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Abstract With the proliferation of smartphones and social media, journalistic practices are
increasingly dependent on information and images contributed by local bystanders through
Internet-based applications and platforms. Verifying the images produced by these sources is
integral to forming accurate news reports, given that there is very little or no control over the
type of user-contributed content, and hence, images found on the Web are always likely to be
the result of image tampering. In particular, image splicing, i.e. the process of taking an area
from one image and placing it in another is a typical such tampering practice, often used with
the goal of misinforming or manipulating Internet users. Currently, the localization of splicing
traces in images found on the Web is a challenging task. In this work, we present the first, to
our knowledge, exhaustive evaluation of today’s state-of-the-art algorithms for splicing local-
ization, that is, algorithms attempting to detect which pixels in an image have been tampered
with as the result of such a forgery. As our aim is the application of splicing localization on
images found on the Web and social media environments, we evaluate a large number of
algorithms aimed at this problem on datasets that match this use case, while also evaluating
algorithm robustness in the face of image degradation due to JPEG recompressions. We then
extend our evaluations to a large dataset we formed by collecting real-world forgeries that have
circulated the Web during the past years. We review the performance of the implemented
algorithms and attempt to draw broader conclusions with respect to the robustness of splicing
localization algorithms for application in Web environments, their current weaknesses, and the
future of the field. Finally, we openly share the framework and the corresponding algorithm
implementations to allow for further evaluations and experimentation.
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1 Introduction

Since the dawn of photography, providing photographic evidence has been a powerful way to
bolster or refute a claim, and alleviate ambiguity. When dealing with a story, be it a news report
or an accusation in a court of law, an image can be used to strengthen or disprove a certain
claim and, as a result, inform the public, and condemn or acquit an individual respectively. But
all this only holds under the provision that what is depicted in the image can be trusted to be
true. Modifying the content of an image after it has been captured is a practice that dates back
to the first days of photography. Nowadays, the proliferation of digital image capturing devices
and user-friendly image processing software have made changing the content of images an
easy feat both for professionals and non-experts.

Courthouse investigations and news reporting are the two fields that are most commonly
associated with the problem of image manipulation, its implications, and the need for reliable
forensics analysis tools in order to verify the information contained in images. In both cases,
there is a need –and ongoing research- to devise tools capable of scanning an image and –
either with or without other background information- provide the user with a report with
respect to the originality and authenticity of the image. In the general case, any piece of
information can be of significant value. This can include the capture parameters (geolocation,
camera model, environment lighting level), post-processing (compression quality, filters
applied) or explicit tampering (e.g. locating modifications on an image region). However,
detecting actual forgeries is obviously the aspect that attracts the most research attention.

Our work focuses specifically in the journalistic case, and especially in the scenario where
journalists evaluate social media streams and reports posted on the Web. In this manner,
investigators can extract real-time information from grassroots sources to form reports on
important events without being present in the field. In that case, journalists coming across a
photo depicting an interesting event need to be able to quickly verify the truthfulness of its
content. This is important, since being able to accurately tell whether it is a forgery or not
means all the difference between selling an interesting news story and harming the credibility
of the news organization (and their professional reputation). Figure 1 presents two cases of
user-provided news content from the recent past. One is an authentic image captured by a
bystander and consecutively used by news agencies for reporting the event, while the other is a
forgery that was disseminated via Twitter. While the latter was not officially reproduced as a
confirmed news item, it was actually featured as an unconfirmed source in a prominent news
agency’s website. Both events depicted in Fig. 1 appear to be very unlikely, but it is the aim of
a verification system to authoritatively distinguish truth from fiction.

Fig. 1 News images contributed by non-journalists in the past and disseminated via social media. Left: an
authentic photo of a rhinoceros chasing vehicles in the streets of Hetauda City, Nepal, March 2015. Right:
a forged image of a shark supposedly swimming in the streets of Puerto Rico following Hurricane Irene,
August 2011
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The task of verifying images collected from the Web or social media puts a number of
additional constraints on what an algorithm should be able to achieve, and what resources we
can expect it to have access to. There are two main particularities of the specific application
field: One is that, unlike courthouse forensics, we cannot expect to have access to the device
used to capture the original image, or even know the model. The other is that, since we have
acquired the image from the Web, there is a significant chance that the image has undergone
some transformations. Such transformations can take the form of resaves, rescales, and/or
filtering, both before and after the possible tampering.

In our previous work [54] we first identified the problems caused by these specific task
characteristics, presented a dataset of real-world forgeries to use as an evaluation framework,
and presented a limited evaluation of a small number of algorithms on this scenario. In this
paper, we present a significantly extended version of our previous work, by taking a larger set
of algorithms that, to our knowledge, covers the bulk of state-of-the-art tampering localization
approaches, and evaluate them against all major datasets we are aware of. We further evaluate
the performance of these algorithms in the face of image degradation caused by lossy
recompression at various qualities and rescaling at various sizes, and discuss the main issues
with today’s evaluation methodologies and the interpretability of the obtained results. Guided
by our findings, we discuss the real-world applicability of these algorithms, and consider
further research directions.

2 Background and related work

One fundamental distinction often made in image forensics algorithms is that of active versus
passive image forgery detection. Active forgery detection concerns algorithms where images
have been preemptively processed and imperceptibly marked, so that alterations can subse-
quently be detected and localized. Passive detection, on the other hand, which is the focus of
this article, deals with completely unknown images with no prerequisites. Passive image
forgery detection has been an active research field for more than a decade now, and a variety
of methods have been proposed in the past, while a number of different reference datasets have
been used for algorithm evaluations. In recent years, a number of surveys of the field have
attempted to organize the state-of-the-art and the major challenges [46] [6] [49]. In this section,
we present the most prominent methods relevant to our application scenario, as well as the
benchmark datasets that can be used for evaluation.

2.1 Tampering detection approaches

2.1.1 Types of tampering attacks

The first-level taxonomy of digital image forgery detection methods is based on the type of
forgery they aim to detect. Four broad categories are copy-move forgeries, splicing, inpainting,
and broad-scope image operations. Copy-moving means taking a part of an image and placing
copies of it within the same image. The intention behind such a practice may either be to add
false information (e.g. make a structure or crowd appear bigger) or to hide information (by
covering it using other parts of the image). Image splicing refers to the practice of copying a
part of one image into another to give the false impression that an additional element was
present in a scene at the time that the photograph was captured. Inpainting means drawing over

Multimed Tools Appl (2017) 76:4801–4834 4803



the image using an image processing software tool such as a Bbrush^. On the one hand, the
result of inpainting is often similar to that of splicing, in the sense that the tampered area of the
image takes different properties from the rest of the image, in terms of noise, JPEG compres-
sion traces, etc., and the same family of algorithms can generally be used to detect both. On the
other hand, since in-painted areas often exhibit significant self-similarity, their localization is
also possible using methods resembling copy-move detection algorithms [8]. Finally, the third
category includes a diverse set of operations, such as filtering, cropping, rescaling or histogram
adjustments, whose common characteristic is that they are very often used without malicious
intent. Many images published on the Web, even from non-professional photographers,
commonly undergo some form of post-processing, while publishing platforms also often
automatically apply such transformations to images uploaded to them. Thus, while in a judicial
investigation such operations may serve as indications of malicious tampering, with respect to
everyday encounters in the Web they are generally considered as non-malicious. In this
context, only copy-moving and splicing can unambiguously qualify as Bforgeries^.

Algorithms seeking to find copy-move attacks generally follow a common methodology
[48] [15] [36] [2]: a) block or keypoint descriptors are extracted from the image, b) a matching
step seeks the best similarities between them within the image, and c) a post-processing step
attempts to organize and group the matched pairs into coherent candidate regions of copy-
moving. In modern approaches, the process has to take into account the possibility of, filtering,
rotation or other transformations besides simple translation. The search is conducted by
attempting to group neighboring matches into clusters, and estimating the parameters of
possible affine transforms that could best explain the matches found in a region. This is used
to eliminate spurious matches and still be able to build models that are robust to transforma-
tions other than simple translation. A past large scale survey and evaluation of the state-of-the-
art in the field can be found in [11]. The major research challenges in copy-move forgery
detection are maintaining low computational complexity, maximizing localization precision,
and maintaining robustness in the face of modifications.

In the work presented here, we do not consider copy-move detection, for two main reasons:
a) the field of copy-move detection has achieved significantly more measurable progress, and
recent surveys and comparative evaluations of the field already exist in literature [11] [45] [20],
and b) copy-moving has essentially a narrower scope, since certain splicing detection algo-
rithms should in fact be able to detect copy-move forgeries as well, due to the disturbance these
attacks cause on local image structure. That is because, if the copy-moved region undergoes
some form of resampling, such as scaling or rotation, then it will probably lose the common
characteristics it shares with the rest of the image, such as JPEG compression traces or noise
patterns, and will be detectable using splicing localization. Furthermore, even if no resampling
occurs, it is possible that certain algorithms -such as the blocking artifact detection described
below- could still achieve successful localization due to the disturbance caused by the move
and resulting misalignment.

