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Abstract—Personalized PageRank (PPR) is a popular scheme
for scoring the relevance of network nodes to a set of seed ones
through a random walk with restart process. Calculating the
scores of all network nodes often involves the power method,
which iterates the PPR formula until convergence to an empiri-
cally selected numerical tolerance. However, finding a tolerance
that is not so lax as to impact pairwise node comparisons but not
so strict as to require a high number of iterations to converge
requires time-consuming empirical investigation. In this work
we aim to avoid this investigation by stopping power method
iterations when node score order is robust against subsequent
changes. To do this, we analyse the expected fraction of random
walks considered at a given iteration and identify a potential
stopping point that depends on a (fixed) confidence level of future
iterations preserving node order. Experiments on four real-world
networks show that a confidence level of 98% runs in a fraction of
the time and yields more than 0.999 Spearman correlation with
the node order of 10~2° numerical tolerance. Furthermore, that
stopping point is comparable to empirically selecting a numerical
tolerance that yields robust node order.

Index Terms—Network theory; Ranking; Convergence of nu-
merical methods; Robustness

I. INTRODUCTION

In many domains, data can be organized into networks
whose edges reflect relations between nodes. For example, in
social media networks, edges between user nodes are used
to represent their social relations [1]. A problem that often
arises when analyzing networks is scoring nodes based on
their relevance to communities whose members are either
structurally close or share the same metadata attributes. To
find such communities, a popular practice [2], [3], [4], [5] is
to utilize sets of known seed nodes that help discover other
members. For example, seed nodes could be social media users
with the same declared music genre preferences who form
communities with others likely to share these preferences.

Methods that score network nodes given a set of seed nodes
often follow a random walk with restart formulation [6], i.e.
they employ a Markov process that, starting from the seed
nodes, at each step either jumps to a neighbor or teleports back
to one of the seeds. Then, each node assumes a score propor-
tional to the probability of this process arriving on it. The most
well-known random walk with restart strategy is personalized
PageRank [6], [7], [8], [9], in which the probability of jumping
from a node v to a particular neighbor w is proportional
to the corresponding element Mu,v] of a (column-wise or
Laplacian) normalization of the network’s adjacency matrix.
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If we organize the seed nodes into a personalization vector
s that represents a seed node distribution, the scores r[v] of
network nodes v calculated through this process converge to
the solution of the linear system:

r=aMr+(1—a)s (1)

where 1 — « is the teleportation probability to a random seed
node, also called restart probability on merit that it restarts the
random walk.

Personalized PageRank (PPR) is used in a multitude of
graph mining tasks, ranging from recommender systems to
discovering well-separated structural communities [10], [11]
and propagating information in graph neural networks [12],
[13]. The simplest PPR algorithm implementation is iterating
the above equation (L1-normalizing s and r at each step
to ensure convergence) until a small error is reached [14].
This process is known as the power method and has been
implemented in many graph processing libraries, such as
the networkx' Python graph manipulation library. When M
has lots of zeros, as happens in most real-world networks,
sparse matrix multiplication can be used to make computations
efficient [15].

The power method requires several iterations to diffuse
scores many hops away from the seed nodes [16]. Despite
this shortcoming, as we explain in Section II, certain prob-
lems require scoring all network nodes. For these problems,
employing the power method cannot be avoided, but it is still
important to use as few computations as possible to calculate
robust node scores. PPR algorithms, such as the ones detailed
in Section II, traditionally rely on the notion of numerical
robustness, i.e. that the found scores are numerically close
to the ideal ones. However, in this work we focus on node
order robustness, in the sense that ordering nodes by their
scores should achieve an order similar to their ideal scores.
To understand why this task is important, we point out that,
although scoring errors are traditionally used as an indication
of convergence, comparing and ordering node scores is the
true objective of many practical applications of PPR.

