the results on FIVR-5Kα and SVDα,

first using only the video features extracted from the feature

extraction CNN and then adding PCA whitening, the attention

mechanism, and the similarity learning CNN. The attention

mechanism in every run is trained based on the main training

process. Performance improves as individual components are

added to the system. The application of PCA whitening has

the most significant impact on the network’s performance, with

0.084 and 0.041 mAP on FIVR-5Kα and SVDα, respectively.

Also, the use of the similarity learning CNN offers a further

improvement of 0.052 and 0.006 mAP on the corresponding

datasets. The contribution of attention mechanism to the

overall performance is marginal but positive.

TABLE V
IMPACT OF EACH NETWORK COMPONENT ON MAP ON FIVR-5Kα AND

SVDα. MAC STANDS FOR THE FEATURES EXTRACTED FROM THE

FEATURE EXTRACTION CNN, W AND A STAND FOR PCA WHITENING

AND ATTENTION MECHANISM RESPECTIVELY.

Network Components FIVR-5Kα SVDα

MAC 0.656 0.891
MAC + W 0.740 0.932
MAC + W + A 0.742 0.934

AuSiL 0.794 0.940

Moreover, we investigate three different settings regarding

the transfer and update of the weight parameters of the feature

extraction network during training. In the settings where the

network weights are updated, we do not use PCA whitening

and the attention mechanism, because we encountered network

collapse (the network activations were zero for any given

input). Table VI presents the results of the three variants on

FIVR-5Kα and SVDα. The settings where the parameters are

transferred and not updated outperform the other two variants

by a considerable margin (0.794 and 0.940 mAP respectively),

highlighting that transfer learning was successful. However,

the poor performance of the two variants where the weights

are updated is noteworthy. A possible explanation for this

could be attributed to the different domains represented by

the training and evaluation sets, considering that each dataset

represents a domain. The network is trained on VCDB; hence,

it learns the limited domain represented by this dataset. As a

result, the feature extraction CNN fails to transfer knowledge

and generalize to the domains of the evaluation sets, and

therefore the performance drops. On the other hand, the pre-

trained network is trained on AudioSet, a large-scale dataset

that represents a very wide domain, and therefore the extracted

knowledge can be generalized to datasets of varying domains.

TABLE VI
MAP COMPARISON OF NETWORK VARIANTS, REGARDING THE TRANSFER

AND UPDATE OF FEATURE EXTRACTION CNN PARAMETERS DURING

TRAINING ON FIVR-5Kα AND SVDα.

Transfer Update FIVR-5Kα SVDα

X × 0.794 0.940

X X 0.588 0.857
× X 0.445 0.764

We also investigated the impact of different values of the

parameter γ, as presented in Table VII. The network performs

best for γ = 1, achieving 0.794 and 0.940 mAP on FIVR-

5Kα and SVDα respectively. For all other gamma values g =
{0.4, 0.6, 0.8, 1.2}, the performance drops significantly.

TABLE VII
MAP COMPARISON FOR VARIOUS GAMMA VALUES ON FIVR-5Kα AND

SVDα.

gamma (γ) 0.4 0.6 0.8 1.0 1.2

FIVR-5Kα 0.764 0.761 0.786 0.794 0.767
SVDα 0.903 0.895 0.937 0.940 0.919

B. Comparison with the State of the art

In this section, we benchmark our method based on the

FIVR-200Kα and SVDα datasets that we developed to simu-

late the DAVR problem. To evaluate the proposed AuSiL ap-

proach, we have re-implemented two state-of-the-art methods

proposed for the CBCD problem [14], [16]. These methods

are based on binary images generated by the spectrogram of

the audio signal. We will refer to them as Spectro Slides [14]

and Spectro Tiles [16]. Also, we compare against the pub-

licly available open-source framework Dejavu [17], a Shazam

implementation for audio recognition.
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Fig. 2. Interpolated PR-curves for each approach on FIVR-200Kα and SVDα.

Table VIII illustrates the performance of the compared

approaches on the two datasets. On FIVR-200Kα, the pro-

posed approach reaches 0.701 mAP, significantly outperform-

ing the Spectro Slides and Tiles systems by 0.113 mAP and

0.191 mAP respectively; the Dejavu system surpasses the

performance of AuSiL, achieving the best score of 0.726
mAP. AuSiL achieves the best performance on SVDα with

0.940 mAP, outperforming all three competing methods by

a significant margin, i.e., 0.066 mAP from the second-best

method, Dejavu. Looking for a reasonable explanation for the

performance difference on the two evaluation datasets, we

have empirically determined that a considerable amount of

audio duplicates in the SVDα have been created using speed

transformations on the audio signals. AuSiL is robust to such

transformations due to its deep learning components that are

trained to handle such variance. On the other hand, the other

three methods rely on handcrafted methods and, therefore, can

only tackle a limited range of such transformations. We set up

an evaluation scheme in the next subsection in order to validate

this hypothesis. Nevertheless, we experimentally found that all

approaches fail to retrieve the following cases: i) the duplicate

audio signal has been mixed with high volume irrelevant audio

signals, e.g., speech or music, ii) the duplicate segment is too

short (up to 1 second), and iii) the duplicate audio signal is

very distorted.