Algorithms detecting image splicing, on the other hand, are generally based on the
assumption that the spliced area of the image will differ in some fundamental aspect from
the rest of the image. A large family of algorithms for splicing detection [56] [42] [27] aim to
simply deduce whether an image has been spliced (or, generally, locally altered) without being
able to identify where. Such methods generally tend to use machine learning over visual
features to train binary classifiers, and often achieve very high success rates. However, there
are two major issues with such approaches: a) such algorithms run the risk of being dataset-
specific, in the sense that training over one set does not necessarily allow for generalization
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into another, and likely, not in realistic application settings, and b) human users tend to be
mistrustful of their results: indeed, an automated analysis claiming that there is a certain chance
that an image has been tampered, without providing interpretable clues as to why this
conclusion was drawn and offering no localization information, could only serve as an
auxiliary tool and not as a substantial authoritative tool. In this work, we are instead focusing
on forgery localization algorithms, attempting to find local discrepancies over some type of
information that ought to be consistent across the whole image, and thus providing clues to the
investigator as to where the forgery may have taken place. Many different types of traces have
been used in the past, and can be categorized in three broad groups: noise patterns, Color
Filter Array interpolation patterns and JPEG-related traces.

2.1.2 Noise patterns

Algorithms based on noise patterns are based on the assumption that the combination of
capturing device, the capture parameters of each image, and any subsequent image post-
processing or compression create unique noise patterns that differ between images. If we can
isolate them, these patterns can potentially be used to separate the spliced area from the rest of
the recipient image. One notable algorithm in this category is based on identifying noise
patterns by wavelet-filtering the image under the assumption that the local variance of the
high-frequency channel will differ significantly between the splice and the recipient image
[41]. Another approach isolates local noise using the observation that different frequency sub-
bands within an image tend to have constant and positive kurtosis values in their coefficients
[40]. The former has the advantage of being based on a ubiquitous principle and of being able
to generate output maps using a fairly simple transformation of the original image. On the
other hand, it is fairly sensitive to variations in the image local frequency spectrum, a feature
which is irrelevant to actual splicing, and is thus occasionally prone to generating artefacts
(false positives). Also, the calculation of local noise variance has to take place over relatively
large blocks, and thus it offers a relatively coarse localization of the tampered area. The latter
method is much more refined in localizing forgeries; however, the localization accuracy is
often dependent on a number of parameters, which could potentially make it difficult to find
the optimal settings for automatic application. Recently, a novel, promising method called the
SpliceBuster [16] was proposed for splicing localization based on the high-frequency image
content. The algorithm is based on high-frequency information extracted from the image using
a linear high-pass filter. This information is consecutively quantized and expressed using a co-
occurrence descriptor. The assumption is that the local descriptions of image regions with
different origins will exhibit different statistical properties. The algorithm can operate both in a
semi-supervised scenario, and a fully automatic one. In the former, the user indicates an image
region that is guaranteed to be untampered. This is used to calculate the natural statistical
properties of the descriptor, and consecutively regions in the rest of the image are evaluated
with respect to their conformance to the model. In the fully automatic case, where we are not
sure which area of the image has not been tampered, the method uses an Expectation-
Maximization algorithm to fit two different distributions (Tampered-Untampered) to the local
descriptors. By locating the local descriptors that conform to the BTampered^ model, we can
localize the regions where the splicing took place.

A large family of noise-related methods for splicing detection are based on sensor Photo
Response Non-Uniformity (PRNU), that is the distinct noise patterns produced by the physical
characteristics of each unique capturing device on all images taken by it [9] [34] [10]. In such
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methods, the basic idea is to first estimate a device’s PRNU spatial map, and then evaluate
whether the image under question conforms to it. If local deviations appear, the presence of a
splice in the corresponding region is posited. A defining characteristic of all PRNU methods is
the need to first estimate the PRNU pattern of the device used to capture the image. This can be
achieved by capturing a large number of varied images using the same device, and using them
to estimate the device’s PRNU noise. This approach is reasonable in forensic scenarios where
time and resources are available, such as judicial forensic analysis, but is unrealistic in the
Internet-based scenarios we are investigating, where we are faced with isolated images
captured using unidentified cameras. Thus, PRNU-based methods will not be further consid-
ered in this work.

2.1.3 CFA interpolation pattern disturbances

Most modern digital images are captured using a single sensor overlaid with a Color Filter
Array (CFA), which produces one value per pixel, and the image is then transformed into three
channels using interpolation. Thus, for each channel, a number of values originate from the
environment, while the rest are interpolated from them. Splicing can disrupt the CFA interpo-
lation patterns in multiple ways: a) splices are often filtered or rescaled, which disrupts the
original pixel interrelations, b) not all cameras use the same CFA array or interpolation
algorithm, so mixing two different images may cause discontinuities, and c) even simply
misaligning the splice with the rest of the image disrupts the pattern –in the latter case, since
typical CFA array patterns follow a 2 × 2 grid, there is a 75 % chance that any splice (or even
copy-move) forgery will disrupt it.

Two recent promising CFA-based methods are [21, 23]. In the former, two different features
are proposed: The first attempts to detect the CFA pattern used during image capture by
subsampling the image using various possible selection patterns, re-interpolating it, and
comparing it to the original. Having emulated the CFA interpolation process using the
estimated parameters, one could then make use of local discrepancies between the interpolated
and the observed values to detect local tampering. The second isolates image noise by using a
filter de-noising process and then calculates a measure of the relationship between the noise
variance of interpolated and natural pixels. If the two variances are too similar in a region, there
is a high probability that pixel values have been disrupted by tampering.

More recently, in [23] the local variances of natural and interpolated pixel values are
also compared, but following a formulation that allows estimating a tampering probabil-
ity per block instead of simply indicating local discrepancies via an arbitrary value.
Overall, using CFA interpolation discrepancies has yielded promising results in a number
of cases in the past; however, such methods suffer from a major disadvantage: these
traces are strongest at the moment the image is created, and tend to be particularly
sensitive to the effects of JPEG compression [23]. Thus, CFA methods are at their best
when operating on raw or losslessly compressed images, and are often inadequate for
images circulating on the Web.

2.1.4 JPEG compression traces

The third category of splicing localization algorithms is based on exploiting the traces left by
JPEG compression. The vast majority of such methods use features from one of two sub-
groups: JPEG quantization artifacts or JPEG compression grid discontinuities.

4806 Multimed Tools Appl (2017) 76:4801–4834



Quantization of an image’s DCT coefficients is a major step in the JPEG compression
pipeline, in which the quantization factor is a function of the chosen compression quality. It has
been observed that consecutive JPEG compressions at different qualities lead to specific
periodicities in the DCT coefficient distribution. A number of algorithms attempt to detect
splicing under the assumption that the spliced region might have been smoothed, resampled or
otherwise made to lose its first JPEG compression characteristics. Thus, in the final spliced
image the corresponding blocks will appear to have undergone a single compression, while the
rest of the image will have undergone two. Algorithms based on Double Quantization (DQ)
attempt to model the periodic DCT patterns caused by the two compressions, and detect local
regions that do not fall into this model. In [37], the DCTcoefficient distribution is modelled for
the entire image, and then each block is evaluated with respect to its conformance to the model.
For each block, the probability that it has originated from a different distribution is evaluated.
[5] is a direct extension of that principle, in which the model is made significantly more robust
by taking into account the fact that the DCT coefficient distribution estimation may be tainted
by the presence of both tampered and untampered blocks. Finally, a third approach [1] at
detecting double quantization inconsistencies is based on the observation that the distribution
of JPEG DCT coefficients changes with the number of recompressions. The DCT coefficient
distribution of natural images follows Benford’s law, i.e. their first digits follow a frequency
distribution where small values are significantly more common than larger ones. With the DCT
quantization step included at each JPEG recompression, this pattern is gradually destroyed. [1]
proposes training a set of SVMs over the different first digit distributions produced by various
single and double compression quality combinations. We can then split the image in sub-
blocks, and estimate the probability of each having been single- or double-compressed. The
presence of single-compressed blocks in an otherwise double-compressed image can be
considered a strong indication of tampering.

In contrast to these DQmethods, when the 8 × 8 JPEG block grid is shifted between the two
compressions (e.g. by cropping) an algorithm can attempt to model Non-Aligned (NA) JPEG
compression [3] [4]. While Non-Aligned quantization detection methods attempt to capture a
phenomenon that is not particularly likely to occur in the real world, it is still an eventuality
that may not be captured by other techniques and thus these algorithms can play an important
part in a forensic analysis process.

A simpler alternative [52] is to simply model the entire image DCT coefficient distribution
for each channel using a measure of the degree of quantization, whose local inconsistencies
can be indicative of splicing. While the algorithm can be effective in detecting discrepancies in
the local JPEG quantization history of each block, it differs from other DCT-based methods in
that its output is not probabilistic, which makes it relatively more difficult to interpret.