Requiring both speed and robustness often creates a
dilemma of when to stop the power method; stopping it too
early may heavily influence the node order arising from cal-
culated scores, whereas tight numerical convergence leads to
disproportionately many calculations. These problems would

Thttps://networkx.github.io/
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persist even if we stopped the power method using measures
of score similarity. In particular, summarizing score order
differences between consecutive power method iterations in
one quantity would involve aggregating all pairwise node
comparisons, as done by the Spearman correlation that mea-
sures the statistical correlation of score orders [17]. Therefore,
once the differences between low- and high-scored nodes start
becoming clear, such measures could detect small node order
differences, when in reality the latter could still be shifting
to nearby values. For example, in Section V we show that
even score orders exhibiting over 0.999 Spearman correlation
could be of low quality and need to be corroborated by
empirical investigation of node order scatterplots. To solve this
problem, it is tempting to compare score orders through more
sensitive heuristics, such as counting the number node scores
that change between consecutive power method iterations.
However, these could also cause early stopping, when multiple
iterations are needed to change the order between two nodes,
or late stopping, when only a few nodes keep changing scores.

Based on the above, researchers should investigate node
order robustness by experimenting with different numbers of
iterations (which correspond to different numerical tolerance
levels). They then need to capture the point at which obtained
scores are empirically determined to be similar to ideal ones.
In practice, this could involve calculating scores up to an
exceptionally tight (e.g. 172°) numerical error tolerance and
using these as the ground truth with which to assess the
efficacy of scores obtained by looser tolerances. Then, the
tolerance that achieves the best results on the particular graph
or domain can be selected for deploying similar applications.
Unfortunately, this investigation would require running many
PPR algorithms and up to very tight numerical tolerances.
The latter correspond to prohibitively large running times,
such as needing 10x as many iterations as the stopping point
eventually selected.

In this paper, we address this problem by determining an
early stopping point for the power method that achieves a
robust node order. In particular, in Section III we analyse the
fraction of random walks accounted at a given iteration of
the power method and in Section IV we use this analysis to
determine an iteration whose subsequent ones are expected to
on average preserve the found node order within any desired
confidence level. In Section V we demonstrate the usefulness
of this practice on four real-world networks, on which it
automatically (i.e. without needing human-supervised conver-
gence parameter selection) determines convergence points of
robust node ordering. These points lie at a similar number
of iterations to the ones that would have been selected after
manual inspection.

II. BACKGROUND AND MOTIVATION

As the power method is the most well-known scheme for
finding the PPR scores of nodes up to a fixed numerical
precision [9], [18], it has been the subject of many opti-
mizations that reduce the number of calculations required
for it to converge. These include the Jacobi method for

handling dangling nodes [19], the Gauss-Seidel method [20]
that updates only the score of one node at a time and
extrapolation methods [21], [22] that adjust scores based on
previous ones. More recent research has moved to developing
Arnoldi-based algorithms [22], [23], [24] in the Krylov space
span{MP*s|k = 1,...,K}. The last type of methods also
finds numerically robust solutions for low restart probabilities.
In this paper we focus on the non-optimized power method,
which is easier to analyse, and leave combining our approach
with optimization algorithms for future work.

Researchers have also explored fast approximations of PPR
with correctness guarantees only for a few nodes. Most of
these employ a push-pull procedure, in which nodes push their
score changes to their neighbors while pulling the latter’s val-
ues to improve their own score approximation [25], [26]. This
process stops when it achieves guarantees on the correctness
of a fixed number of top scores [16], [27], [28]. Other fast-
running approaches respect the local aspect of approximations
[29] or are focused on stochastic processes that do not parse
all network edges [30], [9].

Despite the precision and computational efficiency of top
node discovery methods, they are often designed with rec-
ommender systems in mind, for which only these nodes are
important. Hence, they scale poorly to scoring many graph
nodes, especially those pertaining less to metadata groups. For
example, in an artist discovery platform where the metadata
groups of interest are music genres, it could be important
to accurately score the relatedness of artists to genres to
obtain a genre distribution for all artists and not only the
ones most related to the genre. Another occasion where lower-
importance scores may be useful is when they are aggregated
(e.g. multiplied) with other insights or when their changes are
the ones used to identify emerging nodes. For example, in
community detection tasks, a process that quickly finds well-
separated communities employs a division of scores with node
degrees [31]. In such cases, we need to fall back on calculating
scores with some adaptation of the power method.

A common problem of both power method adaptations
and the fastest top node discovery algorithms [27] is that
they require disproportionately many calculations to converge
to numerically precise solutions as the restart probability
approaches zero. This problem is not as apparent for 15%
restart probability, which has been empirically established as
the go-to value of non-personalized PageRank. However, the
probability most suitable to discovering communities from
a personalization vector often depends on the community’s
structural characteristics, such as size, density and conductance
[31], [32]. For example, more distinguished (e.g. larger and
denser) communities require longer random walks to reach all
their members from their seed nodes. These longer random
walks correspond to restart probabilities as low or lower
than 1% [22], [33] and in turn introduce in some form the
computational cost of spreading scores more hops away.

