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A problem that frequently occurs when mining complex networks is selecting
algorithms with which to rank the relevance of nodes to metadata groups
characterized by a small number of examples. The best algorithms are often found
through experiments on labeled networks or unsupervised structural community
quality measures. However, new networks could exhibit characteristics different from
the labeled ones, whereas structural community quality measures favor dense
congregations of nodes but not metadata groups spanning a wide breadth of the
network. To avoid these shortcomings, in this work we propose using unsupervised
measures that assess node rank quality across multiple metadata groups through their
ability to reconstruct the local structures of network nodes; these are retrieved from the
network and not assumed. Three types of local structures are explored: linked nodes,
nodes up to two hops away and nodes forming triangles. We compare the resulting
measures alongside unsupervised structural community quality ones to the AUC and
NDCG of supervised evaluation in one synthetic and four real-world labelled networks.
Our experiments suggest that our proposed local structure measures are often more
accurate for unsupervised pairwise comparison of ranking algorithms, especially when
few example nodes are provided. Furthermore, the ability to reconstruct the extended
neighborhood, which we call HopAUC, manages to select a near-best among many
ranking algorithms in most networks.

Keywords: Complex networks, Ranking algorithms, Metadata group communities,
Evaluation measures

Introduction
The nodes of complex networks are often organized into (overlapping) communities that
mirror the systemic properties of their real-world counterparts. Traditionally, researchers
have theorized that this organization exhibits strong locality, i.e. that nodes with similar
attributes are concentrated into small areas, and tried to discover structural ground truth
communities whose nodes are tightly knit together (Fortunato and Hric 2016; Leskovec et
al. 2010; Xie et al. 2013; Papadopoulos et al. 2012). However, recent works have found that
node attribute values can also correlate to non-local structural features (Hric et al. 2016;
Lancichinetti et al. 2009; Jeub et al. 2015), such as hierarchical dependencies. Thus, it has
become clear that similarly-attributed nodes scattered throughout the network form a
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different type of communities (Hric et al. 2014; Hric et al. 2016; Peel et al. 2017), referred
to asmetadata groups on merit that node attributes can be considered their metadata.
To understand the notion of metadata groups, these can be the product category in

product co-purchasing networks, the preferences (e.g. genres of liked music) of social
media users, or the scientific fields of publications in academic collaboration networks.
Sometimes, metadata groups are organized into tightly knit structural communities.
However, this happens only if they are correlated with the attributes most influencing the
formation of network edges. Otherwise, they are not necessarily well-connected or clearly
separated from the rest of the network. In fact, depending on themodeled attribute, meta-
data groups can be overlapping or span wide areas of a network, for example when social
media users obtain multiple out of few available attributes.
The inclusion of network nodes in metadata groups is not always a binary property (De

Domenico et al. 2015; Perer and Shneiderman 2006). For example, it is often of inter-
est to rank the relatedness of social network users to an attribute, so as to avoid setting
thresholds for systemically vague group boundaries (Lancichinetti et al. 2009; Leskovec
et al. 2009). This is demonstrated in Fig. 1, where the nodes separating two communities
(which could be metadata groups) pertain to both sides. Ranking nodes based on their
relatedness to communities of interest is also a recurring task in the broader scope of
mining complex networks. In particular, node ranks enable a more granular understand-
ing of communities and can be used by recommender systems that combine them with
other characteristics. In this case, it is important for ranks to be of high quality across
the whole network. Furthermore, some of the most well-known algorithms that discover
clear-cut communities given a few known members rely on ranking mechanisms and
work by thresholding their outcome (Andersen et al. 2006; Whang et al. 2016; Wu et al.
2012). In some cases, the thresholded outcome can be used to train more sophisticated
community detection algorithms, such as semi-supervised graph neural networks (Li et
al. 2018; Kipf and Welling 2016), that need many training examples.
Node ranks for metadata groups are a form of recommendation and their quality can

be (e.g. in Hsu et al. (2017)) evaluated with well-known recommender system measures
(Shani and Gunawardana 2011; Wang et al. 2013; Isinkaye et al. 2015), such as AUC and
NDCG. Such measures provide a fine-grained assessment of rank quality that reflects
whether higher ranks pertain to higher relatedness to metadata groups. For example,
when evaluating node ranks for the network of Fig. 1, they would assess as high quality
ranks for the left group of Fig. 1 that identify nodesD,E as more related to it than F ,G and
nodes A,B,C as closer to its boundary. Other evaluation practices, such as thresholding

Fig. 1 Example of uncertain community boundaries, where two communities (circled) are equally
well-connected to two boundary nodes D, E
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Fig. 2 Demonstration of underlying communities (circled) towards which to calculate node relevance given
example nodes (highlighted). Removing one of the two example nodes heavily impacts the community we
would want a ranking algorithm help suggest

node ranks and assessing the resulting clear-cut communities, can be too coarse in that
they cannot necessarily tell whether ranks can help identify nodes related to metadata
groups or whether ranks provide a granular understanding near group boundaries.
Since calculating recommender system measures requires knowledge of actual node

labels, the efficacy of ranking algorithms is usually demonstrated on labeled networks,
such as those of the SNAP repository (StanfordNetwork Analysis Project (SNAP) datasets
2009)1 Even so, the best strategies and parameters for ranking nodes could depend on
the network at hand. Furthermore, it has been previously reported (Andersen et al. 2006;
Avrachenkov et al. 2018; Krasanakis et al. 2019b; Tan 2017) that ranking nodes in net-
works with large metadata groups (e.g. with many nodes and edges) requires different
structural assumptions than in networks with smaller groups. This raises concerns over
the ability of ranking algorithms tested on a few networks to work as well on different
ones.
With this consideration in mind, we argue that node ranking algorithms and their

parameters should be chosen anew for each network. However, large real-world net-
works are often sparsely labeled and all of the few example metadata group labels are
needed to help extrapolate node ranks; otherwise, if example nodes are too few or scat-
tered throughout the network, withholding some to calculate supervised measures could
severely impact the quality of node ranks, as demonstrated in Fig. 2. Methodological con-
cerns also arise when example nodes reside close to each other, for instance if they were
annotated by human experts that looked only at a portion of the network and labeled the
nodes found there. In this case, using the labeled nodes for evaluation may not capture
the efficacy of ranking algorithms on the whole network.
If we cannot use supervised procedures to evaluate node ranks, then how about unsu-

pervised ones? A first take on this would be to generalize traditional structural community
measures, such as density (Kowalik 2006), modularity (Newman 2006) and conductance
(Chalupa 2017), to support ranks. However, these measures are designed with structural
ground truth communities in mind and thus do not account for non-local patterns that
could characterize metadata groups (Hric et al. 2016; Lancichinetti et al. 2009; Jeub et al.
2015).
To create unsupervised procedures tailored to evaluating non-local metadata group

communities, in our recent work (Krasanakis et al. 2019a) we proposed that only high-
quality ranking algorithms can capture the relatedness of nodes to metadata groups that
drive the formation of network edges. In particular, we adopted the assumption that

1The communities available of the SNAP repository are not metadata groups but partitions of those groups into
subgroups of high conductance (Yang and Leskovec 2015).
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network edges are often formed between nodes of similar metadata preferences (Hric et
al. 2016), a phenomenon known as homophily in social networks (McPherson et al. 2001),
and proposed assessing the quality of node ranks for multiple metadata groups through
their ability to predict network edges. To do so, we used the similarity of rank distri-
butions across groups to suggest links between nodes and evaluated those suggestions
using AUC. We showed that this type of evaluation, which we called LinkAUC, enriches
the concept of rank density and accounts for inter-group relations and experimentally
asserted on a synthetic and two large real-world networks that it correlates to supervised
AUC and NDCG more strongly than other rank-based measures when comparing con-
ceptually different node ranking algorithms. A similar setting has also been independently
proposed by Berry et al. (2020) for the inverse task of evaluating homophily given a high
quality prediction of node attributes.
In this work, we extend several aspects of our previous research. First of all, we gener-

alize the concept of predicting network edges to predicting other types of local structures
that can be extracted from the network. This leads us to defining two new measures:
HopAUC that captures the extended neighborhood up to two hops away, and LinkCC that
compares the clustering coefficient between the original and reconstructed edges. We
also introduce sampling strategies that allow fast computation of local structure evalua-
tion in large networks. Thanks to this improved running time, we conduct more thorough
experiments on a wider range of ranking algorithms and networks. To produce more
ranking algorithms we experiment on a number of base algorithms, including those of
our previous research, but this time we also explore perturbations of their parameters;
finding the best combination of algorithms and parameters would be the target of opti-
mization in industrial applications. In this context, we note that ranks obtained by small
perturbations pertain to similar structural assumptions, which makes themmore difficult
to compare.
Our findings in this new series of experiments suggest that using local structures of

the network to assess node ranks is a promising alternative to rank-based adaptations
of structural community quality measures, where each network and number of example
nodes warrant usage of different measures for comparing any two ranking algorithms.
From a practical standpoint, we explore the more specific objective of using unsuper-
vised measures to guide the ranking algorithm selection process towards a near-optimal
algorithm. We find HopAUC to outperform other unsupervised node rank evaluation
strategies in that respect.

Unsupervised evaluation of multiple node ranks
In the previous sectionwe outlined the need for evaluating whether node ranks are indica-
tive of their relatedness to metadata groups by using unsupervised procedures that do
not necessarily favor densely-packed metadata group nodes. This way, we can select node
ranking algorithms when the given example nodes are too few to conduct supervised
experiments.