JPEG grid discontinuities, on the other hand, occur when the splice is placed in the recipient
image in a way that misaligns with the 8 × 8 block grid used for compression. Even at very
high compression qualities, the 8 × 8 pattern creates a grid structure in pixel values which is
usually invisible to the eye but can be detected using appropriate filtering. When the 8 × 8 grid
is absent from a region, or is misaligned with the rest of the image, this constitutes a strong hint
towards the presence of a splice [39] [35]. In the former, a descriptor vector is extracted from
the image, modelling the presence of such JPEG blocking artifacts, and then an SVM is trained
for image-level inconsistency detection –but not localization. In the latter, a local feature
corresponding to the local intensity of the blocking pattern is extracted. The feature’s variations
indicate local absence or misalignment of the grid, which is telltale of tampering, although the
algorithm may also be misguided by variations in the actual image content.
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With respect to exploiting JPEG compression, there exist two more approaches which have
attracted attention from the forensics community, JPEG Ghosts [22] and Error Level Analysis
(ELA) [33]. Both are based on the same practice, that of recompressing the suspect image as
JPEG, and pixel-wise subtracting the recompressed version from the original, and then
drawing conclusions from the residual map. The former is based on the principle that, if the
splice originates from a JPEG image of quality Q1, and is placed in a JPEG image of a Q2, it
will still be carrying certain characteristics of its first compression. Thus, if the resulting image
is recompressed at quality Q1 and subtracted from itself, there will be significantly less
residual over the area of the splice. By recompressing the image at multiple different qualities
and subtracting each one from the original, we can check if some image region behaves
differently from the rest of the image at some compression level. One major issue with JPEG
Ghosts is that they produce a large number of output maps –one per recompression quality-,
which makes it more likely that an investigator will be misguided by irrelevant artifacts in
some of them. ELA, on the other hand is a particularity in the field, in the sense that it has
attracted relatively little research attention [50] [44], yet is currently the only method explored
here that has seen widespread application outside of the research community.1 The basic
principle of ELA is that, as an image undergoes consecutive JPEG compressions, even at high
qualities, it begins to lose its high-frequency content. Thus, after a point, further
recompressions cause no loss of such content. This means that, if a part of an image has
undergone more resaves than the rest, when a recompressed version of the image is subtracted
from it, the regions that have undergone fewer compressions will leave a stronger residual than
the rest of the image.

2.1.5 Other splicing detection approaches

Besides the categories discussed above, a number of algorithms exist that take advantage of
specific phenomena during image capturing to detect splicing. One such case is [53], where
inconsistencies in lens-caused aberrations, and specifically a phenomenon called Purple
Fringing Aberration (PFA) can be used to localize splicing in an image. Another is [30]
where inconsistencies in motion blur are used to detect image regions of different origins. A
third is [38], where inconsistencies in shadow parameters are treated as indications of splicing,
and a fourth is [17] which localizes forgeries through discontinuities in illumination color.
While experimentally very effective in particular cases, such approaches are effective only
under very specific circumstances, for example [30] requires matte surfaces and outdoor
environments, while [53] depends on the presence of motion blur. Such specialized phenom-
ena can be used much more effectively for splicing detection when included in semi-automatic
contexts. Semi-automatic methods require the user to assist the algorithm by providing
additional information, such as the method in [31], where the user must provide shading
constraints on the scene geometry in order to detect inconsistencies in shading. However,
while such methods can occasionally provide good results, they are by nature difficult to
evaluate on a large scale, as they require human intervention for each detection, and, as a
result, we do not consider them in the comparative evaluation presented here.

Finally, one recent family of splicing detection algorithms attempts to take advantage of the fact
that splices –especially in theWeb-based news reporting scenario- are often composed from source

1 Two Web platforms currently providing ELA analysis are FotoForensics (http://fotoforensics.com/), and
Forensically (http://29a.ch/photo-forensics/#error-level-analysis).
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images that can also be found on the Web. In that case, a similarity search could allow us to locate
the sources of the splice. There is a significant body of work attempting to trace the lifecycle of an
image in the realistic scenario, where an original image is uploaded on the Web and consecutively
spliced, transformed, resaved and modified, and where the resulting images can be collected and
analyzed. Approaches such as Bimage archaeology^ [32] and Bimage phylogeny^ [18] search
within datasets in order to organize images in tree or forest structures that represent their history,
and can be used to trace the earliest, least modified versions of the image. More recently, proposed
approaches explicitly identify splices using partial similarity search [29] [43] or extending the
phylogeny approach to cases of multiple parenting, which includes compositions from images that
are both present in the dataset [19]. Such approaches have a very solid basis in the observation that
splices where at least one of the parent images is available on the Web are common in practice.
However, we can never exclude the possibility that no source image can be located, e.g. because
they are no longer online, are not traceable by our search engine, or were never shared in the first
place. A second consideration is our ability to crawl the Web for similar images. Currently, near-
duplicate collection from the Web can only be achieved using third party services such as Google
or TinEye reverse image search. The automatization of such an approach carries an economic
burden which is not negligible.While these approaches constitute a very promising future research
direction in the field, in this work we focus on splicing detection algorithms based solely on a
single image, which in many cases provide the sole basis for journalistic investigation.

2.2 Datasets

While, as in many other fields, proposed algorithms are often evaluated on custom, one-off
datasets, there also exist a number of public datasets of forged images which can serve as
benchmarks for algorithm evaluation. Table 1 presents a list of today’s major spliced image
datasets and the characteristics of their content.

When considering the usefulness of experimental datasets in evaluating splicing detection
algorithms, a number of characteristics are critical. The first and foremost is the presence of
ground truth binary masks localizing the splice. Without the presence of such masks, we can
only evaluate forgery detection algorithms, and not forgery localization algorithms, and thus
the scope of the dataset is severely limited. Another issue is the file types contained in it. From
this perspective, the CASIAv2 dataset, which is the largest realistic dataset currently available,
suffers from a severe disadvantage: instead of ground truth masks, the dataset only provides
information on which two source images were used to form each splice. As a result, reliable
ground-truth masks for the entire dataset can only be acquired through a semi-automatic
process, which, given the size of the dataset, would be extremely demanding. A second
characteristic is the dataset’s image format. The advantage of lossless formats such as TIFF
and PNG is that they may allow for uncompressed files, thus maintaining the most sensitive
traces necessary for noise-based and CFA-based methods. On the other hand, JPEG-based
algorithms are not expected to work on such datasets, unless the images have a pre-history as
JPEG and were consecutively decompressed and encoded in a lossless format. In that case
many JPEG-based algorithms might still work. In reality, especially for the Web-based
forensics case, despite the recent proliferation of PNG files, JPEG remains the norm: it is
indicative that among the contents of the Common Crawl corpus,2 87 % of identifiable image
suffixes correspond to JPEG (.jpg, .jpeg). In our own attempts at collecting forged images for

2 http://commoncrawl.org/
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the Web, roughly 95 % of the images encountered were in JPEG format -this means that
algorithms exploiting JPEG features are more likely to prove useful in our target scenario than
algorithms requiring uncompressed images. In Table 1, it can be seen that only the two datasets
of [25] and the CASIAv2.0 dataset [7] contain JPEG images, in addition to our ownWild Web
dataset. Finally, the last important characteristic in a forged image dataset is the quality of the
splices. Some datasets contain forgeries that have been artificially created by automatically
modifying part of an image, or inserting a part of one image in another. Out of the datasets
listed in Table 1, the Synthetic dataset of Fontani et al. [25] and the two Columbia datasets [12,
28] fall in this category. The former contains images from which the central square has been
extracted, modified (e.g. recompressed) and placed back in the image. This means that the
splice does not follow any semantic pattern (e.g. object boundaries) in the image, but is entirely
artificial. In the Columbia datasets, on the other hand, the splices are parts from one image
pasted into a different one, but still do not correspond to any meaningful shape within the
images. Instead, a random area is spliced each time, where the splicing boundaries are abrupt
and have not undergone any realistic-looking post-processing. Figure 2 shows samples from
the Synthetic dataset of [25] and the Columbia Uncompressed set, alongside the other three
that we chose for our evaluations. Generally, artificial datasets may be easy to create or extend,
and are well-suited to evaluating specific aspects of localization algorithms, but their charac-
teristics may differ significantly from what we typically encounter in practice. On the other
hand, Columbia Uncompressed contains TIFF uncompressed images, which allow us to study
the degradation of performance of various algorithms as an image is consecutively resaved as
JPEG. Also, the Synthetic dataset of [25] is well-organized in four distinct sub-groups, each

Table 1 Benchmark spliced image datasets and their characteristics. With respect to ground truth masks,
BManual^ means that coarse guidelines were provided, which required manual processing for precise localiza-
tion. BLimited access^ means that the masks are not accessible, and instead a submission system accepts binary
mask estimates and returns an overall per-pixel F1 retrieval measure for the entire dataset

Name Acronym Format Masks Realistic # fake/authentic

Columbia Monochrome [12] BMP grayscale Yes No 933/912

Columbia Uncompressed [28] COLUMB TIFF Yes No 183/180

Fontani et al. Synthetic [25] FON_SYN JPEG Yes No 4800/4800

Fontani et al. Realistic [25] FON_REAL JPEG Yes (Manual) Yes 69/68

CASIATIDE v2.0 [7] JPEG, TIFF Yes (Manual) Yes 5123/7491

First IFS-TC Image Forensics
Challengea, Training [47]

CHAL PNG (with possible
JPEG history)

Yes Yes 442/1050

First IFS-TC Image Forensics
Challenge, Phase 1
Testing [47]

PNG (with possible
JPEG history)

No Yes 5713 unlabeled

First IFS-TC Image Forensics
Challenge, Phase 2
Testing [47]

PNG (with possible
JPEG history)

Limited access Yes 350/0

Carvalho et al. [17] CARV PNG (with possible
JPEG history)

Yes Yes 100/100

Wild Web dataset [54] JPEG, PNG, GIF,
BMP, TIFF

Yes Yes 10,646/0

a http://ifc.recod.ic.unicamp.br/fc.website/index.py
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containing images that have been tampered with a different technique. The dataset contains
splices detectable by different combinations of Non-Aligned JPEG quantization, Aligned
JPEG quantization and JPEG Ghost in each subset. Both these datasets are of certain
importance to our evaluations. On the other hand, we consider the Columbia Monochrome
set to be of little relevance to our aims, as it consists of monochrome splices of very simple
images, and do not include it in our evaluations.