Given the above, we recognize that one of the most im-
portant problems existing methods encounter is the increased
running time of smaller restart probabilities, especially when
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needing to achieve numerical robustness. To alleviate a portion
of this cost, researchers usually select laxer convergence tol-
erances. However, no guidelines have been provided on where
to stop while at least preserving node order robustness. In this
work, we take a first step towards exploring this direction.

III. CONSIDERING MOST RANDOM WALKS

To express the power method in a formal manner, we denote
by 7, the score vector calculated at iteration n, where r,,[u] is
the score of node w at that iteration. Following the formulation
of PPR that preserves the stochastic nature of random walks,
we focus on a column-wise normalization on the network’s
adjacency matrix A:

Tne1 = aMr, + (1 —a)rg
Mlu, ] = Alu, v) (2)
> Alu, v]

The power method traditionally repeats the first of these
equations until score changes become on average less than
a given tolerance. In this work, we focus on removing the
need for human-driven estimation of this tolerance; instead,
we search for an automatically selected point that provides
node order close to the ideal one.

The above formalism interprets scores r,[u] as the proba-
bilities of arriving at nodes w at iteration n and then either
hopping to a random neighbor with probability a or restarting
from a random seed node (selected from the distribution
ro) with probability 1 — a. Restarting marks the end of the
previous random walk and the beginning of a new one. Since
this event has a fixed chance of success or failure, it is a
Bernoulli trial. Therefore, the random variable N that shows
the length of random walks before restarting follows the
geometric distribution P(N = n) = a"~(1 — a).

In this section, we investigate the robustness of node order
from the viewpoint of considering a large enough fraction of
random walks. To do this, we start by analysing the fraction of
random walks considered up to a given iteration of the power
method. In particular, we repeat the random walk process an
arbitrarily large number of times and extract a large number
of walks W(n) up to length n. Thanks to the stochastic
definition of the power method and the law of large numbers,
rn[v]W(n) of walks contribute to the scores of nodes v at
its n-th iteration. Therefore, node score robustness can be
achieved if these arrivals are many more than the number of
longer random walks not yet considered. This can be formally
expressed by constraining the fraction of expected random
walks up to length n to be close to the total number of walks,
even if not all lengths are considered, i.e. for the fraction
p = E[W(n)]/E[W (o0)] to reside close to 1, where E[]
is the expected number of walks (E[W (o0)] is the expected
number of walks of any length).

If this happens, walks that arrive later on and permute scores
would be (on average) too few to change the order of pairwise
node comparisons. For example, let us consider that two nodes
u, v exhibit close scores 7, (u) = 0.2 and 7,(v) = 0.188 at
an iteration n, which considers p = 0.99 of random walks. At

worst, none of the remainder walks would arrive on u from
that point on and all would arrive on v. This yields:

E[W(oo)roo(u)} > E[W(n)rn(u)]
S Toolu] > pry(u) = 0.198

E[W(oo)roo(u)} < E[W(n)rn(v) + (W(o0) — W(n))}
S roolu] < propfv] + (1 —p) = 0.19612

which preserves the order of these two nodes. In practice, it
is unlikely that all random walks of greater lengths would end
exclusively at node v and avoid node u. Hence, even closer
scores could be preserved.

A critical component of the above analysis is comparing
the number of random walks of length up to n to the total
number of random walks. To help do this, we define several
independent sub-processes walkery,k = 1,...,n that start
from the seed nodes and repeatedly perform random walks of
exactly k steps before restarting. Furthermore, we consider
the random walk with restart process to span intermediate
steps ¢ = 1,...,w of transitioning to the next node, where
w — o0 is an arbitrarily large number. For example, w could
be the number of steps required to infer node scores within
a tight numerical precision by counting how many arrive on
each node. Then, the random walk with restart process can
be equivalently formulated in a sequential (instead of parallel)
manner by selecting a sub-process walker; at random and
then performing k steps before restarting from a new seed and
sub-process. To express this behavior at any intermediate step
¢ of this sequence, we employ the following random variables:

S(£) = {1 if at iteration ¢, 0 otherwise}
X (€,n) = {1 if £ is performed by walkery, 0 otherwise}
Wi (€,n) = {1 if walkery, restarts at ¢,0 otherwise}

Since each intermediate step occurs once, E[S({)] = 1.
Furthermore, the random walk sub-processes cannot be inter-
rupted, which makes the probability of selecting one equal to
the probability of performing a random walk of the respective
length, i.e. E[X(¢,n)] = P(N = k). Additionally, interme-
diate steps ¢ correspond on average to random points within
sub-processes k that perform random walks of that length,
which makes the probability of restarting at that particular
point E[Wy(n)] = w/k. Then, the number of random walks
up to iteration n is equal to the number of restarts:

W) = Y (5603 X wmi(en)

=1 k=1

Finally, the above random variables are independent to each
other. Therefore, the expected value operator E[-] yields:

1—a<~adf
k=1

a

Since > 1, % = —1In(1 — a), this yields that the fraction p
of expected random walks considered at iteration n is:

n aF
_Zk:l k.
In(1 —a)

p= = 3)
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This equation facilitates the discovery of robust node scores
by stopping the power method when a large enough fraction
of random walks has been considered. A simple take would
be selecting a network-agnostic fraction of needed random
walks, such as p = 99%. Although this practice does not
alleviate the problem of needing to select a stopping parameter,
that parameter becomes easier to interpret and empirically
justify. Furthermore, this selection can help determine the
running time of the power method from its first iteration. In
particular, multiplications involving the network’s adjacency
matrix can be computed in time O(m), where m is the num-
ber of network edges through which multiplication iterates.
Therefore, the time needed for the power method to converge
is O(m - n(a,p)), where n(a,p) is the number of iterations
(and hence matrix multiplications) obtained by the solution of
Equation 3 with respect to n.

IV. STOPPING AT A ROBUST NODE ORDER

The diffusion rate of seed node scores through the network
is not only affected by the restart probability of the PPR
scheme but also by the network’s structural characteristics and
the placement of seed nodes. For example, random walks need
length at least equal to the network’s diameter to diffuse the
scores of non-central seeds to all other nodes and half that
length if the seeds are centrally positioned. At the same time,
reaching a robust node order in networks that suffer from slow
diffusion requires a larger fraction of random walks, as more
and longer walks are needed to propagate scores many hops
away from the seed nodes.

To address this problem, in this section we propose a
criterion for stopping the power method at the point when
differences between node scores are on average sufficiently
large to avoid being bridged by the remaining random walks.
Since score diffusion speed is implicitly linked to the gaps
between node scores, this approach captures to some extent all
aspects of the scoring task that affect node order robustness.

To analyse the differences between node scores, we first
refer to the example of the previous section, in which we
explored the concept of maintaining the order r,, [u] — 7, [v] >
0 between two nodes u,v when lengthier random walks are
also considered. In that example, we explained that, at worst,
roolt] > pryfu] and roo[v] < pryp[v] + (1 — p). Therefore,
a sufficient condition for maintaining the order between two
such nodes would be:

1—p
Too[t] = Too[v] > 0 <= — < ralu] = rafo] (@)

Unfortunately, satisfying this equation for all node pairs leads
to the adoption of late stopping points, as the worst case is
unlikely to occur and hence needs not be guarded against.
Even in the scenario where most walks arrive at a small set of
nodes (instead of only one), few other walks remain to impact
the rest of node scores, hence preserving most pairwise node
score comparisons.

Motivated by these considerations, we recognize the im-
portance of preserving the outcome of score comparisons

for most but not necessarily all pairs of nodes. This can be
equivalently achieved if we preserve comparisons between
most consecutively ordered node scores. For example, if we
obtain the scores [0.2,0.25,0.1,0.3,0.15], 0.25 and 0.3 are
consecutively ordered, since sorting makes them end up at
positions next to each other, and we would focus on directly
preserving their order. On the other hand, 0.1 and 0.2 are not
consecutively ordered, as 0.15 lies between them; hence, their
order is implicitly preserved if we maintain the sub-orders
0.1 < 0.15 and 0.15 < 0.2 in future iterations.