Approach motivation and overview

To develop unsupervised measures that account for non-local features, we argue that it
is better to avoid making heuristic assumptions about high-level structural properties
node ranks should exhibit, as these tend to favor local communities. Instead, ranks can
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Fig. 3 Example community of red highlighted nodes that exhibit triadic closure (i.e. form triangles). The
circled clique is tightly connected and hence would likely be favored by high level unsupervised structural
community quality measures

be evaluated indirectly through their ability to reconstruct structural characteristics of
known (as opposed to assumed) ground truth that exhibit similar quality to ranks. In
particular, we consider local structures whose ground truth is readily available in the
network.2

To understand why local structures could provide a more refined view of which nodes
are accurately identified as members of metadata group communities, we point to Fig. 3,
where the circled structural community comprises all 10 possible non-self-loop edges
between its nodes and hence would be favored by the density measure later described in
this section. However separating it from the network would remove the three triangles
crossing its boundary that potentially link to more community members. In this example,
high community density pertains to forming many triangles between its nodes. In the
context of node ranks, this would translate to forming many triangles between similarly-
ranked nodes. On the other hand, triangles do not reside only in the denser portions of
the network, but also help link the circled clique on the left and the clique on the upper
right. In a more general sense, structural community quality measures, such as density,
can be considered high-level aggregations of local structures, such as triangles, but the
inverse does not always hold true. This understanding suggests that structural community
quality measures favor areas where many local structures reside, which at a higher level
translates to community locality.
Contrary to the assumptions of structural community quality measures, the existence

of many local structures in small areas could be influenced by other factors that are inde-
pendent of the metadata group communities. For example, data gathering crawlers tend
to exhaust all links between the first few found nodes but add edges with lower probabil-
ity as more and more nodes are discovered. Bearing this problem in mind, we argue that
the bias of local structure distribution across the network could be removed if, instead of
aggregating the evaluation of local structures, we compared the structures predicted by
node ranks against the structures actually present in the network.

2Local structures are not the same as communities that exhibit locality; the former refer to small-scale relations between
nodes at most a few hops away, whereas the latter to congregations of many nodes.
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In other words, we propose evaluating node ranks through their ability to predict local
structures of the network. In our previous research we suggested using edges as the type
of local structure to predict, since their existence represents the most fundamental type
of structural information. However, here we also consider other types of local struc-
tures, such as the extended neighborhood, also known as “friends-of-friends”, and triadic
closure, which will be explained later on. These structures comprise specific edge combi-
nations and hence our proposed evaluation requires a node comparison mechanism that
transforms node ranks to link ranks of similar quality, i.e. that predict edges well only if
node ranks mimic metadata groups and conversely, which can in turn be used to evaluate
the examined type of local structures with similar quality. An overview of our proposed
evaluation scheme is demonstrated in detail in Fig. 4, where the evaluation step at the end
is responsible for assessing the quality of local structures arising from link ranks against
the existing network edges.
To formally describe this scheme, we begin by annotating as ri the vectors whose ele-

ments rij estimate the relevance of network nodes j to metadata groups i = 1, . . . , n.
Ranking algorithms often compute this relevance so that it resides in the interval [ 0, 1],
but it could assume any non-negative value as long as higher values indicate closer relat-
edness. For example, in the vector ri =[ .1, .4, .6, .3]T the third node should be the one
estimated as the most closely related to the metadata group i. Each vector ri holds the
relevance of all nodes to one metadata group, but the same node may obtain non-zero
relevance to multiple groups.
The intuition derived by latent factor models for link prediction (Hoff 2008; Menon and

Elkan 2011; Duan et al. 2017) and collaborative filtering (Koren and Bell 2015) helps us
recognize R = [r1 . . . rn] as a matrix factorization of the network, i.e. a representation
of network nodes in a lower dimensional space where a similarity measure can recon-
struct their structural relations. In detail, the rows Rj = [

r1j . . . rnj
]
of this representation

form distributions of ranks of network nodes j across all metadata groups. Then, follow-
ing the principles of link prediction works (Liben-Nowell and Kleinberg 2007; Lü and
Zhou 2011), if network construction is influenced predominantly by structure-based and
metadata-based characteristics and these are captured by the node ranking algorithm, this
factorization can help predict network edges by linking nodes with similar rank distribu-
tions. Conversely, if network edges are predicted with high quality by node ranks, then the
ranking algorithm has captured the structure-based and metadata-based characteristics
of the network.

Fig. 4 Proposed scheme for evaluating ranking algorithms. Lighter colored nodes have higher ranks and are
closely related to the respective metadata group. Lighter colored edges have lower link ranks are hence less
likely to exist
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To understand this claim, let us analyse the simple setting in which the similarities of
rank distributions are calculated between nodes j, k as their dot product 3 M̂jk = Rj · Rk .
The similarities of all node pairs can then be gathered in a link ranking matrix:

M̂ = RRT (1)

Let us also consider ranking algorithms that can be expressed as network filters f (M) =
∑∞

n=0 anMn (Ortega et al. 2018) of the (normalized) network’s adjacency matrixM, where
an are the weights placed on random walks of length n. When applied on query vectors
qi, whose elements qij are proportional to probabilities that nodes j belong to metadata
groups i, network filters produce ranks ri = f (M)qi of how much nodes pertain to the
metadata groups. In the case of example nodes, qij ∈ {0, 1}, but elements of the query
vectors can more broadly assume any non-negative value. Similarly to before, there may
exist overlapping non-zero values betweenmetadata group query vectors, for example if a
node is a knownmember of multiple groups. Two well-known examples of network filters
are personalized PageRank and Heat Kernels, which arise from exponentially degrading
weights and the Taylor expansion coefficients of an exponential function respectively (see
“Ranking algorithms” section for details).
Organizing multiple queries into a matrix Q =[ q1 . . . qn], we can express link ranks

obtained by network filters as:

R = f (M)Q ⇒ M̂ = f (M)QQTf T (M) (2)

This is a quadratic form of f (M) around the kernel QQT and, as such, propagates the
relations between example node pairs to the rest of link candidates. Therefore, if example
nodes adequately capture the structural role of metadata groups and link ranks closely
predict the network’s edges, then the algorithm with filter f (M) is a good rank propaga-
tion mechanism. At best, queries form an orthonormal basis of ranks QQT = I, which
occurs only if each node is a known member of only one metadata group, i.e. if the rank-
ing algorithm explores the relevance of network nodes to non-overlapping fully-known
metadata groups. In this best case, link ranks assume the form f (M)f T (M), which can
model the whole space of symmetric link prediction filters (Liben-Nowell and Kleinberg
2007; Lü and Zhou 2011; Martínez et al. 2017). Therefore, the quality of f (M) is directly
tied to the ability of the ability of the filter f (M)f T (M) to reconstruct network edges.
The above analysis motivates the development of new unsupervised strategies for

evaluating node ranks through their link predictive capabilities. In their most general
form, such strategies comprise an unsupervised evaluation measure of link rank quality
u(M̂,M) that is maximized as M̂ approachesM.
In this section we detail three strategies of this type, which we call LinkAUC, HopAUC

and LinkCC, that evaluate link ranks through the concepts of edge prediction, extended
neighborhood prediction and triadic closure. We also provide rank-based adaptations
of existing structural community quality measures, on merit that they mirror existing
practices widespread in the literature, which assume that metadata groups pertain to
structural communities. An overview of all measures outlined in this section is provided
in Table 1. In that table, the running time required to compute each measure is denoted
through the big-O notation as a function of the number of nodes N and edges E of the

3Cosine similarity would arise by a fixed-flow assumption of the ranking algorithm that performs row-wise
normalization of R before the dot product.
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Table 1 Proposed measures to assess node rank quality

Measure Objective Type Time Complexity

Density Kowalik (2006) Structural communities O(E)

Conductance Chalupa (2017) Structural communities O(E)

Modularity Newman (2006) Structural communities O(N2)

LinkAUC Krasanakis et al. (2019a) Local structures O(N2)

HopAUC [This work] Local structures O(N2)

LinkCC [This work] Local structures O(E2/N)

network. In “Scaling local structure evaluation to large networks” section we introduce
scalable sampling procedures that significantly reduce the running time of the slower local
structure measures in large networks.

Network groups

Before moving on, we point out that evaluating link ranks often requires exclusion of
certain links, such as withheld test edges, those absent due to systemic reasons (e.g. users
may not be allowed to befriend themselves in social networks) or those sampled out of the
evaluation to scale down the time needed to approximate the measures in large networks.
To model the absence of links in the same way throughout all measure definitions, we
introduce the idea of using a binary matrix M to remove non-comparable links of the
network’s adjacency matrixM.
To do this, the adjacency matrix can be projected to M � M, where � is the multipli-

cation of corresponding elements, also known as the Hadamard product. For example,
removing zero-diagonal networks corresponds toM = 1− I, where 1 are square matrices
of ones and I identity matrices with the same dimensions as M. This projection process
retains closure, i.e.M1�M+M2�M = (M1+M2)�M, and matrix addition properties,
such as having a negation −(M�M) = (−M)�M. Hence, the outcome of this operation
for the binary matrixM forms an algebraic group with regards to addition and we will call
it network group (not to be confused with the concept of metadata groups).
To use network groups in evaluation, both the network’s adjacency matrix and esti-

mated link ranks need be projected into the same network group designated for evalu-
ation. An example of the projection process is demonstrated in Fig. 5. As an additional
helpful tool to facilitate formal representation of this projection when element-by-
element comparisons are needed, we introduce a transformation vecM(M) that creates
a vector containing all elements of M for which M �= 0 in a predetermined order. For
example, we could consider that vec[0,1;1,0] ([ a, b; c, d] ) =[ b, c].