Figure 2 presents the Precision-Recall curves of the compet-

ing approaches on FIVR-200Kα and SVDα, respectively. In

TABLE VIII
MAP COMPARISON OF AUSIL AND STATE-OF-THE-ART METHODS ON

FIVR-200Kα AND ON SVDα.

Method FIVR-200Kα SVDα

Dejavu [17] 0.726 0.874
Spectro Slides [14] 0.588 0.716
Spectro Tiles [16] 0.510 0.605

AuSiL (ours) 0.701 0.940

the case of FIVR-200Kα, AuSiL’s curve is below the Dejavu’s

curve up until 0.6 recall, outperforming or reporting similar

performance on the remaining recall points. Additionally,

AuSiL’s curve is above those of the Spectro methods, except

for the initial recall points. In the case of SVDα, AuSiL’s curve

lies above all other curves with a clear margin.

C. Evaluation on speed variations

To delve into the performance of the competing methods,

we set up an evaluation scheme to benchmark the robustness

of our approach to audio speed transformations. We test the

FIVR-200Kα and SVDα according to the following procedure.

We first employ the dataset queries to artificially generate

audio duplicates by applying speed transformations on the

audio signals. We use the following factors for the generation:

{×0.25,×0.5,×0.75} for slow down and {×1.25,×1.5,×2}
for speed up. Then, we exclude from the datasets all videos

that are originally labeled as audio duplicate, and we only

consider as positives the artificially generated audio duplicates.

Our proposed method proves to be very robust on speed

transformations, reaching a performance of 0.865 and 0.923
mAP on FIVR-200Kα and SVDα, respectively. On the other

hand, Dejavu, the best performing method on FIVR-200Kα,

performs poorly, achieving only 0.443 and 0.741 mAP respec-

tively. The Spectro Slides and Tiles methods do not work at

all on this setup, reporting near-zero mAP. This highlights that

the proposed approach tackles the limitation of the previous

methods and robustly calculates the similarity between audio

duplicates generated from speed transformations.

D. Evaluation on visual-based tasks

Finally, we evaluate the performance of AuSiL and the

competing approaches on the much more challenging setting

of visual-based video retrieval. Although these tasks are not

designed for benchmarking audio-based methods, they can still

provide an indication of retrieval performance. We use the

two original datasets presented in Section IV-A, i.e., FIVR-

200K and SVD, and also the EVVE (EVent VidEo) [25]

dataset that is designed for the event-based video retrieval

problem. The FIVR-200K consists of three different evaluation

tasks simulating different retrieval scenarios: i) the Duplicate

Scene Video Retrieval (DSVR), ii) the Complementary Scene

Video Retrieval (CSVR), and iii) the Incident Scene Video

Retrieval (ISVR). As expected, the performance of audio-

based approaches is far worse compared with the visual-based



TABLE IX
MAP COMPARISON OF AUSIL AND STATE-OF-THE-ART METHODS ON

THREE VISUAL-BASED DATASETS, I.E., FIVR-200K , SVD , AND EVVE.

Method
FIVR-200K

SVD EVVE
DSVR CSVR ISVR

Dejavu [17] 0.352 0.324 0.230 0.477 0.160
Spectro Slides [14] 0.288 0.269 0.189 0.406 0.146
Spectro Tiles [16] 0.249 0.228 0.159 0.323 0.144
AuSiL (ours) 0.327 0.310 0.232 0.516 0.288

Best visual 0.892 0.841 0.702 0.785 0.631

ones, due to the fact that the visual relevance of two videos

does not imply that they are also related in terms of audio.

Table IX presents the performance of the audio-based ap-

proaches on the FIVR-200K [5], SVD [6] and EVVE [25]

datasets. Additionally, the table depicts the best state-of-the-

art visual-based methods in each case, i.e. ViSiL [4] for

FIVR-200K and EVVE, and DML [26] for SVD. On FIVR-

200K, AuSiL is outperformed by Dejavu on DSVR and CSVR

tasks, but it achieves the best performance on the ISVR task

with 0.232 mAP. On SVD, AuSiL outperforms the competing

audio-based approaches, achieving 0.516 mAP and surpassing

the second-best approach, Dejavu, by 0.039 mAP. On EVVE,

our approach achieves 0.288 mAP, significantly higher than

all three competing methods, with the second one reporting

0.160 mAP. As expected, in all evaluation cases, there is a

large gap in relation to the performance of the state-of-the-art

visual-based approaches.

VI. CONCLUSIONS

In this paper, we demonstrated that transfer learning and

similarity learning can be effectively applied to tackle the

audio-based near-duplicate video retrieval problem. In addition

to achieving very competitive performance compared with

three state-of-the-art approaches, the proposed architecture

proved to be very robust to speed transformations of audio

duplicates. A limitation of our work is that we train our

network with samples derived based on the visual duplicity

of videos, and without explicitly knowing if they are actually

audio duplicates. Thus, employing a training set with proper

audio annotation could further boost retrieval performance. For

future work, we plan to examine different feature extraction

methods with different network architectures, tailored for the

application of the proposed scheme to similar tasks, e.g., cover

song detection. Also, we will investigate ways of reducing the

computational complexity of the proposed method.
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