To facilitate our analysis, we denote by P, = {(u,v) :
ralu] > rmu[v],Bs ¢ rufu] > 7u[s] > 7u[v]} the pairs of
consecutively ordered nodes at iteration n. Furthermore, we
assume that an arbitrarily large number of random walks W (n)
are considered at that iteration. This yields:

E[W(c0)reo[v]] = E[W (n)ra[v] + (W (c0) — W(n))dn [v]]
= Too[v] = prafv] + (1 = p)dn[v]

where 0,,[v] are the expected node score differences induced
by random walks of length greater than n. This quantity
aggregates node arrival probability differences between walks
of up to given length n and other walks of increasingly higher
lengths. Since each walk of higher length contributes with the
same weight to J,[v], the central limit theorem dictates that
this quantity follows a normal distribution if n is large enough.
The mean value of this distribution is approximated by 7, [v]
and hence the random variable ¢, (u,v) = d,[u] — d,[v] also
follows normal distribution with mean value 7,[u] — r,[v].
Furthermore the variance of this new variable can be approx-
imated by Var, .ep, [5n(u7 v)] = 02, where:
0721 = Var(u,v)epn [Tn [u] —Tn [U]] (5)
Given these properties, we can select a confidence level
Deons Of preserving on average the comparisons between
consecutively ordered nodes. In particular, for that confidence
level, 8, (u,v) > dplu] — dy[v] — @ (Peons)on, where
®~! is the inverse cumulative distribution function of the
normal distribution N (0, 1). Therefore, comparisons are not
maintained on average as long as:

02> (roolul = roc[v])

(u,v)EPy

= Z (p(rn[u] —rn[v]) + (1 = p)(dn[u] — 571[“]))

(u,v)EPn
> Z (p(rn [u] —rn[v])
(u,v)EPn
+ (1 =p)(rafu] = rafv]) — (1 - p)gq)il(pconf))
= (maxr, —minr,) — (1 — p)q)_l(pwnf)|73n|a

Based on this analysis, node comparisons are on average
preserved by future iterations with confidence pcon, ¢ if we stop
at the iteration n that first breaks through the above inequality.
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In other words, if we calculate p through Equation 3, the power
method finds a robust node order for the first time when:

n gk :
% maxr, —minr
14 Zh=1% n n 6
111(1 — Cl) ‘I)_l(pconf)o-n|79”l| ©

Due to the sorting operation required to construct P,,, which
is in turn used to calculate o, this criterion introduces an
overhead of O(|P,|log|Py,|) computations, where |P,| is
at most one less than the number of network nodes. This
overhead would be important only when scoring networks
whose number of nodes grows exponentially faster than their
average degree.

As a final remark before closing this section, we point out
that, although we have not fully removed the need of selecting
a parameter (i.e. pconys) that influences the stopping point,
that parameter no longer depends on the characteristics of
the scored network. Instead, it is a direct interpretation of the
desired confidence towards node order robustness. Therefore,
it suffices to investigate the efficacy of that parameter at most
once to provide node scores of similar robustness in future
applications. For example, throughout this work we select
<I>_1(Pconf) = 2, which corresponds t0 peony =~ 98%, and
this can be used to achieve similar node order robustness in
other networks without additional investigation.

V. EXPERIMENTS

To explore the added value of our analysis, we experiment
on four large networks. Three of these are well-known public
networks of the SNAP repository?> for which ground truth
communities are available [34], whereas the fourth one is
gathered from Spotify’s public API* and comprises music
artists and links between related ones. In this network, artist
genres are considered metadata communities [35].

For these networks, we select some of their known com-
munities to serve as seed nodes and use a PPR scheme with
various restart probabilities to score the relevance of the rest
of network nodes to them. In Table I we present an overview
of experiment communities, where their name prefix indicates
the network they belong to and their name suffix their position
within the list of that network’s available communities:

Community Network
Name Number of Seeds Nodes Edges
Amazon-1723 5,969 334,863 925,872
Amazon-3875 20,946 334,863 925,872
DBLP-13089 5,066 317,080 1,049,866
DBLP-13429 7,556 317,080 1,049,866
YouTube-176 2,217 | 1,134,890 2,987,624
YouTube-268 3,001 | 1,134,890 2,987,624
Spotity-3 218 733,043 5,883,675
Spotify-11 512 733,043 5,883,675
TABLE I

GROUND TRUTH COMMUNITIES WHOSE NODES WERE USED AS SEEDS.