Adapting structural community quality measures to node ranks

We have already mentioned that a first take to enabling unsupervised evaluation of node
ranks would be adapting existing structural community quality measures to account for
them. To this end, one could replace quantities used to calculate community properties,
such as their number of internal edges, with their expected value across the fuzzy set
of subgraphs arising from ranks being proportional to the probabilities that nodes are
members of found communities.
In particular, if we consider the node rank vector ri, where rij follows our previous

notation and shows how much nodes j pertain to the community this vector refers to,
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Fig. 5 A network (left) projected for evaluation (right) to a network group (middle) that removes the
evaluation of the blue edges. Rows and columns of the adjacency matrices correspond to the respective
node numbers

we can define a vector sampling strategy Vi whose elements Vij are binary random vari-
ables that select whether nodes j have been selected as members of the community with
probabilities proportional to rij. Formally, these random variables can be expressed as:

Vij =
{
1 with probability

rij
‖ri‖1 , 0 otherwise

}

where ‖·‖1 is the L1 norm, calculated as the sum of vector elements, and v are binary vec-
tors of vertices sampled with probabilities r. Then, the fuzzy community I corresponding
to the rank vector ri can be defined as the value set of obtaining sampled vectors vi ∼ Vi
arbitrarily many times, i.e. I = {vi : vi ∼ Vi}. For the sake of brevity, we refrain from
explicitly redefining the random variable each time and annotate the fuzzy community as
vi ∼ ri.
Given this setup, any community-specific measure f (M, v) on a network adjacency

matrix M that was originally defined only for binary vectors v whose elements reflected
whether nodes belong to a community or not can be generalized to node ranks ri by
obtaining its expected value over the fuzzy set of communities:

f (M, ri) = Evi∼ri
[
f (M, vi)

]
(3)

Under this formulation, if node ranks were to assume binary values (e.g. because they
indicate community memberships), the fuzzy community would consist of only one ele-
ment that would correspond to its non-stochastic counterpart. Using this method to
account for ranks, we extend three of the most popular structural community quality
measures; density, conductance and modularity.

Density. The density of a network is defined as the portion of its edges compared to
the maximal number of possible ones (Kowalik 2006; Schaeffer 2007; Görke et al. 2015).
Then, the density of communities is defined as the density of the sub-network comprising
the edges between community nodes. Using the notion of volume vol(M) to annotate the
number of edges in a network with adjacencymatrixM, the density of its projection inside
the network group M becomes DM(M) = vol(M�M)

vol(M)
. We similarly define rank density by

substituting the volume with the expected volume vol(M, r) of the aforementioned fuzzy
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set of subgraphs arising from node ranks:

vol(M, r) = Ev∼r
[
vTMv

]
= rTMr

‖r‖21
⇒ DM(M, r) = vol(M � M, r)

vol(M, r)
= rT (M � M)r

rTMr

(4)

Conductance. Conductance compares the number of links leaving a community with the
number of its internal links (Chalupa 2017). Hence, it reflects the probability of a process
that randomly walks the network to move outside that community vs. the probability to
remain inside it (Andersen et al. 2008). Using the same probabilistic formulation as for
rank density, rank conductance can be defined as:

φM(M, r) = rT (M � M)(C − r)
rT (M � M)r

(5)

where C is a max-probability parameter. Since comparisons are preserved for any value of
this parameter, we arbitrarily selectC = 1. Lower conductance indicates better separation
between nodes found to pertain to metadata groups and the rest of the network.

Modularity. Modularity measures the number of edges within the same community
against the number of edges that would be obtained if nodes were linked at random to
maintain their degrees (Newman 2006). This comparison can be written as Q(M) =
1
2m

∑
v,u∈c

(
Mvu − DvvDuu

2m

)
whereDvv represents the degree of node v,m is the number of

network edges and c is the found community. To constraint this search in a network group
M, we can aggregate the link evaluation weight Avu = Mvu − DvvDuu

2m only across the links
(v,u) allowed in the network group. Then, replacing the found community with the same
fuzzy definition as before yields the following expectation of modularity for node ranks r:

QM(M, r) = 1
2m

rT (A � M)r (6)

where A = M −
[
DvvDuu
2m

]

v,u
.

Local structure evaluation of node ranks

The previous node rank measures rely on node ranks satisfying different structural char-
acteristics across a fuzzy understanding of communities. However, we have argued that
assessing node ranks through their ability to predict the local structures of networks
can also provide meaningful insights towards the quality of given ranks. In this work we
explore structures of the lowest levels; edges, extended neighborhoods and triangles. In
our previous work, we already provided a measure for assessing edge prediction, which
we called LinkAUC. For the sake of completeness, we present this measure again.We then
provide a similar link prediction scheme that tries to reconstruct the extended neighbor-
hood up to two hops away from each node, which we name HopAUC. Finally, we evaluate
triangles through a measure we call LinkCC that compares a stochastic adaptation of the
clustering coefficient with the clustering coefficient exhibited by the network.

LinkAUC. Evaluating link ranks M̂ against a network with adjacency matrixM within a
network groupM can be considered equivalent to comparing the corresponding potential
links of the vectors vecM(M̂) with vecM(M). A robust measure that compares operating
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characteristic trade-offs of ranking mechanisms at different decision thresholds is the
Area Under Curve (AUC) (Hanley and McNeil 1982). This measure has also been pre-
viously used to evaluate link ranks (Lü and Zhou 2011). When network edges are not
weighted, if TPR(θ) and FPR(θ) are the true positive and false positive rates of a decision
threshold θ on vecM(M̂) predicting vecM(M), the AUC of link ranks becomes:

LinkAUC =
∫ ∞

−∞
TPR(θ)FPR′(θ) dθ (7)

This evaluates whether actual linkage is assigned higher ranks across the network (Mason
and Graham 2002) without being affected by edge sparsity. These properties make
LinkAUC preferable to precision-based evaluation of link ranks, which assesses the
correctness of only a fixed number of top predictions (Lü and Zhou 2011).
An interesting property of LinkAUC is that it can be considered an enrichment of rank

density. For example, if we first examine the qualitative relation between link ranks and
rank density for a single metadata group R = r1. Annotating asm ≥ θ the vectors arising
from binary thresholding on the elements of m = vecM(M̂)

‖vecM(M̂)‖1 and selecting thresholds
θ [ k] that determine the top-k link ranks up to all K link candidates (θ [K]= 0):

m =
K−1∑

k=1
(m ≥ θ [ k] )(θ [ k]−θ [ k + 1] )

⇒ DM(M, r1) = vecT
M

(M)vecM(M̂)

‖vecM(M̂)‖1 =
∫ ∞

−∞
TP(θ)P′(θ)dθ

where TP and P denote the number of true positive and positive number of thresholded
link ranks respectively. At worst, every new positive link after a certain point would be a
false positive. Using the big-O notation this can be written as ∂FPR(θ)

∂P(θ)
∈ O(1) and hence:

LinkAUC ∈ O (DM(M, r1)) (8)

Then, if we consider the case where discovered ranks form non-overlapping metadata
groups, i.e. each node has non-zero rank only for one group. This may happen when query
propagation stops before it reaches other metadata groups. Annotating M̂i = rirTi , for
non-overlapping ranks ri · rj = 0 for i �= j, we rewrite (1) as M̂ = ∑

i M̂i ⇒ vecM(M̂) =
∑

i vecM(M̂i), similarly to before:

LinkAUC ∈ O
(

∑

i
DM(M, ri)vol(M, ri)‖ri‖21

)

This averages group densities and weighs them by vol(M, ri)‖ri‖21. Hence, when metadata
groups are non-overlapping, high LinkAUC indicates high rank density.
Finally, for overlapping metadata groups, LinkAUC involves inter-group links in its

evaluation. Since averaging density-based evaluations across groups ignores these links,
LinkAUC can be considered an enrichment of rank density in the sense that it bounds it
when metadata groups do not overlap but accounts for more information when they do.

HopAUC. LinkAUC evaluates whether the distribution of node ranks across multiple
metadata groups can reconstruct the immediate neighbors of nodes. However, it can
be argued that higher-order notions of node proximity, i.e. of nodes laying more than
one hop away from each other, also capture important structural aspects of the graph
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that merit reconstruction, for example in the context of extracting low-dimensional node
embeddings (Tang et al. 2015; Wang et al. 2016; Yang et al. 2017).
Second-order proximity in particular, which accounts for the neighbors of neighbors,

has been found to naturally arise in real-world networks (Jin et al. 2001; Dash 2018; Tang
et al. 2015). Therefore, if we consider node rank distributions across metadata groups to
be low dimensional representations of the nodes’ structural roles, these could potentially
be evaluated by this type of proximity. To this end, we propose enriching LinkAUC by
extending each node’s notion of neighborhood to the extended node neighborhood com-
prising nodes up to two hops away. For example, in Fig. 6 this enrichment would involve
checking whether nodes lying in the circled extended neighborhood of the red highlighted
ones exhibit greater similarity with the latter compared to nodes lying outside each other’s
neighborhood. In this particular graph, this means that more emphasis is placed on pre-
dicting the dissimilarity with nodes farther away than on the exact node order paths of up
to 2 edges follow.
To capture this type of local structure in a network groupM for a binary network adja-

cency matrixM, we use a thresholding operation ≥ to define a measure we call HopAUC
that calculates the AUC of vecM(M̂) compared to the ground truth extended neighbor
vecM(M + M2 ≥ 1).