The realistic datasets, on the other hand, have entirely different characteristics. The Realistic
dataset of Fontani et al. [25] consists entirely of JPEG images and was aimed at evaluating a
framework for detecting JPEG traces; it is thus expected to mainly exhibit these features. The
datasets used for the First IFS-TC Image Forensics Challenge [47] constitute probably the
largest realistic experimental set currently available, containing a large number of user-
submitted forgeries. Due to the nature of the challenge, tampering masks are provided only
for the training set, which is still considerably large. Besides the Wild Web dataset, this is the
largest realistic image tampering localization dataset currently available, and it highlights all
the current challenges of the field. While its images are saved as PNG, our preliminary analysis
yielded some successes using JPEG-based algorithms, which means that at least some of the
images were compressed as JPEG prior to being saved as PNG, and have retained certain
traces from that step. However, the results of past evaluations are indicative of the general
inadequacy of splicing detection algorithms to tackle this dataset. The currently top-ranking
method [26] currently achieves a 0.45 F1-score in pixel-level localization, and does not
actually use any fully automatic splicing localization algorithm. Instead, it is based on
combining a dataset-specific PRNU estimation strategy, a copy-move localization algorithm,
and a near-duplicate search to locate the sources from which the images were spliced. As a
result, this method is not applicable in a real-world Web context, as a) the PRNU estimation
only works if we have a constrained dataset, b) copy-move localization captures only a fraction
of possible real-world forgeries, and c) developing an automatic near-duplicate search platform
for the Web is currently extremely demanding in terms of resources, unless we purchase the
services of a proprietary reverse search engine such as TinEye. Similarly, of the two most
successful algorithms during the time of the challenge, the first [13] included a copy-move
detection algorithm, a PRNU-based algorithm and one automatic splicing localization
algorithm, while the second [51] only used a copy-move detection method. Thus it
appears that the dataset remains particularly challenging for the splicing localization
methods examined here.

Fig. 2 Sample images from five benchmark datasets. The top row contains unspliced images, while the bottom
row contains spliced images with the tampered area marked by us. From left to right, the datasets are: First Image
Forensics Challenge [47], Carvalho et al. [17], Columbia Uncompressed [28], Fontani et al. Realistic [25],
Fontani et al. Synthetic [25]
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Finally, the dataset of [17] consists of PNG images aimed to evaluate a method detecting
illuminant color inconsistencies in human faces. However, preliminary analysis demonstrated
that at least some images do contain detectable traces, including JPEG features. Thus, it was
also deemed an interesting candidate dataset for evaluation, especially as it was not intention-
ally designed to highlight the performance of any of the traces we are investigating. This
dataset is a subset of the IFS_TC Image Forensic Challenge, with images coming from both
the training and test datasets. However, the dataset provides binary masks for a number of
images that the Challenge dataset does not -namely, those belonging to BTest^-, and further-
more it was composed with an entirely different aim -face splicing localization- in mind. The
fact that it only contains a specific type of forgeries may help highlight different aspects of the
evaluated algorithms. Thus, we decided to include it in our evaluations as a distinct dataset.

Besides their differences, there is one more characteristic that is quite common for those
image datasets: all the forgeries in the datasets were saved immediately following the splice,
without undergoing further lossy recompressions, rescaling or other post-processing. This
means that the forgery traces will be relatively intact and algorithms will have an easier time
detecting them. There are two exceptions to this case: One is the First Image Forensics
Challenge, where the images were gathered from user submissions and the precise image
history is not disclosed. As a result, images in the respective datasets may have undergone
some form of recompression or resampling following the forgery. This is a more realistic
simulation of a forgery found on the Web, and may well be why this dataset is still particularly
challenging for splicing localization algorithms.

2.3 Multimedia verification in the wild

As we examine the distinction between courthouse forensics and journalistic analysis of Web
content, and the different use-case scenarios these entail, we see that they provide significantly
different contexts for which algorithms should be evaluated. For example, PRNU-based
methods are a very effective choice for the former case while being almost inapplicable in
the latter. Likewise, the detection of any image alteration, even when it concerns a rescaling of
the image, may be incriminatory enough in the former case. This is because the expectation in
a legal investigation is that the submitted image is the camera-original, so even a seemingly
harmless rescale may be masking other operations such as splicing or copy-moving. On the
other hand in the case of Web sourced content, rescaling, resaving and even filtering of an
image are rather common operations that are often applied automatically by publishing
platforms and cannot be used to incriminate an image as a forgery.

In our preliminary work in this direction [54] we examined and reverse-engineered the
operations performed by two popular social media platforms (Twitter, Facebook) to images
uploaded to them. We observed that both platforms resave images as JPEG of medium-to-high
quality, and also scale down images they consider too large, based on maximum dimension
limits (2048 pixels) which, given today's camera phone resolutions, are rather restricting.
While other services used by journalists to collect user-generated media, such as Bambuser,3

do maintain image integrity, there exists a high probability that even innocuous images
collected from social media or the Web have undergone such transformations.

3 http://bambuser.com/
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In our need to evaluate the state-of-the-art against the realistic Web-based forensic analysis
task, we created an experimental dataset reflecting our specific needs: the BWild Web dataset^
[54] consists entirely of actual forgeries that have circulated the Web in the past years.

The dataset currently consists of 78 cases of confirmed forgeries. For each case, we used
today’s most popular reverse-image search engines (Google and TinEye) to collect as many
near-duplicate instances as possible from the Web. We then applied bitwise comparison
between the images to remove exact file duplicates, thus ending up with 14,478 images. For
many cases, we found that multiple sub-cases exist, where it is not straightforward to identify
which was the first forgery. In these cases, we separately kept each candidate sub-case (see
Fig. 3 for an example), thus the dataset contains 86 such sub-cases. After manually filtering out
versions that had been severely cropped, or obviously post-processed (e.g. by adding water-
marks), we were left with 10,646 images, all containing confirmed forgeries -mostly splices,
but including a few copy-move attacks. As the forging process was not known, and some cases
contained multiple tampered areas/items, this meant that they could have taken place consec-
utively, and in this case it would be possible that only the last step of the process would be
detectable. Thus, in creating the ground-truth binary masks for the set (with the help of the
original, untampered sources, where available), in certain cases we created multiple ground
truth masks, reflecting different possible steps of the operation –the total number of masks for
all cases is 90. Of course, during evaluations, an algorithm output matching any of the possible
masks of any sub-case should count as a success for the entire case.

As a result of the way it was formed, the Wild Web dataset is likely to contain certain
versions of a forgery in which all traces have disappeared (e.g. rescaling, brightening and then
resaving a tampered photo as an indexed GIF image will most certainly destroy all traces).
However, due to the exhaustive nature of our search, it is also likely to include the first posting
of the forgery, or at least several early versions of it. Thus, besides serving as a benchmark for
evaluating detection algorithms, it also essentially presents us with a representative real-world
sample from the Web concerning a large number of forgeries, i.e. how many variants exist,
how heavy their degradation is, and in how many instances.

Fig. 3 Two forgeries from the Wild Web dataset. Left: original unspliced image. Middle: spliced image. Right:
the binary mask we created from comparing the two
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The major limitation of the dataset is the absence of a corresponding untampered ground-truth
set, withwhich to evaluate against false positives. However, we came to the conclusion that it would
not be possible to create an image dataset with similar characteristics, which would exclusively
contain untampered images. The basic characteristic of theWildWeb dataset is that the images have
been collected in bulk from the Web, and feature huge variability with respect to the number of
resaves they have undergone, as well as to format changes, rescales, filtering and histogram
adjustments, in addition to the actual splice. On the one hand, any dataset of verified untampered
images that we could form from select images would in most probability not follow a similar
distribution of such characteristics. On the other hand, if we instead attempted to randomly collect
images from the Web, we would never be certain that the dataset does not contain splices, even in
the form of watermarks that websites often attach over images published on them. Thus, the Wild
Web dataset only contains forged images, and evaluation protocols ought to take this into account.

3 Evaluations

Our aim is to offer an exhaustive, comparative, cross-dataset evaluation of the state-of-the-art in
image splicing localization, with an eye to Web image content. We have thus acquired or
reproduced implementations of today’s most popular and well-cited algorithms, and applied them,
in a structured manner, to the dominant splicing detection datasets available today. We have also
made theMATLAB source code of the algorithms and the evaluation framework publicly available
on GitHub,4 in order to allow researchers to replicate our results, incorporate novel algorithms in
the existing framework, and foster further research under a common evaluation methodology. In
this section we present the implemented algorithms, the datasets to which we applied them, the
evaluation methodology that we adopted and the obtained experimental results.