In our experiments, we first calculate a strict estimation
of ground truth scores by iterating the power method until

Zhttp://snap.stanford.edu/data/
3https://developer.spotify.com/documentation/web- api/

it converges to 10720 average difference between consecu-
tive iterations. We remind that this tolerance level requires
exceedingly many iterations to converge. We then compare the
running time and node order between the ground truth scores
and eight other convergence criteria; stopping at average score
differences 10~ E € {6,...,12}, the network-agnostic
proposal of stopping when 99% of random walks have been
considered and stopping at the iteration when Equation 6 is
first satisfied with 98% confidence. To measure the running
time of different convergence criteria, we counted the number
of iterations they take to stop, since each iteration is dominated
by a multiplication with the same sparse matrix.

Node scores arising from different convergence criteria are
compared with the ground truth ones with the Spearman
correlation, which determines whether the ordinalities* of
node scores are correlated. Correlations closer to 1 suggest
similar node order. However, due to the large number of
nodes involved, substantial qualitative changes are reflected
at correlation differences of 0.001 or more. For example, in
Figure 1 the scatterplot of calculated (vertical axes) vs. ground
truth (horizontal axes) node ordinalities can be considered of
much higher quality for the Spearman correlation of 0.99993
compared to 0.98960. As a general guideline, we consider
node score ordinalities to be strongly correlated with their
ground truth only if their Spearman correlation exceeds 0.999.
However, we will later see that this threshold is not always
accurate, as even stronger correlations are sometimes needed
to identify a high quality node order. Nevertheless, it can be
used to filter out significantly different score distributions.
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Fig. 1. Node ordinality scatterplots between the ground truth and 10—8
numerical tolerance (left), as well as between the ground truth and stopping
at Equation 6 (right) for the seed community Amazon-1723 and a = 0.99.
These achieve 0.98960 and 0.99993 Spearman correlation respectively.

Table II and Table III present the Spearman correlation
with ground truth scores and the number of iterations for the
PPR of communities across the described convergence criteria
and PPR parameters a € {0.85,0.90, 0.95,0.99,0.995,0.999}.
Spearman correlation values sp are reported as — log;(1—sp),
which provides a finegrained understanding of the decimal
place at which the correlation deviates from 1. For example, a
reported value of 3 or greater corresponds to a correlation of
1 — 1073 = 0.999 or greater. Before discussing these results,
we assert that ground truth scores achieve a robust near-exact
ordering, as they maintain over 1—107° = 0.99999 correlation