LinkCC. The clustering coefficient (Wu et al. 2016; Opsahl and Panzarasa 2009) is an
unsupervised measure of how well-connected neighbors are in a network, a concept also
known as triadic closure. The clustering coefficient of unweighted networks is calculated
as the number of triangles (i.e. triples of nodes linked with each other) that are formed
between nodes over the maximal possible number of such triangles that would occur all
the neighbors of network node neighbors linked back to the starting nodes.
If we assume that link ranks M̂ model the probability of the respective edges existing,

we can use the weighted definition of the clustering coefficient as the expected number
of triangles compared to the expected number of triangles if edges adhered to triadic clo-
sure. This yields to expressing it as CC(M̂) = tr(M̂3)

tr(M̂1M̂)
, where tr(·) is the trace operator

retrieving the sum of a matrix’s diagonal elements and 1 denotes a square matrix of ones.
An intuitive understanding of this formula’s nominator is that M̂3 reflects the graph oper-
ation of moving three hops away with probability proportional to link ranks and summing

Fig. 6 The neighborhoods and extended neighborhoods of three red highlighted nodes in a toy network.
LinkAUC assesses node ranks by their ability to predict which nodes are in each other’s neighborhoods,
whereas HopAUC performs the same assessment for the extended neighborhoods
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the diagonal elements represents counting the expected number of those hops return-
ing to the starting node. Similarly, the denominator M̂1M̂ represents the operation of
hopping to a neighbor then to any node and then to a neighbor of the last node.
Unfortunately, most elements of the link rank matrix are non-zero (even if some are

very small). This explodes the number of computations needed to calculate its cluster-
ing coefficient to N6 multiplications, where N is the number of network nodes; even the
scalable approach of the next subsection would be hard-pressed to scale this computa-
tional cost to large networks. To avoid this issue, we propose a heuristic adaptation of the
clustering coefficient, that instead of counting the expected number of triangles for link
ranks, counts the expected number of triangles given the ground truth that two of their
edges linking each node to its neigbhors already exist:

aCC(M̂,M) = tr
(
MM̂M

)

tr (M1M)

Then, we go back to our goal of comparing link ranks with the network’s ground truth.
aCC does involve both link ranks and the network’s ground truth. However, it is not
necessarily maximized when link rank prediction is of high quality. For example, if link
ranks predict the network’s edges near-perfectly, aCC(M̂,M) could still assume small val-
ues if the clustering coefficient CC(M) = aCC(M,M) of the network is small. To tackle
this problem, we normalize the adapted definition of the clustering coefficient with the
clustering coefficient of the network:

LinkCC(M̂,M) = aCC(M̂,M)

aCC(M,M)
= tr

(
MM̂M

)

tr
(
M3) (9)

As an example to understand our proposed adaptation for evaluating the triadic clo-
sure of link ranks, in Fig. 7 we show this evaluation would be conducted in an example
network. From the viewpoint of node A the same number of triangles |{BD,BC,DE}| =
|{BC,DE,CE}| are predicted as in the original network, even if this number arises from
predicting edges other than the actual ones. From the viewpoint of E half of the triangles
are predicted |{AC}| = 0.5|{AC,DA}|. Repeating this process for the rest of the nodes,
these evaluations are finally aggregated across by summing the total number of found clo-
sures and dividing with the total number of existing closures (e.g. if we accounted only for
A and E this would be (3 + 1)/(3 + 2) = 0.8).

Scaling local structure evaluation to large networks

Table 1 showcases the computational time needed to calculate the explored measures on
a given network. Measures that requireO(E) time can be considered to scale well with the
size of the network, as the resources needed to rank nodes given E edges require at least

Fig. 7 Evaluating triadic closure prediction in a network (left) in which estimated link ranks M̂ (middle left)
assume near-zero values for the dashed links and near-one for the blue links. LinkCC over the neighborhood
of nodes A (middle right) and E (right) assumes that immediate neighbors are known and evaluates how
many triangles are formed between them compared to the number of triangles in the original network
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that much time to account for all dependencies between network nodes in connected net-
works. On the other hand, measures that require times O(N2) by comparing all potential
links with the existence of edges can be prohibitively expensive to run when the number
of network nodes N is large (e.g. millions). 4. To calculate these measures in a reasonable
time, we adopt sampling strategies that limit the number of links involved in evaluations.
These strategies can be expressed as network groups by identifying the (binary) matrixM
of sampled potential link pairs as the network group in which to calculate measures.
In our previous work, we used a uniform sampling strategy to select a number of test

network nodes and checked their links with all other network nodes. This reduced the
running time of checking all link pairs to O(NeN), where Ne is the number of exam-
ple nodes and N the number of network nodes. Unfortunately, selecting too few nodes
for evaluation distorts evaluation outcome by biasing towards the specific structural
characteristics of those nodes. For example, there exist concerns over the robustness of
identifying erroneous examples when evaluation nodes number up to the square root of
all network nodes (Keith Borland 1950).
Given that there exists a theoretical lower limit forNe, we propose reducing the running

time of slower measures by also limiting the number of potential links they are evaluated
on. To this end, we borrow the well-known negative sampling procedure (Goldberg and
Levy 2014; Levy and Goldberg 2014), which reduces the number of computations needed
to compute loss functions by uniformly sampling among the potential negative examples.
In our case, negative examples constitute missing network links.
To formally express the combination of the above sampling strategies for evaluating

link ranks against the network’s adjacency matrix M (in the case of HopAUC, this would
be the extended neighborhood adjacency matrix) we construct the binary queries qe of
sampled nodes, for which qe[ j]= 1 only if j is one of the Ne sampled for evaluation, and
qneg of similarly sampled nodes used to construct negative example links. Then, those
queries can be used to define the network groupM =

(
qeM

−→1 T + qeqTneg ≥ 1
)
, where −→1

is a vector of ones, i.e. −→1 [ j]= 1 for all nodes j. This network group comprises the edges
between nodes of qe and their network neighbors, as well as the potential links between
qe and qneg .
If we sample Nneg negative nodes, and given that we fully omit operations involving

potential links outside the network groups, the time needed to compute measures whose
original complexity wasO(N2) is then reduced toO(NeE/N+NeNneg). SinceNe ≤ N , this
time is of orderO(E+NeNneg). Hence, it can be considered to scale well in large networks
if we choose to scale the number of positive and negative samples so that NeNneg ∈ O(E).

Experiment setup
To assess the merit of evaluating node ranks using the local structure measures proposed
in this work, we conduct a series of experiments on labeled networks that compare unsu-
pervised and supervised measures across a wide range of potential ranks. Our goal is
to identify which of the unsupervised measures best mimic the evaluation of the super-
vised ones, so as to use them in new networks, where supervised evaluation may not be
applicable. We propose the following plan to tackle this type of meta-assessment:

4Real world networks tend to be extremely sparse, i.e. E  N2
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1. Create an experiment setting by selecting a network with known metadata groups
and splitting the latter into example and evaluation nodes. For example, in a
network with six nodes and two metadata groups that span the first four and last
four nodes respectively, we can organize the known metadata group memberships

into a query matrix QT =
[
1 1 1 1 0 0
0 0 1 1 1 1

]

, which can be randomly split into

training and evaluation query matrices respectively as QT
train =

[
1 0 0 0 0 0
0 0 1 0 0 0

]

and QT
evaluation =

[
0 1 1 1 0 0
0 0 0 1 1 1

]

where each row of the transposed query

matrices corresponds to a metadata group and each column to a node.
2. Run a variety of node ranking algorithms that start from the example nodes and

rank the rest of network nodes based on their relevance to the metadata group of
the examples. This yields a collection of node ranks for each algorithm that
comprises the ranks for all metadata groups of the experiment setting. For
example, the training queries QT

train of the previous step could produce node ranks

RT
A =

[
.4 .3 .2 .1 0 .1
0 0 0 .2 .2 .6

]

and RT
B =

[
.3 .3 .2 0 .1 0
.2 .1 .2 .3 .2 .1

]

when inserted to

algorithms A and B respectively, where each row of the transposed ranks
corresponds to node ranks for the respective metadata group.

3. Use all examined unsupervised and supervised measures to evaluate the quality of
each algorithm. This process yields a list of scores that summarize each algorithm’s
efficacy under the proposed measures. It must be noted that, at this point, we do
not aim to find highly-scored algorithms but rather to find the unsupervised
measures whose scores are indicative of node rank quality. For example, a measure
u could use RA and RB to provide assessments [u(A),u(B)]=[ 70%, 60%], whereas
another measure v could provide assessments [u(A),u(B)]=[ 80%, 90%].

4. Compare the unsupervised with the supervised measures to see which of the
unsupervised ones are most suitable to identifying the best algorithms. For
example, if the AUC scores for RA and RB averaged across metadata groups were
[AUC(A),AUC(B)]=[ 80%, 70%], u would be considered superior to v in selecting
the ranks of higher quality.

These steps are visually demonstrated in Fig. 8 for a toy selection of algorithms and
measures to compare. Our experiments are conducted on a wider scale, in which we set
up a total of 72 ranking algorithms, each comprising a different base algorithm, parame-
ters and strategy to augment its outcome by suggesting additional example nodes. These
algorithms are also run on 25 experiment settings, which result from combining five dif-
ferent labeled networks with using different fractions of their known metadata group
labels as examples. Hence, we compare measures over a total of 72 × 25 = 1800 group
rank collections. In this section we explain the details of our methodology.