3.1 Algorithms

In selecting algorithms for our evaluations, we made a number of choices for reasons of focus
and resource usage. These choices were argued in depth in Section 2.1, and can be summarized
in the following: a), we did not consider copy-move detection algorithms; b) we did not
consider PRNU methods, since we currently consider it impossible to meaningfully apply
them on images collected from the Web; c) we focused on forgery localization and not forgery
detection. The 14 algorithms we used in our experiments are presented in Table 2.

These 14 algorithms represent, to the best of our knowledge, the state-of-the-art in image
splicing localization. They cover the full extent of tampering traces that we are aware of (again,
excluding PRNU noise) and have given promising results at the time of their publication. ELA
is the only exception as it has not been academically published; it is, however, extremely
popular among practitioners. In order to do each algorithm justice, we attempted to acquire the
implementations from the authors. However, this was not always possible, thus DCT, ADQ1,
ADQ3, ELA, GHO and NOI1 were implemented by us, BLK was re-implemented by us due
to the increased computational complexity of the original implementation (but using it as a
guide), while the rest were provided by the authors. Out of these, ADQ2, NADQ and CFA1 are
publicly available,5 while the rest were acquired through direct correspondence with the

4 https://github.com/MKLab-ITI/image-forensics/tree/master/matlab_toolbox
5 https://iapp.dinfo.unifi.it/index.php?page=source-code_en
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authors. All implementations, both our own and those provided, were in MATLAB. Further-
more, we did our best to adapt them to the needs of the evaluation to ensure the best possible
performance. Thus a) although ADQ1 and DCT are strongest when drawing the DCT
coefficients directly from the JPEG encoding, they can also operate on images that are no
longer in JPEG format, by estimating the DCT coefficients from the decompressed image, b)
CFA1 takes advantage of the CFA pattern estimation from [21] since the original implemen-
tation assumed that the standard Bayer CFA array was used in capturing image, and c) ADQ3
first estimates the JPEG quality from the file’s quantization tables, in order to choose the
appropriate SVM classifier for that quality.

In section 2.2, examination of existing evaluation datasets for image splicing localization
made clear that only a subset of today’s datasets are appropriate for our task. Hence, we only
chose datasets of color images providing ground-truth binary masks. These include Columbia
Uncompressed (COLUMB) [28], Fontani et al.: Synthetic (FON_SYN) [25], Fontani et al.:
Realistic (FON_REAL) [25], Carvalho et al. (CARV) [17], First IFS-TC Image Forensics
Challenge: Training (CHAL) [47], and the Wild Web dataset [54]. With respect to the CHAL
dataset, as it contains many copy-move forgeries, it would be unfair to expect splicing

Table 2 Splicing localization algorithms used in the evaluations

Acronym Description Ref.

DCT A simple, fast detection method for inconsistencies in JPEG DCT coefficient histograms. [52]

ADQ1 Aligned Double Quantization detection using the image DCT coefficient distribution. The
authors further propose taking the local probability map produced, and using it to train a
binary SVM to return a scalar probability on the image being tampered. We bypass this step
and directly evaluate the local probability map.

[37]

ADQ2 Aligned Double Quantization detection claiming to improve upon the performance of ADQ1
by first estimating the Quantization table used by the previous compression. JPEG files only.

[5]

ADQ3 Aligned Double Quantization detection using SVMs trained on the distribution of DCT
coefficients for various cases of single vs double quantization. JPEG files only.

[1]

NADQ Non-aligned Double Quantization detection from the image DCT coefficients. JPEG files only. [4]

BLK Detection of disturbances of the JPEG 8 × 8 block grid in the spatial domain. [35]

ELA Error Level Analysis, aiming to detect parts of the image that have undergone fewer JPEG
compressions than the rest of the image.

[33]

GHO JPEG Ghosts, aiming to identify parts of the image, in which past recompressions were at a
different quality than the rest of the image.

[22]

CFA1 Disturbances in the image CFA interpolation patterns, modeled as a mixture of Gaussian
distributions. As the algorithm requires knowing the CFA filter pattern used by the camera,
we took the CFA filter estimation algorithm of [21] and used it here as well.

[23]

CFA2 Estimation of the local error between the image and a re-interpolated version of it, following a
simulation of the CFA filtering process.

[21]

CFA3 Isolation of image noise using de-noising, and comparison of the noise variance between
interpolated and natural pixels.

[21]

NOI1 Modeling of the local image noise variance by wavelet filtering. [41]

NOI2 Modeling of the local image noise variance utilizing the properties of the Kurtosis of frequency
sub-band coefficients in natural images.

[40]

NOI3 While not strictly noise-based, this algorithm computes a local co-occurrence map of the
quantized high-frequency component of the image. It then uses Expectation-Maximization
to fit a two-class model on the distribution, assuming that the spliced area will have different
characteristics from the rest of the image.

[16]
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localization algorithms to operate on those cases. Thus, a copy-move localization algorithm
was run over the entire dataset [15], and the results were visually verified in order to identify
such forgeries. Consecutively, 136 confirmed copy-move forgeries were removed from the
dataset prior to our evaluations.

3.2 Evaluation methodology

In the process of our evaluations, all implemented algorithms were applied on the images of all
datasets. Each algorithm produces an output map that can be used to localize tampered areas in
the image. One typical evaluation methodology is based on comparing the values of the output
map under the region defined as Btampered^ by the ground-truth mask, with the values of the
map in the rest of the image. One example is [25], where the medians inside and outside the
mask are compared. If the absolute difference between the two values is above a certain
threshold, the image is classified as tampered; otherwise it is classified as authentic. Another
approach is the one in [22], where the Kolmogorov–Smirnov statistic is used to compare the
value distribution in the two regions. In that case, the K-S statistic provides a metric of the
similarity between the two regions’ distributions, and can again be compared against a
threshold to classify an image as tampered or authentic.

A characteristic of such evaluation approaches is that they do not inherently include a
means of estimating false positives/true negatives. As each evaluation is bound to the
existence of a ground truth binary mask, untampered (i.e. BNegative^) images, for which
the mask should consist entirely of zeroes, cannot be tested at all. A common solution to
this is to form a test mask marking an arbitrary region in the image (such as a square in its
center) and test all untampered images against that map. This method serves as a baseline
against overestimating the performance of algorithms in a basic way: if the comparison
threshold is too low, all tampered images would be found to be successful detections, since
it is unlikely that e.g. the median within the mask would be perfectly equal to the median
outside it. However, in the case of such a small threshold, any arbitrary region (including
the square we defined) would also give a positive result, even for untampered regions.
Thus, while not actually able to detect all possible false positives in an output map, this
practice at least balances the possibility of random outputs passing as True Positives, by
producing False Positives from similarly random outputs. Figure 4 shows three examples,
their binary mask areas and the corresponding difference between means. In this case, the
first and last examples give very confident conclusions (a true positive and a true negative
respectively), while whether the middle example will be classified as a true positive or false
negative will depend on the threshold value.

On the other hand, such an approach fails to guard us against actual false positives: it
is possible that some images may contain certain spatial image features (e.g. oversatu-
ration or high-frequency textures) that might misguide certain algorithms by returning a
local positive in regions where there is none. Since the proposed false positive detection
approach only looks for discrepancies in a specific, arbitrary region in the output, false
positives popping up elsewhere will most likely not influence the result, and the
evaluation will return a true negative.

An alternative evaluation methodology would be to binarize the output map and
compare each pixel with its corresponding value in the ground-truth mask. This
approach allows per-pixel estimation of success metrics, is far more precise in terms
of evaluating localization quality, and inherently solves the issue of false positives. This
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approach was followed in the Tampering Localization (Phase 2) of the First Image
Forensics Challenge. However, one inherent disadvantage in this approach is that it
requires the output map to be thresholded prior to any evaluation. Another disadvan-
tage is that it cannot be easily applied to untampered images, as such images consist
entirely of pixels labeled Negative, and it is difficult to devise metrics to simulta-
neously evaluate tampered and untampered images. This was not an issue for the
Challenge, as Phase 2 only included tampered images, but would be problematic
when applied to datasets consisting of both tampered and untampered images. In
our evaluations, we used both evaluation practices, depending on the dataset: a) for
the established benchmark sets containing both tampered and untampered images we
used the first approach of comparing the value distributions inside and outside the
mask, with artificial square maps for negative examples and b) for the Wild Web
dataset which does not contain untampered images we used the second approach, of
binarizing the outputs and evaluating whether the outputs match the ground truth
masks.