4The highest-scored node is assigned ordinality of 1 and lower-scored
nodes assume higher integer ordinalities. Node score ordinalities are often
referred to as ranks by recommender systems.
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Convergence Tolerance Fraction of Walks
Community a | 1075 | 1077 | 1078 | 107° | 1071% | 107! | 107!2 | 0.99 Eq. 6
Amazon-1723 85 0.4 1.7 28 42 5.6 7.0 85 31 35
Amazon-1723 90 0.4 1.7 2.9 4.2 5.6 7.1 8.6 3.1 3.6
Amazon-1723 95 0.4 1.5 2.7 4.1 5.5 7.1 8.6 32 3.8
Amazon-1723 99 0.5 1.0 1.9 31 4.6 6.3 8.1 3.4 4.1
Amazon-1723 995 0.4 0.8 1.5 2.6 4.1 5.8 7.7 3.4 42
Amazon-1723 1999 0.2 0.3 0.7 1.5 3.1 438 6.4 42 53
Amazon-3875 85 0.7 2.0 31 43 5.7 71 8.6 35 43
Amazon-3875 90 0.7 2.0 3.0 4.3 5.7 72 8.7 35 43
Amazon-3875 95 0.7 1.8 2.8 4.1 5.6 7.1 8.7 35 4.4
Amazon-3875 99 0.7 1.1 1.9 33 4.7 6.3 8.0 3.4 43
Amazon-3875 995 0.6 0.8 1.5 2.7 4.1 5.9 7.7 33 42
Amazon-3875 999 0.2 0.4 0.7 1.5 3.1 49 6.4 4.1 5.1
DBLP-13089 85 12 2.0 34 5.0 6.6 82 9.7 3.6 37
DBLP-13089 .90 1.0 1.8 32 4.7 6.4 7.9 9.4 3.5 3.7
DBLP-13089 95 0.8 1.4 2.7 4.2 5.7 7.3 8.9 3.7 39
DBLP-13089 99 0.4 0.8 1.9 3.1 4.4 5.7 72 4.8 5.3
DBLP-13089 995 0.3 0.7 1.8 2.8 39 52 6.8 5.5 5.7
DBLP-13089 999 0.2 0.6 1.7 2.6 3.6 47 6.0 9.3 105
DBLP-13429 85 12 2.0 34 4.9 6.6 83 9.8 35 41
DBLP-13429 90 1.0 1.8 3.1 4.8 6.4 8.0 9.6 35 43
DBLP-13429 95 0.8 1.5 2.8 4.3 5.9 7.5 9.0 3.7 4.7
DBLP-13429 99 0.4 0.9 2.1 33 4.5 5.8 72 4.8 5.1
DBLP-13429 995 0.3 0.7 1.9 2.9 39 52 6.8 5.5 5.8
DBLP-13429 999 0.2 0.6 1.6 2.6 3.5 4.6 5.8 8.6 9.6
YouTube-176 85 0.6 2.1 32 45 6.0 75 85 39 55
YouTube-176 90 0.5 1.8 2.9 4.2 5.6 6.9 8.4 3.8 5.9
YouTube-176 95 0.5 1.4 2.4 3.6 5.0 6.4 7.6 42 6.5
YouTube-176 99 0.3 1.1 1.9 2.7 35 4.5 6.0 5.1 7.6
YouTube-176 995 0.3 1.1 1.9 2.5 32 4.0 52 5.4 8.2
YouTube-176 999 0.5 1.0 1.8 2.0 2.8 4.0 5.8 7.9 13.0
YouTube-268 85 0.5 2.1 33 4.7 6.4 738 9.1 4.0 5.9
YouTube-268 .90 0.5 1.9 3.0 4.4 6.1 7.6 8.9 4.1 6.2
YouTube-268 95 0.7 1.6 2.6 4.0 5.5 7.1 8.5 4.4 6.7
YouTube-268 99 0.5 1.2 2.1 31 4.2 5.4 6.9 5.4 7.7
YouTube-268 995 0.5 12 2.0 2.7 3.6 4.5 5.9 5.5 8.4
YouTube-268 999 0.5 1.1 1.7 2.0 33 42 5.9 8.1 15.0
Spotify-3 85 0.0 0.9 2.1 35 5.0 6.6 8.4 2.6 3.0
Spotify-3 9 0.0 0.8 22 35 5.1 6.8 8.5 2.7 33
Spotify-3 95 0.0 0.9 2.1 3.6 52 6.9 8.5 3.0 3.7
Spotify-3 99 0.0 0.7 1.9 33 47 6.0 7.1 4.4 5.1
Spotify-3 995 0.0 0.6 1.7 3.0 4.3 5.4 6.5 5.3 5.9
Spotify-3 999 0.0 0.5 1.4 2.4 33 3.9 52 6.5 7.8
Spotify-11 85 0.2 1.5 2.4 37 53 7.0 8.7 29 33
Spotify-11 9 0.2 12 23 3.7 5.4 7.0 8.7 3.0 3.4
Spotify-11 95 0.2 1.1 22 3.6 53 6.9 8.6 33 3.8
Spotify-11 99 0.1 0.7 1.8 31 4.4 5.6 6.6 4.4 5.0
Spotify-11 995 0.1 0.7 1.6 2.9 4.2 52 6.3 5.1 5.8
Spotify-11 999 0.1 0.5 1.3 2.3 33 3.9 5.3 6.6 8.0

TABLE I

-log;o OF HOW MUCH SPEARMAN CORRELATION WITH GROUND TRUTH SCORES DEVIATES FROM 1.
BOLD VALUES INDICATE THE FIRST TIME CORRELATION EXCEEDS 0.999 .

with the ordering of the much laxer (although strict by itself)
10712 mean absolute error tolerance.