Experiment settings

Experiments are run on five networks; a synthetic one constructed through a stochastic
block model (Holland et al. 1983), the large Amazon co-purchasing (Leskovec et al. 2007)
and the DBLP author co-authorship networks that are often used to evaluate metadata
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Fig. 8 Example of evaluating the ability of two unsupervised node rank quality measures (conductance and
HopAUC) to compare three ranking algorithms in the same way as supervised AUC does. As a final step, we
need to select the best of the unsupervised measures. Experiments in this work span 6 unsupervised
evaluation measures, 72 ranking algorithms, are conducted for 25 experiments settings -which involve
multiple metadata groups- and use both AUC and DCG for supervised comparison

group detection and the smaller CiteSeer (Sen et al. 2008) and PubMed (Namata et al.
2012) citation networks. All networks were selected onmerit of their nodes being labeled,
hence enabling supervised evaluation to serve as ground truth. They also comprise multi-
ple metadata groups needed for link-based measures. Finally, although some of them (i.e.
the citation networks) are directed, we convert them to undirected ones by considering
nodes to be linked if an edge exists in either direction between them.
The stochastic block model is a popular method for constructing networks of known

communities (Rohe et al. 2011; Abbe et al. 2016), where the probability of two nodes
being linked is determined by which communities they belong to. Our synthetic network
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uses the randomly generated 5× 5 block probability matrix of Fig. 9 with blocks of 2K-5K
nodes. The Amazon network comprises links between frequently co-purchased products
(Amazon product co-purchasing network metadata 2007) that form communities based
on their type (e.g. Book, CD, DVD, Video). We use the 2011 version of the DBLP dataset
(DBLP Citation network 2011), which comprises 1.6M papers from the DBLP database,
from which we extracted an author network based on co-authorship relations. In this
network, authors form overlapping metadata groups based on academic venues (journals,
conferences) they have published in. Then, CiteSeer (CiteSeer network 2003) is a small
network that contains 3K publications each assigned one out of six labels and roughly
5K links of which publication cited each other. Finally, the PubMed network (PubMed
network 2012) contains 20Kmedical publications labeled according to the type of diabetes
they examine and 44K references between them.
A summary of the above networks is presented in Table 2. To limit the running time of

our experiments, we use only the four and six largest metadata groups of the Amazon and
DBLP networks respectively. In the last column we measure homophily as the fraction
of edges linking nodes of the same metadata groups involved in experiments. It must be
noted that this measure is at best a lower bound of howmuch similar network nodes tend
to link to each other (a more detailed discussion on observed vs. actual homophily can be
found in “Dynamics of local structures” section).
Given these networks, experiment settings are constructed by selecting a percentage

among {0.1%, 1%, 10%, 25%, 50%} and gathering thatmany example nodes out of the nodes
belonging to eachmetadata group, retrieving at least one example for each group. In total,
combining the experimented networks and numbers of metadata groups yields 5 · 5 = 25
settings.

Fig. 9 The stochastic block model used to create the synthetic network. We synthesize edges between
communities using the probabilities found in the respective cells
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Table 2 Networks and the number of metada groups used in experiments

Network Nodes Edges Groups Homophily

Synthetic 15K 0.4M 5 52%

Amazon Leskovec et al. (2007) 0.5M 1.8M 4 61%

DBLP Tang et al. (2008) 1.0M 11.3M 6 10%

CiteSeer Sen et al. (2008) 4K 5K 6 74%

PubMed Namata et al. (2012) 20K 44K 3 80%

It could be argued that unsupervised evaluation is unnecessary for many (e.g. 50% of
total) known example nodes, since there are enough to split into training and test sets
without severely impacting the assessment quality. However, presenting the outcome of
unsupervised measures in these cases can help us gain additional insights over their
applicability and shortcomings.

Ranking algorithms

In this subsection we describe the ranking algorithms used to procure node ranks. Our
objective is not to extract the best algorithm but for node rank quality measures to be
computed on algorithms of varying efficacy, so as to find which unsupervised measures
best match supervised ones.
For the sake of producing algorithms of varying efficacy, we construct them by choosing

one of three base algorithms, the well-known personalized PageRank and Heat Kernels
and a heuristic combination of their assumptions, and combining those four different val-
ues of their parameters that affect the spread of ranks, two different kinds of adjacency
matrix normalization (symmetric or column-based) and three methodologies for enrich-
ing example nodes with more likely examples; no augmentation, inflation of the example
nodes and oversampling of the example nodes. These combinations yield the aforemen-
tioned total of 3 · 4 · 2 · 3 = 72 different ranking algorithms. We expect some of the
ranking algorithms relying on PageRank and Heat Kernels to produce ranks of high qual-
ity, whereas some of those that rely on the heuristic to be of lower quality. This way, we
produce ranks with a wide range of qualities.
Personalized PageRank. Personalized PageRank (Andersen et al. 2006; Lofgren et al.

2016) is graph filter that arises from a random walk with restart strategy. In detail, it
models a random process that starts from an example node and at each step either vis-
its a random neighbor or restarts from a new random example with probability 1 − a.
This scheme for finding the ranks of a metadata group is traditionally expressed through
the formula r = aMD−1r + (1 − a)q, where q is the query vector of example nodes
and D is the diagonal matrix of node degrees used to normalize the network’s adjacency
matrix M. In our experiments, we use the power method for computing personalized
PageRanks, which iterates this formula until the mean absolute change of ri becomes
less than 10−6. The parameter a, also called a dampening factor, determines how far
random walks extend from the example nodes. Given previous guidelines about this
parameter’s impact on ranking metadata group nodes, we experiment with the values
a ∈ {0.85, 0.90, 0.95, 0.99}.
An adjustment to personalized PageRank that is often considered is normalizing the

adjacency matrix in a symmetric manner, for example to capture the undirectional nature
of relations or to make ranks satisfy spectral graph analysis properties. To generalize the
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previous formula to any kind of adjacency matrix normalization, we can express it as:

r = aW
r

‖r‖1 + (1 − a)
q

‖q‖1 (10)

where vector normalization with the L1 norm is used to ensure convergence and W
is the obtained normalization of the adjacency matrix. When column-wise normaliza-
tion is used, i.e. W = MD−1, this converges to ranks proportional the previous ones.
Alternatively, we can plug in the symmetric normalization of the adjacency matrix W =
D−1/2MD−1/2.
Heat Kernels. The node ranks produced by personalized PageRank at each itera-

tion are proportional to the number of random walks through the graph that those
nodes. However, it has been argued that shorter walks may be more important than
longer ones. This observation has led to the introduction of Heat Kernels (Kloster and
Gleich 2014) as an exponential degradation filter of random walk importance r =
e−t ∑N

k=0
tk
k! (D

−1/2MD−1/2)kq, which places higher importance on shorter random walks
instead of uniformly spreading importance across all walks. This ranking strategy favors
local structures at the cost of not spreading ranks too much, according to which distance
is considered most important in the parameter t. In our experiments, we try the values
t ∈ {1, 3, 5, 7}.
Contrary to the original formulation of personalized PageRank, Heat Kernels assume

a symmetric propagation of node importance. However, they too can be generalized to
allow any kind of adjacency matrix normalization, yielding:

r = e−t
N∑

k=0

tk

k!
Wkq = e−t(I−W )q (11)

where W is the normalized adjacency matrix, computed similarly to before. We
assume this method to converge when additional summed terms became too small at∥
∥(D−1/2MD−1/2)kq

∥
∥ ≤ 10−6.

Heuristic PageRank Adaptation.We also provide a heuristic adaptation of personalized
PageRank that borrows assumptions of heat kernels to place emphasis on short random
walks: r ← 1

k a(W − I)r + (1 − a)q, where k is the current iteration of repeating this
formula, W is one of the two normalization of the adjacency matrix and the values of a
and convergence criterion are the same as for personalized PageRank.
Augmenting Example Nodes. Finally, there exist several strategies that aim to improve

the efficacy of ranking algorithms when the number of example nodes is small. Such
strategies work well on few example nodes, but could reduce rank quality by introducing
potentially erroneous information when examples suffice to produce high quality ranks.
In this work, besides running the above three ranking algorithms with all combinations of
described parameters and adjacency matrix normalizations, we also employ three strate-
gies to increase the number of examples. The first of these strategies aims to “inflate” the
set of example nodes by adding all their neighbors as examples too (Whang et al. 2016).
The idea behind this approach is that, if metadata groups form dense communities, then
the immediate neighbors of known members are also likely members. The second strat-
egy aims to “oversample” example nodes by running ranking algorithms once and adding
as examples the nodes that are more relevant to the metadata group than at least one
of the initial examples (Krasanakis et al. 2019b). The third strategy consists of running
ranking algorithms without a search for additional examples.
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Measures

The unsupervised measures computed in our experiments are those previously summa-
rized in Table 1. For the proposed local structure measures proposed in this work we
employ cosine similarity between potentially linked nodes by additionally L2-normalizing
the ranks of each node over metadata groups. To scale down the number of computa-
tions needed to calculate these measures, we also use the previously described sampling
procedure and evaluate them on 2K nodes and equally many negative link nodes for a
total of 4M potential links. For the types of measures that do not systemically account for
multiple communities, their outcome is averaged across all metadata groups.
The efficacy of unsupervised measures is compared with the AUC and Normalized Dis-

counted Cumulative gain (NDCG) of metadata groups. AUC has already been presented
in “Local structure evaluation of node ranks” section as a robust non-parametric measure
of rank quality. NDCG is also non-parametric statistic that serves a similar purpose. In
particular, it derives rank ordinalities ordi[ j] for nodes j (i.e. the highest ranked node is
assigned ord[ j]= 1 and the others increasingly larger integer values) for each metadata
group i, assigning to nodes j relevance scores of 1 if they belongs to it and 0 otherwise:

NDCGi =
∑

j:j∈evali 1/log2(ord[ j]+1)
∑|evali|

c=1 1/log2(c + 1)
(12)

where evali denotes the nodes of each metadata group whose labels are withheld for
evaluation purposes. NDCG is usually used to evaluate whether a fixed top-k nodes are
relevant to the metadata group. However, in this work we are interested in the relevant
nodes across the whole network and hence we make this measure span all nodes. This
makes it similar to AUC in that values closer to 1 indicate that metadata group mem-
bers are ranked as more relevant to the group compared to non-group members. Its main
difference is that more emphasis is placed on the top discoveries.
As with unsupervised measures that do not systemically account for multiple commu-

nities, AUC and NDCG are averaged across metadata groups to yield one value for each
ranking algorithm. They both lie in the range [ 0, 100%] where larger values indicate node
ranks of higher quality.