3.3 Results

3.3.1 Datasets containing both tampered and untampered images

For existing reference datasets, we adopted the approach of assuming the existence of an
artificial ground truth mask for each untampered image which, similar to [22, 25],
corresponded to a block of size ¼ of each dimension, placed in the image center. As presented
in Section 3.2, this is more appropriate for datasets that contain both tampered and untampered
images, while the approach of using pixel-wise retrieval metrics is more fitting for datasets that
only contain spliced images, such as the Wild Web dataset used in the next subsection. As a

Fig. 4 An example of output map evaluations. Top: two spliced and one unspliced image. Bottom: the
corresponding output value maps for using different algorithms (ADQ1, CFA1 and CFA1), with the borders of
the binary mask used for the evaluations manually marked. For the forged images, this corresponds to the actual
spliced area, while for the last column it corresponds to an arbitrary rectangle in the center of the image. In these
examples all algorithms produce output in [0, 1] and the absolute difference of medians between the masked
region and the rest of the image is, respectively: 1.0, 0.282 and 0.006
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measure of dissimilarity between the output values distribution within the mask and outside it,
the Kolmogorov-Smirnov statistic is calculated for each image:

k ¼ maxu C1 uð Þ−C2 uð Þj j ð1Þ

In Eq. (1), C1(u) and C2(u) are the cumulative probability distributions inside and outside
the mask respectively. If the metric surpasses a threshold, then a positive is declared, i.e. a
forgery is detected. By then shifting the threshold for each algorithm, and evaluating how
many images return positives in the tampered and untampered subsets, we get the True
Positive and True Negative value for each threshold, which we use to form the ROC curves
for each dataset, presented in Fig. 5. Three of the algorithms of Table 2, namely ADQ2,
ADQ3, NADQ, can only accept JPEG images as input, as they exploit certain JPEG data
directly extracted from the compressed files. Specifically, ADQ2 and NADQ require the
rounding error caused by decompression, while ADQ3 requires the JPEG quality under which
the image was stored. In images that were compressed as JPEG in the past, but are now
decompressed and stored in lossless formats, it is now impossible to retrieve these parameters
with precision. As a result, these algorithms were only tested on datasets containing JPEG
images (FON_REAL, FON_SYN). The rest of the algorithms exploiting JPEG-based traces
(DCT, ADQ1, ELA, GHO and BLK), do not actually need the image to be currently stored in
JPEG format, and only expect the image to have been stored as JPEG in its past. Thus, these
JPEG algorithms were applied on all datasets.

In interpreting results, one should generally be wary of the possibility of overestimating
algorithm performance. The most important source of such overestimations arises from the
arbitrary shape of the binary mask used to evaluate True Negatives. In most cases, the real
binary masks used for tampered images correspond to an actual physical object in the image.
On the other hand, the artificial mask we use for untampered images corresponds to an
arbitrary part of the image. As a result, there is generally a higher chance of random noise -
corresponding to an image object- accidentally causing a True Positive than causing a True
Negative. This effect is stronger at low threshold values, while for more strict values results are
relatively more reliable.

The two non-realistic datasets, i.e. COLUMB and FON_SYN help highlight a number of
aspects of the algorithms under evaluation. Perhaps the most striking result is the effectiveness
of noise-based and CFA-based algorithms on the Columbia dataset. Indeed, all algorithms
perform well even at a 0 % False Positive rate, with the CFA algorithms and NOI3 demon-
strating superior performance that reaches almost 70 % detection rate at 95 % True Negatives.
CFA1 and NOI3 are significantly more effective at extremely high TN rates, which implies
higher robustness, but both CFA2 and CFA3 catch up as the threshold relaxes. The perfor-
mance of JPEG-based algorithms, on the other hand is, as expected, significantly lower.
However, we should observe here that none of the images in the dataset have ever undergone
JPEG compression, and thus no JPEG traces should be found anywhere in the image.
Therefore, theoretically JPEG algorithms should not be able to detect the splicing in any case
and thus the performance of such algorithms should be zero, at least when True Negatives are
high. Figure 6 provides one explanation for this phenomenon. In the figure, we can see the
output of the algorithm we label as BLK, in an uncompressed image of the Columbia dataset.
Due to the differences in content variance (and possibly high-frequency noise), the spliced
region returns very different values, although we are certain there are no JPEG blocking
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Fig. 5 ROC curves for all algorithms applied on the benchmark datasets. As for low TN rates the evaluation
criteria become generally uninformative, algorithm performance is only presented up to a True Negative rate of
70 %, but we consider performance at above 95 % TN to be the most important indicator
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artifacts to be found anywhere in the image. Generally, when designing an evaluation study, it
might seem reasonable not to even consider evaluating JPEG-based algorithms on uncom-
pressed images. However, we decided to include these evaluations in our study, as they
produce rather interesting results from a user perspective. In a real-world scenario, this would
be the actual output a user would encounter –a correct localization, for the wrong reasons. It is
open for discussion whether such behavior from a localization algorithm increases or decreases
its utility for end users.

In this aspect, the performance of algorithms on the Synthetic dataset of Fontani et al.
(FON_SYN) is a more reliable indicator of forgery detection performance. As the tampered
area does not coincide with any visual phenomena, it is less likely to produce spurious true
positives. JPEG-based algorithms perform reasonably robustly, especially if we take into
account the internal splitting of the dataset into subsets of images that have undergone different
splicing procedures (e.g. Aligned, Non-Aligned), not all of which can be detected by all
algorithms. What is interesting, on the other hand, is that CFA and noise algorithms also
perform significantly better than random in this dataset. There exist a small but not insignif-
icant set of cases that are accurately detected using these algorithms, which most likely
suggests that not all relevant traces (e.g., CFA interpolation patterns) disappear during lossy
compression. This is most prominent in NOI3, which yields a large number of clear TP
detections at the 100 % TN rate. This is a very important feature of the algorithm, as it shows
that, while based on spatial information, the algorithm is equally effective at locating the
effects of different compression histories, even in cases where no other modification has taken
place.

Algorithm performance in the Realistic dataset of Fontani et al. (FON_REAL) follows
similar patterns. With the exception of BLK and ADQ3 which seem to perform significantly
better in the synthetic cases than in the realistic ones, most algorithms show comparable
performance to the one achieved in the synthetic set. Non-JPEG algorithms actually perform
slightly better on the realistic set, which is partly to be expected as the realistic photo editing
process is likely to have generated more pattern discrepancies than the automatic generation
process used for creating the synthetic set.

As was mentioned above, the CARV dataset was created to test an illuminant-based face
splicing detection algorithm, and we were interested in evaluating whether traces detectable by
the algorithms tested here had unintentionally remained –this created a relatively more realistic
scenario in comparison, e.g. with FON_REAL, where forgeries were also realistically created,
but explicitly in order to test some of the JPEG-based algorithms evaluated here.

Fig. 6 Application of the JPEG-based BLK algorithm on an image that has never undergone JPEG compression.
While we can be sure that there are no actual traces of JPEG blocking for the algorithm to detect, the algorithm
still correctly localizes the tampered region, due to different image content characteristics in the spliced region

4820 Multimed Tools Appl (2017) 76:4801–4834



Results were in fact interesting for both sets of algorithms. JPEG-based methods gave
more than 20 % recognition rates, with the exception of ELA which performs signifi-
cantly worse, achieving zero correct detections at 100 % TN and reaching about 10 %
True Positives at the 95 % TN mark. On the other hand, CFA1 and NOI1 achieve a True
Positive detection of about 50 % for 95 % True Negatives. However, looking more
closely, one important observation can be made on the behavior of the CFA1 algorithm.
Figure 7 shows one image from the CARV dataset that is successfully detected even at a
100 % True Negatives threshold. While the overall value distribution does distinguish
between the tampered area and the rest, especially if we already know the mask, the
algorithm produces a very spurious output. CFA1 produces probabilistic per-block values
in the range [0, 1]. It may be problematic that in this example the mean value within the
mask is around 0.6 while the mean outside the mask is around 0.5, and in many regions
it locally deviates even above 0.65. While, after the fact, visual inspection of the output
mask intuitively gives the sense of a correct detection, the extent to which this raw
output would be informative to a human analyst is an open question. This is important as
practically all correct detections achieved at very low False Positive rates in this dataset
feature similar ambiguities.

The final dataset used was the training dataset from the First Image Forensics Challenge
(CHAL). The observed results clearly demonstrate why, in the presence of so many image
splicing localization methods in literature, the most successful proposals during the Challenge
were in fact based on other types of information, such as clustering the PRNU fingerprints in
the dataset, or copy-move detection. Indeed, there are very few detections for most algorithms
at TN = 100 %, and as we shift the threshold, the TP detection rate increases very slowly
alongside the TN rate, suggesting that no clear, visible localizations are actually achieved.
NOI1, ADQ1, BLK and GHON yield roughly 10 % True Positives for TN = 100 %, with a
notable exception in NOI3, which, while still far from yielding desirable performance, clearly
outperforms all other algorithms.

Following these first-level performance evaluations, we turned our interest to the particu-
larities of the problem we are currently focused on: Web images that reach our hands have
commonly undergone at least one further JPEG resave, either by some intermediate user, or
automatically by the publishing platform. Thus, it would be important to evaluate the
robustness of existing algorithms against this assumption –we can generally assume that a
further resave will lead to performance degradation, but different algorithms should be
expected to exhibit different levels of robustness.

Fig. 7 An image from the CARV dataset and its output using CFA1. Darker hues correspond to lower values.
The mean probability of tampering within the mask is around 0.6 while the mean outside the mask is around 0.5.
However, there are many local deviations, especially with some high-value regions outside the mask
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Thus, all images from the datasets were resaved five times, at qualities 100, 95, 85, 75 and
65, and the algorithms were run again on the resulting images. For compactness, we do not
present the ROC curves for each algorithm, but instead estimate the threshold value for which
the algorithm returns a true negative rate of 95 %, and calculate the percentage of true positives
for the same threshold. Results are presented in Fig. 8.