Measure comparison

A final aspect of our experiments is how to compare unsuprvised with supervised mea-
sures, so as to determine the best unsupervised ones. We recognize two qualitative axes
that are of practical use: a) yielding the same pairwise comparisons between all pairs of
algorithms in the same experiment setting and b) the more specific subtask of selecting
similar algorithms of similar quality to the best ones.
In more detail, we begin by exploring the ability of unsupervised measures to mimic

supervised ones in comparing the quality of node ranks. They can be considered to
succeed in this task if they yield similar ordering of ranking algorithms in the same exper-
iment settings. For example, if we consider pairs of algorithms A and B ran in the same
setting and the supervised measure s and unsupervised measure u, the latter can be
considered of high quality for comparing any pair of ranking algorithms if on the same
network s(A) < s(B) tends to also yield u(A) < u(B) and conversely, i.e. its assessments
are correlated to the supervised assessments. We explore whether the above property
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holds true for each experiment setting separately, as measure outcome could be influ-
enced by the number of network nodes or example nodes. To summarize the adherence
to this property, we calculate the Spearman correlation between the supervised and unsu-
pervised measures, which is a non-parametric metric that compares the ordinality of
measure outcomes without being affected by non-linearity.
On the other hand, from a practical standpoint, researchers are likely to deploy pro-

cedures similar to ours in listing a large number of promising ranking algorithms and
parameters and exploring which ones are best suited to ranking the relatedness of nodes
to their metadata groups. In those cases, it is less important to accurately compare all pairs
of algorithms and more important to find the algorithms (and hence node ranks) exhibit-
ing close to optimal values. For example, if two algorithms are known to be of low quality,
we do not necessarily need to know which of the two is better. Instead, what matters most
is for the selected algorithm to be similar to the best one. Recognizing this point leads
us to exploring how close unsupervised measures come to finding the algorithms found
best by supervised evaluation. To quantify this question, we consider the gaps between
the best supervised evaluation and the supervised evaluation for the algorithm suggested
as best by unsupervised measures.
Smaller gaps reflect the ability of unsupervised measures to recommend as best the

ranking algorithms whose ground truth performance, as obtained by supervised mea-
sures, is near-best. For example, let us consider an unsupervisedmeasure u that scores the
quality of five algorithms’ ranks as [ 10%, 40%, 60%, 80%, 50%] (e.g. 10% is how good the
first algorithm is assessed as by that measure), an unsupervised measure v that scores the
quality of the same algorithms’ ranks as [ 50%, 20%, 30%, 20%, 40%] and a supervised mea-
sure g that scores the quality of the same algorithms’ ranks as [ 50%, 20%, 80%, 70%, 40%].
In this example, u selects the fourth algorithm as the best one. The ground truth quality
of that algorithm is calculated by the supervised measure g as 70% and hence lags only
10% behind than the algorithm with the maximum ground truth quality obtained with
the same measure, which is 80%. Then, the gap of measure u is calculated as 10%. In this
process, it is important to note that, even if measure v performs more accurate pairwsise
comparisons between individual algorithms (e.g. it correctly identifies that the first is bet-
ter than the last one), it selects the first one as the best algorithm, which yields a higher
20% gap.

Results
Comparing any pair of ranking algorithms

We start by comparing the order of ranking algorithms arising from unsupervised mea-
sures vs. the ordering provided by AUC and NDCG. As we explain in “Measure compar
ison” section, when this comparison exhibits strong Spearman correlation, the exam-
ined unsupervised measures mimic well the supervised ones that serve as ground truth.
In Tables 3 and 4 we show the outcome of this comparison, where higher correlations
indicate stronger agreement.5

Contrary to the findings of our previous work, LinkAUC is rarely the best unsupervised
measure (bolded). Furthermore, unsupervised measures exhibit small correlation with
supervised ones in many experiment settings. To make matters worse, which algorithm

5The sign of conductance is inverted when measuring its correlation with supervised measures, since otherwise lower
conductance corresponds to higher perceived rank quality.
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Table 3 Spearman correlation between other measures and AUC

Structural Measures Local Structure Measures

Network Examples -Cond/nce Density Modularity LinkCC LinkAUC HopAUC NDCG

Amazon 0.1% 34% 11% -35% 54% 68% 79% 88%
Amazon 1% 16% -5% 51% 1% 96% 45% 89%
Amazon 10% -34% 28% 0% 28% 92% 38% 78%
Amazon 25% -30% 18% -49% 74% 84% 33% 92%
Amazon 50% -42% 17% 35% 71% 83% 58% 92%

DBLP 0.1% 7% -47% -50% 26% 52% 42% 91%
DBLP 1% 46% 8% -22% -85% 28% 85% 84%
DBLP 10% 2% -23% 15% -55% -36% 88% 32%
DBLP 25% 4% -28% 5% -35% -23% 79% 16%
DBLP 50% -5% -25% 12% -5% -12% 43% 68%

BlockModel 0.1% 12% 42% 21% -6% 50% 49% 80%
BlockModel 1% -8% 29% 23% -35% 8% 6% 95%
BlockModel 10% -18% 38% 37% -40% 40% 47% 99%
BlockModel 25% -63% 70% 35% -77% -23% 3% 100%
BlockModel 50% -70% 72% 73% -79% -22% 0% -25%

CiteSeer 0.1% 56% 40% 45% 63% 39% 63% 82%
CiteSeer 1% 19% 41% 47% 75% 63% 75% 63%
CiteSeer 10% 70% 55% 69% 52% 13% 14% 93%
CiteSeer 25% 42% 34% 48% 25% 9% 18% 82%
CiteSeer 50% 14% -7% 22% 41% 35% 47% 78%

PubMed 0.1% 48% -8% 44% 70% -10% -33% 93%
PubMed 1% 47% 27% 46% 37% -52% -53% 78%
PubMed 10% 69% -22% 78% 38% -9% -14% 81%
PubMed 25% 54% -22% 77% 18% 21% 20% 84%
PubMed 50% 13% 7% 25% -5% 18% 17% 80%

The value unsupervised measure closest to 100% in each setting (bolded) is the one best mimicking AUC for comparing pairs of
ranking algorithms

is the best for each setting doesn’t appear to follow a consistent pattern but varies both
between networks and number of example nodes.
On the other hand, the strongest correlations between local structure and supervised

measures tend to be exhibited when only a few (e.g 0.1% or 1% of metadata group size)
example nodes are used to calculate ranks. In these cases the best measure is always a local
structure one, usually either LinkAUC or HopAUC. Furthermore, these two measures
frequently exhibit strong correlation to the supervised evaluation, which far outperforms
other measures. Therefore, this type of node rank quality evaluation should be preferred
compared to structural measures when the lack of examples leaves no other alternative
than unsupervised evaluation of node rank quality.
To understand why unsupervised measures often fail to follow supervised ones, we

argue that many ranking algorithms and parameters of those used in our experiments
model similar implicit structural assumptions. For example, running the personalized
PageRank algorithm with the same adjacency matrix normalization and dampening fac-
tors 0.85 and 0.9 diffuses the example nodes’ metadata group properties a similar number
of hops away from the example nodes. As a result, many node ranking algorithms calcu-
late ranks of similar quality. Then, pairwise comparisons of similar rank qualities can be
easily perturbed by systemic noise (e.g. incomplete real-world information) or the random
nature of negative sampling6, which is nevertheless necessary for scalable evaluation. We

6All experiments were run with the same random seeds. However, selecting a different number of example nodes also
influences the ranks of negative examples so that the outcome of negative sampling remains unpredictable between
different experiment settings on the same network.
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Table 4 Spearman correlation between other measures and NDCG

Structural Measures Local Structure Measures

Network Examples -Cond/nce Density Modularity LinkCC LinkAUC HopAUC AUC

Amazon 0.1% 8% 7% -1% 78% 34% 91% 88%
Amazon 1% 29% 9% 30% 28% 80% 67% 89%
Amazon 10% -42% 22% -2% 59% 67% -3% 78%
Amazon 25% -23% 12% -43% 77% 64% 9% 92%
Amazon 50% -41% 12% 36% 55% 75% 54% 92%

DBLP 0.1% -12% -48% -27% 25% 64% 55% 91%
DBLP 1% 14% 11% -12% 9% 39% 66% 84%
DBLP 10% -5% 20% -57% -10% 15% 33% 32%
DBLP 25% 2% 36% 31% -11% -11% -6% 16%
DBLP 50% -28% -19% 17% -29% 39% 49% 68%

BlockModel 0.1% 20% 11% 31% -9% 20% 23% 80%
BlockModel 1% -8% 25% 24% -27% 26% 22% 95%
BlockModel 10% -16% 35% 38% -40% 39% 46% 99%
BlockModel 25% -64% 72% -78% -77% -22% 4% 100%
BlockModel 50% 72% -52% 20% 62% 75% 75% -25%

CiteSeer 0.1% 51% 16% 40% 62% 73% 89% 82%
CiteSeer 1% 10% 31% 35% 62% 67% 56% 63%
CiteSeer 10% 64% 52% 64% 54% 27% 26% 93%
CiteSeer 25% 14% 54% 31% 50% -23% -3% 82%
CiteSeer 50% -20% 27% -9% 79% 10% 44% 78%

PubMed 0.1% 57% 12% 26% 60% 5% -7% 93%
PubMed 1% 53% 16% 53% 36% -11% -8% 78%
PubMed 10% 60% -39% 78% 33% 31% 26% 81%
PubMed 25% 24% 3% 52% -6% 32% 30% 84%
PubMed 50% -15% 32% -17% -48% -11% -11% 80%

The value unsupervised measure closest to 100% in each setting (bolded) is the one best mimicking NDCG for comparing pairs of
ranking algorithms

theorize that these perturbations of node rank quality assessments affect local structure
measures for few example nodes less, because the latter are likely to be well-separated,
which makes it easier to identify erroneous diffusion of ranks that occur when random
walks starting from one metadata group venture too closely to another.
As a surface-level investigation of these claims, we also present the correlation between

supervised measures. These tend to be more strongly correlated, but still differ some-
times. In part, this phenomenon could be blamed on NDCG placing more emphasis on
the top node discoveries. However, it also indicates that there could exist multiple views
of high rank quality. Hence, even weaker correlations with unsupervised measures can
be considered an encouraging -albeit not conclusive- indication of the latter’s ability to
assess node rank quality.
To continue this investigation at a more fundamental level, we also delve into a detailed

view of measure comparisons instead of summarizing their correlation. To this end, in
Fig. 10 we present scatterplots between AUC and HopAUC in two experiment settings,
where they exhibit 49% and 63% Spearman correlation respectively. At a first glance,
the correlation between these two measures is as weak as implied by the Spearman
correlation. However, there is a clear trend for their near-top ranking algorithm sug-
gestions to coincide, i.e. there exist algorithms for which both measures exhibit their
near-largest value. These findings corroborate our claim that several ranking algorithms
exhibit similar node rank quality.
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Fig. 10 Scatterplots and least square lines between AUC and HopAUC for the BlockModel with 0.1%
example nodes (left) and CiteSeer with 0.1% example nodes (right). Each point corresponds to a different
ranking algorithm

Unsupervised selection of near-best ranking algorithms

In the previous subsection we saw that even the best unsupervised measures do not
always exhibit strong correlation with supervised evaluation, since they encounter
randomness-related difficulties in resolving comparisons between ranking algorithms of
similar quality. However, this does not preclude that some of them can help select rank-
ing algorithms of near-top quality, if closeness is not determined by the order arising from
pairwise algorithm comparisons but rather by how close calculated node ranks are to the
best ones out of all compared ranking algorithms.
We assess this property by continuing with the methodology described in “Measure

comparison” section, where we proposed calculating the gap of the best supervised
evaluation between with the one arising from the algorithms selected with the help of
unsupervised measures. The gaps of AUC and NDCG in all experiment settings are pre-
sented in Tables 5 and 6 respectively. Gaps closer to zero indicate that the unsupervised
measures help select algorithms that produce node ranks of similar quality to the best
algorithm.
To understand which gaps indicate near-optimal node quality, we also provide the ones

occurring between supervised measures, i.e. the AUC gap between its highest value and
the value of the algorithm with the highest NDCG, as well as the NDCG gap between
its highest value and the value of the algorithm with the highest AUC. We consider both
types of measures to capture different aspects of node rank quality and hence their max-
imal difference indicates which value gaps should be considered of high quality. This
exploration indicates that gaps up to 5% for AUC and 9% for NDCG can be considered to
indicate high node rank quality. We heuristically set thresholds at 1.5 times those values
to recognize algorithms that exhibit near-top rank quality.
Overall, HopAUC is the measure that finds the most high quality algorithms (20 for

AUC and NDCG) and the most near-top node ranking algorithms (23 for AUC and 20
for NDCG). Modularity and LinkAUC follow as the second-best for AUC and NDCG
respectively, even if in some experiments they do not exhibit strong correlation with the
supervisedmeasures for pairwise algorithm comparisons. Although conductance, density
and LinkCC also exhibit small evaluation gaps at times, they do so with a much lower
frequency.
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Table 5 Gap between the best AUC value and the AUC of the algorithm corresponding to the best
measure value

Structural Measures Local Structure Measures

Network Examples Cond/nce Density Modularity LinkCC LinkAUC HopAUC NDCG

Amazon 0.1% 24% 23% 23% 0% 0% 0% 0%
Amazon 1% 20% 6% 12% 6% 0% 0% 3%
Amazon 10% 9% 4% 6% 7% 1% 2% 0%
Amazon 25% 5% 4% 27% 0% 2% 2% 1%
Amazon 50% 17% 3% 3% 3% 2% 2% 1%

DBLP 0.1% 11% 10% 6% 9% 6% 6% 0%
DBLP 1% 4% 11% 1% 15% 0% 0% 0%
DBLP 10% 1% 5% 1% 2% 1% 1% 5%
DBLP 25% 0% 2% 0% 2% 0% 1% 2%
DBLP 50% 1% 2% 1% 1% 1% 1% 0%

BlockModel 0.1% 33% 12% 33% 33% 5% 5% 0%
BlockModel 1% 29% 7% 0% 36% 6% 6% 0%
BlockModel 10% 33% 8% 4% 40% 13% 5% 0%
BlockModel 25% 35% 5% 9% 43% 10% 10% 0%
BlockModel 50% 36% 4% 1% 42% 9% 1% 1%

CiteSeer 0.1% 4% 1% 0% 1% 1% 1% 1%
CiteSeer 1% 1% 0% 1% 4% 3% 4% 2%
CiteSeer 10% 2% 2% 2% 1% 2% 2% 0%
CiteSeer 25% 3% 2% 3% 3% 3% 3% 1%
CiteSeer 50% 3% 4% 3% 3% 3% 3% 1%

PubMed 0.1% 9% 13% 2% 22% 19% 18% 0%
PubMed 1% 7% 9% 7% 21% 12% 7% 1%
PubMed 10% 4% 6% 4% 4% 9% 9% 0%
PubMed 25% 4% 8% 4% 27% 4% 4% 0%
PubMed 50% 5% 11% 5% 27% 4% 3% 0%

Number of gaps ≤ 5% 11 13 18 12 17 20 25
Number of gaps ≤ 7% 12 16 22 14 19 23 25

Gaps closer to zero mean that the AUC found when selecting the algorithm optimizing the respective measure is close to the
max AUC between all algorithms. The smallest gap among unsupervised measures in each experiment setting is bolded

We finally assert that the correctness of pairwise comparisons is not indicative of a
measure’s ability to select the best algorithm. For example, in the BlockModel exper-
iments density often exhibits the strongest correlation with supervised measures for
pairwise algorithm comparison, but is outperformed in all but one experiment settings by
HopAUC for finding small gaps.

Discussion
Which measure to use

In our experiments, HopAUC is the measure that leads to selecting high-quality node
ranking algorithms the most times. This result holds true across all three network
domains involved in our experiments; in the Amazon network, whose edges are formed
due to similar behavior of their endpoints (i.e. being co-purchased), in the citation net-
works, whose edges are formed incrementally as more papers are introduced in the
literature and cite previous ones, and in the synthetic network whose edges are formed
through a stochastic block model. In most cases, LinkAUC performs similarly well and
can hence serve as a substitute that is faster to calculate.
On the other hand, both of these measures sometimes yield an erroneous selection

of the best-performing ranking algorithm in the BlockModel and PubMed networks.



Krasanakis et al. Applied Network Science            (2020) 5:48 Page 26 of 32

Table 6 Gap between the best NDCG value and the NDCG of the algorithm corresponding to the
best measure value

Structural Measures Local Structure Measures

Network Examples Cond/nce Density Modularity LinkCC LinkAUC HopAUC AUC

Amazon 0.1% 24% 23% 13% 0% 0% 0% 0%
Amazon 1% 5% 4% 5% 4% 1% 1% 1%
Amazon 10% 9% 4% 7% 2% 2% 6% 0%
Amazon 25% 10% 14% 19% 2% 6% 6% 1%
Amazon 50% 35% 13% 17% 12% 4% 4% 2%

DBLP 0.1% 8% 5% 3% 7% 3% 4% 0%
DBLP 1% 4% 5% 3% 7% 15% 0% 0%
DBLP 10% 3% 0% 9% 5% 0% 0% 4%
DBLP 25% 7% 3% 9% 6% 10% 15% 9%
DBLP 50% 9% 20% 11% 5% 7% 7% 21%

BlockModel 0.1% 32% 18% 32% 8% 8% 8% 0%
BlockModel 1% 32% 14% 0% 39% 9% 10% 0%
BlockModel 10% 48% 20% 11% 51% 31% 16% 0%
BlockModel 25% 45% 17% 24% 27% 24% 24% 0%
BlockModel 50% 27% 38% 0% 28% 14% 2% 12%

CiteSeer 0.1% 10% 3% 3% 1% 2% 2% 3%
CiteSeer 1% 3% 4% 3% 4% 2% 4% 3%
CiteSeer 10% 10% 5% 10% 2% 6% 6% 6%
CiteSeer 25% 12% 5% 12% 3% 8% 8% 6%
CiteSeer 50% 7% 10% 7% 2% 3% 3% 1%

PubMed 0.1% 6% 13% 2% 12% 19% 18% 0%
PubMed 1% 6% 9% 7% 6% 12% 7% 1%
PubMed 10% 8% 6% 4% 19% 9% 9% 0%
PubMed 25% 12% 8% 4% 29% 4% 4% 0%
PubMed 50% 7% 11% 5% 22% 4% 3% 0%

Number of gaps ≤ 9% 13 13 17 16 19 20 23
Number of gaps ≤ 13% 18 17 22 18 21 20 24

Gaps closer to zero mean that the NDCG found when selecting the algorithm optimizing the respective measure is close to the
max NDCG between all algorithms. The smallest gap among unsupervised measures in each experiment setting is bolded

This can be attributed to edges of these networks forming for reasons other than meta-
data group memberships. For example, in the BlockModel network, the nodes of some
metadata group pairs (i.e. the group pairs (1, 2) and (2, 5) in Fig. 9) are more closely
connected to each other than internally. This creates an alternate view in which those
pairs of metadada groups can be merged into larger ones but which cannot be explicitly
discouraged by the -otherwise random- generation of edges.
Overall, we propose that researchers should start with an empirical investigation of the

network’s domain that explores whether the metadata groups characterized by example
nodes influence or are influenced by the formation of network edges. If this dynamic
property is known to be true, and the few example nodes aren’t enough for a super-
vised evaluation, we encourage usage of either LinkAUC or HopAUC for selecting the
best ranking algorithms and parameters across potential candidates. In fact, these two
measures are at least as strong as the network’s homophily (see “Dynamics of local struc
tures” section) and are otherwise not affected by the prevalence of non-local structures
fv that often occur in networks of larger diameters. HopAUC can find near-best rank-
ing algorithms when more example nodes are provided too. Nonetheless, the results of
pairwise algorithm comparison suggest that local structure measures are most suited to
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differentiating between high-quality and low-quality ranking algorithms for few example
nodes for each metadata group.
When the network’s domain exhibits specific dynamics that drive the formation of

edges or organization of nodes into communities, our experiments suggest that using
a measure that explicitly captures those could achieve equally good or better results to
HopAUC or LinkAUC. For example, modularity does not characterize well the quality of
node ranks in the Amazon network, but can be considered the best measure if we focus
only on citation networks (including PubMed), potentially due to implicitly modeling
that new members of this domain’s metadata groups favor links with previous members
rather than with random nodes. However, blind use of another measure besides LinkAUC
or HopAUC has a higher chance of misidentifying low-quality ranking algorithms as
high-quality ones, as can be seen by the frequent inability of conductance and density to
identify the best algorithms.