Perhaps the most striking observation is the way the ELA and Ghost algorithms behave in
the Columbia Uncompressed dataset. In the uncompressed dataset, the algorithm expectedly
achieves practically no detections, which is reasonable as the images are not supposed to feature
any JPEG traces for these algorithms to detect. However, following recompression, and
especially at a high quality, algorithm performance sharply increases. These two algorithms
are supposed to identify different compression histories in different parts of the image, which
clearly does not apply in this case. What instead happens is that they end up operating as a noise
filtering method, and essentially localize different noise content in different parts of the image,
either as an overall phenomenon, or on specific image edges. Thus, in Fig. 9 left, we see that by
applying ELA on an image fromColumbia, the spliced region returns an overall higher residual,
which is obviously not due to different JPEG histories, but rather due to different image content.
On the right, we instead see that edges in the spliced region are a lot sharper than in the rest of
the image, and cause a very different value distribution within the mask than outside it.

The reason this phenomenon only appears in re-compressed images is due to the fact that,
when applying ELA on the uncompressed image, we subtract a JPEG-compressed version of
the image, which has been inevitably chroma-subsampled. The difference between the original
and the subtracted image is thus dominated by the effects of chroma subsampling. When
applying ELA or Ghost on images that have already been compressed at least once, even at
quality 100, chroma subsampling has already taken place, and the comparison focuses on the
local discrepancies caused by rounding and DCT quantization. This observation sheds light on
another aspect of this algorithm. While its aim is to identify local discrepancies in the image
compression history, it seems that, at least for high JPEG qualities, some percentage of the
output is due to different noise content, potentially caused by different capturing conditions
(e.g. device or settings). We can be sure of that, as all images in the Columbia dataset have
identical (i.e. zero) compressions in their history. Thus, noise content is the only aspect in
which each splice differs from the recipient image.

A second interesting observation we can make is that, in the three datasets where JPEG
based methods perform relatively well (FON_SYN, FON_REAL, CARV), while their perfor-
mance generally degrades as the recompression quality drops, it does not do so monotonically
–instead, we encounter small increases, especially at qualities 95 to 75. This especially applies
to the double quantization detectors, ADQ1, ADQ2 and NADQ. The reason this happens is
that these datasets contain JPEG images at various qualities. For most algorithms, a resave
even at the same quality will cause a degree of feature degradation due to rounding errors. For
the double quantization algorithms, a resave at the same quality will leave the detection result
almost unchanged –thus, resaving an image of quality 85 at quality 95 may prove more
detrimental for double quantization traces than actually resaving it at quality 85.

Apart from that, algorithm behavior is generally as expected, in the sense that
performance degrades as the JPEG compression quality drops. It should be noted
however, that the overall effect of resaving up to quality 95 does not seem to be as
damaging as one would expect, even for the sensitive CFA algorithms. Indeed, most
algorithms seem to retain their performance up to that level in all datasets. However, for
qualities 85 and below, performance drops significantly for all datasets.
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Fig. 8 Evaluation of the effects of JPEG resaves of various qualities on splicing detection. For ADQ2, ADQ3
and NADQ, no value is given for the original images in datasets COLUMB, CARV, and CHAL, as they do not
contain images in JPEG format
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Overall, Fig. 8 offers a comparative view of the current state-of-the-art: with respect to
realistic data, at a reasonable True Negative rate of 95 %, success rates range from about 50 %
to a maximum of 62 % for ADQ1 and ADQ2 in FON_REAL. While this performance is
modest in itself, success rates in the more complex CHAL dataset are at best around 20 %,
which, given the difference between the masks used for positive detection and negative
detection, may be rather close to random –the only possible exception being NOI3. The same
applies to images recompressed below a certain quality, generally at 75 % for JPEG methods
and 85 % for noise and CFA-based methods. As we observed in our past investigations [54],
social media platforms resave images at qualities as low as 70, which seem to render many
algorithms entirely ineffective. Furthermore, social media platforms also rescale large images,
a process that, in theory, will cause even more intense damage, as the resampling will most
likely destroy most tampering traces. In order to evaluate the extent of damage caused by
rescaling, we ran a focused evaluation on a random subset of each dataset consisting of 100
tampered and 100 untampered images each –with the exception of FON_REAL which
consisted of less than 100/100 images to begin with. This focused approach ought to give
us a good estimate of the damage caused by rescaling, without having to run the evaluations
over the entire data. The selected images were rescaled at 95 %, 75 % and 50 % their original
size, and resaved at JPEG quality 90.

Figure 10 shows the effects of rescaling. Again, the rate of True Positives is given for
TN = 95 %. It is clear that, in the vast majority of cases, regardless of the degree of scaling, the
resampling procedure destroys most tampering traces in the image.

3.3.2 Computational cost

Besides the detection performance, one other aspect of tampering localization algorithms that
we have to take into account is their computational cost. The 14 algorithms evaluated here
differ significantly in this aspect, and we chose an empirical approach to evaluating the cost of
each algorithm: 200 images were randomly chosen from all datasets, and the average time (in
seconds) taken by each algorithm for a single image were measured and are presented in
Table 3. It can be seen that the results differ significantly, from the near-zero cost of ELA to the
significant times taken by ADQ3, CFA3, NOI3. In the case of the ADQ3, this is because in our
implementation the image is segmented into a very large number of overlapping blocks, each
of which has to be processed independently. In the case of the CFA3, the calculation of the
local features is a demanding process. For both these algorithms, we could have opted for a
non-overlapping segmentation, but this would have significantly reduced the localization
accuracy due to the coarseness of the result. In all cases, it should be taken into account that
the results presented are implementation- and dataset-dependent. While all efforts have been

Fig. 9 Application of ELA on spliced images formed from uncompressed sources that have undergone one
(uniform) recompression at Quality 100. In the left case, the entire spliced region features a higher residue than
the rest, possibly due to different source noise. In the right, edges inside the spliced area leave much more
prominent residue than edges outside it
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Fig. 10 Evaluation of the effects of JPEG rescales for various scales on splicing detection. For ADQ2, ADQ3
and NADQ, no value is given for the original images in datasets COLUMB, CARV, and CHAL, as they don’t
contain images in JPEG format
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made to make our own implementations as efficient as possible, it is possible that faster
implementations are feasible. Furthermore, while we have tried to take a representative sample
of the available image size distribution, most images are small (around 1-2MP), while modern
capturing devices often produce images of 10MP or more. As a result, the numbers presented
in Table 3 should be considered merely comparative.

3.3.3 The Wild Web dataset

Our investigation so far focused on a one-step modification and demonstrates how even a
single resave at a medium-to-low quality can seriously hurt the performance of most algo-
rithms. However, we are fully aware that the situation in the real world is far more complex
than this. To this end, the final and most challenging set of evaluations of the state-of-the-art
concern the application on the Web-based task we are interested in, in the form of the Wild
Web dataset.

In subsection 3.2 we presented two different evaluation methodologies depending on
whether a dataset also contains untampered images, or consists entirely of tampered ones.
As the Wild Web dataset falls into the latter case, it is more appropriate to use the second
approach presented, i.e. evaluation based on the binarization of the output masks and their
pixel-wise comparison to the ground truth masks. Thus, following application of all algorithms
on the dataset images, the output maps were binarized using multiple threshold values
covering the entire range of possible map values. Each of the resulting binary maps was then
processed using different combinations of binary morphological operations (opening and
closing), thus generating multiple versions of the output binary map for each threshold value.
Finally, a measure of mask similarity was calculated for each image, threshold value and mask
version, counting the per-pixel retrieval performance:

E A;Mð Þ ¼
X

A
\

M
� �2

X
Að Þ �

X
Mð Þ

ð2Þ

In Eq. (2), A signifies the binary, processed algorithm output andM is the ground-truth map,
while Σ(x) indicates the area of a binary mask x. Of all the E values generated for each image,
we keep the highest for each algorithm, in order to reflect a human investigator’s ability to spot
regions that stand out in an output map due to their difference from the rest of the image, and
combine the map output with semantic cues to deduce where the splicing has taken place. This
measure was chosen in our previous work for its ability to filter out false detections.
Experimentally, we consider any output map achieving an E > 0.7 as an accurate detection.

Table 3 The average time taken by each of the 14 algorithms to process a single image

Algorithm ADQ1 ADQ2 ADQ3 NADQ ELA GHO DCT BLK CFA1 CFA2 CFA3 NOI1 NOI2 NOI3

Time/image
(seconds)

0.24 0.28 14.33 1.32 0.06 4.72 0.08 1.46 3.60 2.85 20.91 0.10 2.07 7.16
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As we described in Section 2.3, the Wild Web dataset is separated in a number of cases, for
which we have identified various sub-cases, each with possibly multiple binary masks. In a
realistic investigative scenario, any accurate detection in any of these should qualify as an
overall success for the case. We thus evaluate the 14 algorithms at the level of the 78 unique
cases, and seek instances, where an algorithm achieves at least one detection in a case.