Using unsupervised measures of node rank quality

In practice, our investigation suggests that the best measures of node rank quality for
each experiment setting (e.g. HopAUC for most settings) should be used to select the
best parameters and algorithms among a predefined set of many candidates. For exam-
ple, if one were to investigate ranking algorithms that would be used to recommend
nodes either to provide more example nodes (Li et al. 2018; Kipf and Welling 2016) or
to provide more metadata group members (Klicpera et al. 2018), selecting the algorithms
and hyper-parameters that best suit the available relational data could be done with an
unsupervised measure. It must be stressed that, due to the uncertain efficacy of unsu-
pervised measures in pairwise ranking algorithm comparisons, many algorithms need be
compared to identify the best ones. For example, if a set of ranking algorithms yielded
HopAUC of [ 20%, 38%, 45%, 60%, 70%], the last two ones are likely to yield node ranks of
high quality. However, a comparison only involving the third and the fifth algorithm could
be misleading, as they don’t differ that much.
This setup effectively uses the selected unsupervisedmeasure to guide the more sophis-

ticated learning algorithms. Then, the question arises of whether we could directly set the
unsupervised measure of choice as the optimization objective of such algorithms, sim-
ilarly to approaches that represent nodes in low-dimensional spaces (Menon and Elkan
2011; Tang et al. 2015; Wang et al. 2016; Yang et al. 2017) or as already done by works
that greedily expand local structural communities by optimizing unsupervised measures
- usually modularity (Kim and Tan 2010; Tabrizi et al. 2013). Besides the computational
cost needed in finding gradients over measures such as HopAUC, which involve sorting
operations, our experiments show that neither structural nor local structure measures
can produce a high quality of pairwise comparison of node ranks. Hence, unsupervised
measures do not exhibit a convexity that would allow greedy or stochastic tuning towards
an optimal value; such processes can even cause to steer away from a high-quality solu-
tion. For example, this would happen if we tried to directly optimize HopAUC in PubMed
with 1% examples, where it negatively correlates with supervised measures for pairwise
comparisons. On the other hand, if we consider a large space of potential solutions in this
example, we obtain a ranking algorithm of ≤ 7% gap. In part, the lack of convexity can be
attributed to constraining the space of node representations to very few dimensions (i.e.
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equal to the number of metadata groups) whose explicit understanding cannot be altered
to better match the latent attributes driving node behavior.
Given these concerns, our suggested usage of unsupervisedmeasures of node rank qual-

ity is not as objectives of ranking algorithms but as coarse tuning mechanisms that help
select which algorithms and hyper-parameters best match the structure of each network
for the ranked metadata groups. For example, despite the success of the aforementioned
greedy community expansion in optimizing unsupervised measures, similar processes
should not be blindly applied for ranking the relevance of network nodes to metadata
groups by greedily optimizing the unsupervised measures examined in this work. Instead,
a number of potential solutions need be procured through other means and the best one
selected with the measure that matches the network’s dynamics driving the formation of
edges.

Dynamics of local structures

We previously proposed that the best unsupervised measures for selecting high-
quality node ranking algorithms are the ones that best match network dynamics, if
these are known. Structural measures of community quality, i.e. conductance, den-
sity and modularity, directly capture their favored type of communities and are
hence easy to identify. On the other hand, the evaluation of local structures relies
on correctly assessing node rank quality based on underlying dynamics, which we
outline here.
To begin with, the theoretical probing of “Approach motivation and overview” section

reveals that LinkAUC simultaneously assesses whether the similarity of node rank distri-
butions can reconstruct the network’s edges given that nodes of similar attributes tend
to link to each other. This statement’s precondition translates to the notion of homophily
(McPherson et al. 2001; Berry et al. 2020), which assumes that linked nodes influence
each other towards obtaining similar attributes. Then, the assessment of LinkAUC can be
of high quality only for networks of high homophily. An important distinction to make
is that this does not necessarily pertain to any heuristic measure of observed homophily
(Berry et al. 2020), such as the one reported in Table 2. In particular, the latter estimates
only a lower bound of actual homophily that does not account for either combinations
of metadata attributes not captured by linking only nodes of the same groups (e.g. if
both political and religious views were need to coincide for social media users to link to
each other) or missing metadata groups, as happens for our experiments on the DBLP
network. In practical applications of our work, where the absence of node labels may
prevent any type of homophily-related computation in the first place, it is preferable to
identify homophilous networks by understanding whether the metadata groups of the
example nodes can influence or be influenced by the formation of network edges through
real-world processes.
Secondly, HopAUC extends the evaluation of LinkAUC to also account for nodes that

reside up to two hops away in the network’s structure. In addition to homophily, this
definition also entertains the notion of nodes matching the attributes of their neighbors-
of-neighbors, a property often referred to as structural equivalence between nodes of
similar attributes (Friedkin 1984; Burt 1987; Kuwashima 2016; Shi et al. 2019). The most
widely accepted interpretation of structural equivalence is that nodes of similar attributes
are attracted towards neighbors of similar attributes, even if they are not linked. This
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differs from homophily in that the immediate neighbors are not necessarily similarly-
attributed. A local interpretation of this phenomenon would be that nodes of similar
attributes often end up linking to the same neighbors (Simões et al. 2019). As a result,
HopAUC can produce an accurate assessment of node rank quality when network edges
are correlated to a combination of homophily and structural equivalence; either of these
dynamics can justify the application of this measure, thus extending the types of networks
it can be applied on.
Lastly, the triadic closure that characterizes LinkCC assesses whether similarities

between nodes can replicate both their edges and the edges between each node’s
neighbors. For accurate replications to indicate high rank quality, network nodes
should exhibit both homophily, so that similarly-attributed neighbors are linked,
and structural equivalence, so that linked nodes (which exhibit similar ranks due
on homophily) are also linked through common neighbors. As a result, LinkCC
requires these two different dynamics to hold true at the same time, which
inhibits its adoption in many networks and can explain its limited efficacy in our
experiments.

Threats to validity

As we mention above, our recommended general-purpose LinkAUC and HopAUC mea-
sures heavily rely on the notion of homophily between network nodes, in the sense that
nodes of similar relatedness to metadata groups are often linked to each other. As a result,
the burden of identifying that this is one of a network’s dynamics falls on the one applying
our methodology. In this regard, a vague consensus exists in the complex network com-
munity that homophily characterizes many systems, although it has been corroborated
mostly on social networks (McPherson et al. 2001; Aiello et al. 2012; Dehghani et al. 2016;
Huber andMalhotra 2017). The usage of HopAUC can also be justified through structural
equivalence between nodes of similar attributes, but the extend to which this dynamic
permeates all kinds of real-world networks has, to our knowledge, not been studied yet.
Hence, there exist concerns over the efficacy of using the strategies proposed in this work
on other types of domains in which local structures cannot be systemically corroborated.
Of course, these concerns are no greater than for the assumptions of other unsupervised
measures.
Another potential risk lies in our methodology for selecting the most promising unsu-

pervised evaluation measure that finds a near-best link ranking algorithm. In particular,
there could exist systemic properties of the ranking algorithms we deploy that favor the
usage of certain measures. For example, in the case of HopAUC, disseminating ranks to
neighbors-of-neighbors could be the most important challenge the node ranking algo-
rithms we examine (but not all ranking algorithms) need overcome. Although we tried
to mitigate this phenomenon by employing many ranking algorithms and variations, ulti-
mately these all work by defusing the metadata group membership of example nodes in
the network.
Finally, we stress that the suggestion of using either HopAUC or the similarly-

performing LinkAUC to find the best ranking algorithm relies on the assumption that our
experiments cover an adequately wide range of potentially high quality algorithms.
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Conclusions and future work
In this work we explored scalable unsupervised procedures that evaluate node ranks
of multiple metadata groups based on how well they predict the network’s local struc-
tures. We explained the intuitive motivation behind these approaches and experimentally
showed that they are often better than structural community quality measures for com-
paring the quality of two possible ranking algorithms. We also found that the measure
evaluating structural proximity up to two hops away, which we call HopAUC, is the most
promising for selecting node ranks of the highest quality in new networks when possible
candidates are obtained by many different algorithms.
Future research can move in the direction of providing a unified framework between

the unsupervised measures presented in this work, for example by combining their
assessments. Furthermore, semi-supervised network mining algorithms that involve
unsupervised extraction of node ranks could be augmented with unsupervised measures
of rank quality that select a different node ranking algorithm for each network.
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