Table 4 presents our results for the 78 classes. Besides the algorithm outputs, we added a
column labeled PENS, corresponding to a theoretical Perfect ENSemble classifier (PENS),
essentially summing up all successes from all algorithms and counting the number of classes
where at least one successful detection took place. In analyzing the results, the most striking
observation is the low performance of practically all algorithms on the dataset. Out of 78 cases,
only 18 seem to be possible to detect correctly. However, even this value is likely an overesti-
mation, due to the thresholding approach used: when thresholding output maps that do not
produce probabilistic values but instead follow an arbitrary range (an issue which is most evident
in noise-based methods), it is always possible to find some threshold for which the output map,
having its values affected by the shapes present in the image, produces a binary map that

Table 4 Algorithm performance on the Wild Web dataset. PENS corresponds to a theoretical perfect ensemble
classifier, here corresponding to the number of classes where at least one algorithm achieved detection.
Detections corresponds to the number of classes where at least one image was correctly localized using the
corresponding algorithm, while Unique corresponds to the number of cases detected exclusively by that
algorithm

Algorithm ADQ1 ADQ2 ADQ3 NADQ ELA GHO DCT h CFA1 CFA2 CFA3 NOI1 NOI2 NOI3 PENS

Detections 3 8 2 1 2 12 1 3 1 0 0 3 2 7 18

Unique 0 1 0 1 0 2 0 0 0 0 0 0 2 0 -

Fig. 11 Examples of failed detections from the Wild Web dataset. Top: the forged images. Middle: the ground
truth masks. Bottom: algorithm output. From left to right: NOI1 (first column), DCT (second column), ADQ1
(third column), CFA1 (fourth column)
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coincides with the spliced region. Essentially, we should be generally wary of claimed successes,
with the possible exception of ADQ1, ADQ2 and CFA1 whose probabilistic output makes them
relatively more reliable. As a result, we are faced with a serious challenge: in a real world
application, since the majority of algorithms do not produce a probabilistic output that we can
threshold at a reasonable value (say, 0.5 or 0.7), our only other option is comparing arbitrary
thresholds. However, in the absence of negative examples, we are unable to evaluate the extent in
which this results in overestimations, and is difficult to evaluate what a human investigator
would deduce by visually inspecting the output maps produced.

Another general observation is the relative superiority of JPEG-based algorithms over CFA-
and noise-based ones, with the exception of NOI3. Indeed, all the latter methods yield very few
successful detections. On the other hand, double quantization and Ghost methods seem to
dominate detections, while JPEG Blocking artifact detection seems to also contribute a number
of unique detections. This is reasonable, since we are dealing with images that have undergone
multiple modifications during their lifecycle, and the more sensitive traces such as CFA
interpolation patterns are more likely to have been destroyed.

Figure 11 shows a few of the many failed detections from the Wild Web dataset, while
Fig. 12 presents some cases of successful detections from the Wild Web dataset. Although the
overall performance of splicing detections in the real world leaves a lot to be desired, it
becomes clear from the results that, for some cases, there exist instances where splicing
localization can work, and will provide an invaluable tool in assisting investigators. The issue
remains open, however, on how to increase the robustness of such algorithms in real-world
situations, and make them reliable and widely applicable for content found on the Web.

Fig. 12 Examples of successful detections from the Wild Web dataset. From left to right: ADQ1 and GHO (first
column), ADQ2 (second), NO1 (third), and GHO (fourth column)
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4 Conclusions

In this paper, we conducted a comprehensive evaluation of the state-of-the-art in splicing
localization algorithms. Our work focused on the performance of verification systems for
journalists in usage settings where the image content is sourced from the Web, which means that
classes of algorithms that exploit explicit knowledge, such as knowledge of a device’s PRNU
patterns, were excluded. It also means that robustness to subsequent image alterations is a major
consideration when evaluating algorithm performance, a fact which we attempted to emulate and
take into account. Evaluations were also run on theWildWeb dataset, consisting of forged images
collected from the Web, which is the closest benchmark we have to the real-world task.

One clear observation is the discrepancy between real-world data and the experimental
datasets typically used in evaluations to date such as [25, 28]. With the exception of the dataset
used in the First IFS-TC Image Forensics Challenge, all other datasets were found to be
significantly easier than the Wild Web dataset, even for different algorithms than the ones they
were designed for. On the other hand, the Challenge dataset proved to be an extremely hard
benchmark, to the point of being tougher than some cases from the Wild Web dataset. This is
potentially due to the images having undergone rescaling, thus losing most traces of the
forgery, whereas the Wild Web dataset also contained some images that maintained their
original forgery traces.

Another important observation is the sensitivity of some JPEG-based algorithms to non-
JPEG features, such as noise. Algorithms based on blocking artifact aberrations or
recompression residue (i.e. Block [35], Ghost [22], and ELA [33]) were able to localize
forgeries even in cases where no JPEG compression had taken place –especially following
one resave of the image to high-quality JPEG. It is arguable whether this can be considered a
feature of such algorithms, or an undesirable or unreliable outcome. No such instance was
observed for Double Quantization algorithms, as they operate directly on the low-frequency
DCT coefficients and cannot locate high-frequency noise patterns.

In terms of performance, we can observe that, in many cases the differences between
algorithms detecting similar traces were generally small and difficult to generalize. ADQ1 [37]
performed slightly worse than ADQ2 [5], but is also computationally simpler, while the much
more demanding ADQ3 [1] showed much better performance for the artificial cases than the
realistic ones. CFA3 [21] was found in many cases to be relatively weaker and less robust than
CFA1 [23] and CFA2 [21], despite the former’s increased computational complexity. On the
other hand, NOI3 [16] not only showed in most cases superior performance to other noise-
based methods, but also proved to be an all-round detector, able to give good results on many
uncompressed images, JPEG benchmark images and actual real-world cases. One final note to
take into account is that, as we opted for a massive, automatic evaluation framework, it is
possible that the efficiency of NOI2 has been relatively underestimated. This is because NOI2
depends heavily on a number of parameters which, while we made our best effort to calibrate
optimally for all datasets, meant that the algorithm could have performed better if we had the
option of calibrating the parameters for each image separately.

Finally, one striking observation is the unsuitability of ELA for automatic localization.
Indeed, this partly expected outcome is due to the fact that ELA was designed for use by
appropriately trained investigators, who would use broader clues to localize forgeries. Still, its
algorithmic similarity to the Ghosts algorithm meant it merited an inclusion in the family of
approaches tested here, and in fact led to the interesting observation on its behavior as a noise
discrepancy detector for uncompressed images.
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Overall, and with the Web image forensics task in mind, one could conclude that the field is
far from mature for real-world use. In the vast majority of the real Wild Web cases, but also in
the realistic Challenge dataset, most algorithms failed to detect any trace, most likely because
the traces sought are too fragile to survive the typical image processing operations such images
undergo. If splicing localization algorithms are to meet real-world application in the future, the
field must take significant steps forward from its current stage, and multiple directions arise
from our evaluations. One such potentially fruitful direction was mentioned in Section 2.1, and
was also made apparent by our experiments on the Wild Web dataset: the combination of
image forensics algorithms with a reverse image search engine. While the possibility of an
algorithm properly localizing the forgery in any single image in the dataset was minuscule, we
can simultaneously see that a number of cases contain at least one image where at least one
localization algorithm gave an unambiguously correct detection. Thus, when presented with a
potential forgery, a forensics system could first run a reverse search and collect all possible
near-duplicates of the image, and run the forensics algorithms on all of them, in the hope that
one will return a clear detection. Furthermore, application of methods such as multiple
parenting phylogeny [19] could solve many additional cases, provided we tackle the burden
of near-duplicate retrieval on the Web.

A second research direction would be to base our forensic analysis on trainable spatial
features. Machine learning methods have been used in the past to successfully detect forgeries.
It is indicative that, in contrast to the extreme difficulty of localizing forgeries in the Image
Forensics Challenge datasets, near-perfect accuracy was achieved by more than one teams in
the detection phase of the Challenge using such methods [14, 51]. The degree in which these
methodologies can be converted to operate on a local scale and in a generalizable, non-dataset-
specific manner is under debate, but this direction could lead to algorithms that are resistant to
image modifications –even resampling. In the recent past, spatial features that have shown
good performance for detection were extended to operate on a local scale [13], while the
SpliceBuster (NOI3) [16] that we evaluated in this work is a further refinement of those
algorithms. Its relatively good performance in our evaluations suggests that these approaches
may be on the right path towards a method that will be widely applicable, and robust with
respect to the problems of real-world application.

In concluding our investigation, while the field has made significant progress so far,
we observe that most of the splicing localization algorithms available today are more
suited to relatively controlled environments than to Web and social media content. On the
other hand, our work shows that multiple cases of Web images already exist, where
existing algorithms can offer significant assistance to an investigator. Furthermore, previ-
ous work on classifier fusion has shown that it can further boost the overall reliability of
a system [24]. Overall, however, automatic evaluations have a severe limitation in that
they only try to emulate what human investigators would deduce from the algorithm
outputs. One approach which could provide enlightening results would be to directly
evaluate the state-of-the-art using human-computer interaction studies on actual users. In
our recent work [55] we have presented an open, web-based tool featuring a number of
state-of-the-art algorithms, intended to provide a live testbed for human investigators to
evaluate the usefulness of algorithms. We believe that such inter-disciplinary research may
also be necessary before we can reach the point where image forensics can be used by
professionals without special forensics training to verify Web sourced content. It is our
hope that the framework and results we presented in this investigation will encourage
further research to this end.
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