In the reported experiments, even the simplistic stopping
criterion that considers up to 99% of random walks achieves a
strong (i.e. at least 0.999) correlation with ground truth scores
in 45 out of the 48 community and parameter value combina-
tions. Furthermore, the proposed stopping point of Equation 6
boasts a strong correlation in every experiment. Both of these
approaches stop a lot earlier than the “safe” approach of stop-
ping at 1—1072% numerical tolerance. Experiment results also
show that the numerical tolerance needed to achieve equally
strong correlation varies between parameters and networks;
this corroborates the need for time-consuming investigation
over various potential tolerances when our approach is not
applied.

For the larger restart probabilities corresponding to parame-
ters a € {0.85,0.90,0.95}, both methods aiming to provide a
robust node order exhibit strong correlations with the ground

truth scores. Furthermore, they converge within a number of
iterations that is comparable to the laxest found numerical
convergence tolerance of those also strongly correlated with
the ground truth scores. In other words, for these restart
probabilities our approach can be considered a good automated
process for finding robust scores that also require few iterations
to compute.

When moving to low (i.e. 5% or lower) restart probabilities,
our two proposed approaches require a significantly higher
number of iterations to converge than the frequently suggested
102 and 10719 numerical tolerances. However, after a more
detailed investigation of score scatterplots, a representative
example of which is given in Table 2, we find that the
criterion of 0.999 correlation fails to maintain a robust node
order, despite being adequate for lower restart probabilities. In
those cases, it matters not how fast the empirically selected
numerical tolerances converge, since their found node order is

247

Authorized licensed use limited to: Centre for Research and Technology (C.E.R.T.H.). Downloaded on September 01,2022 at 12:35:23 UTC from IEEE Xplore. Restrictions apply.



Convergence Tolerance Fraction of Walks
Community a | 107¢ | 1077 | 1078 | 1072 | 107 | 107 | 1072 | 1072° | 0.99 Eq. 6
Amazon-1723 85 4 3 16 28 40 52 65 163 18 21
Amazon-1723 90 4 9 22 39 57 75 94 238 25 32
Amazon-1723 95 4 11 35 67 101 137 174 439 47 61
Amazon-1723 99 5 15 81 184 323 489 672 1831 204 252
Amazon-1723 995 5 16 100 257 509 825 1167 3196 388 480
Amazon-1723 999 5 17 128 444 1195 2111 3072 16447 | 1754 2596
Amazon-3875 85 4 8 15 25 38 50 63 170 18 25
Amazon-3875 90 4 9 19 36 54 73 93 256 25 36
Amazon-3875 95 4 11 30 62 98 136 175 504 47 69
Amazon-3875 99 5 13 71 190 335 503 686 2265 204 293
Amazon-3875 995 5 13 91 274 531 848 1192 4065 388 553
Amazon-3875 1999 5 14 123 486 1256 2168 3124 16451 | 1754 2278
DBLP-13089 85 4 8 17 27 37 48 59 156 18 19
DBLP-13089 90 4 10 22 36 51 66 82 228 25 27
DBLP-13089 95 4 12 31 54 80 108 138 430 47 50
DBLP-13089 99 4 17 52 102 173 266 386 1628 204 237
DBLP-13089 995 4 18 57 118 212 357 552 2588 388 414
DBLP-13089 1999 4 19 62 137 273 539 912 5190 | 1754 2126
DBLP-13429 85 4 8 17 27 38 49 61 157 18 22
DBLP-13429 90 4 10 22 37 52 68 85 229 25 33
DBLP-13429 95 4 13 32 57 83 112 142 431 47 63
DBLP-13429 99 4 17 56 110 179 271 389 1635 204 222
DBLP-13429 995 4 18 63 128 219 363 556 2606 388 429
DBLP-13429 1999 4 19 69 148 282 545 922 5251 | 1754 2085
YouTube-176 85 3 8 14 22 31 41 51 143 18 28
YouTube-176 90 3 9 17 28 40 54 69 208 25 43
YouTube-176 95 3 10 22 39 60 84 110 393 47 86
YouTube-176 99 3 12 30 62 107 168 267 1537 204 393
YouTube-176 995 3 13 32 68 121 208 368 2549 388 762
YouTube-176 1999 4 13 33 74 136 277 576 5646 | 1754 3583
YouTube-268 85 3 8 14 22 32 2 53 148 18 29
YouTube-268 90 3 9 17 28 42 57 73 217 25 43
YouTube-268 95 4 11 23 41 64 91 119 407 47 84
YouTube-268 99 4 13 32 70 127 208 317 1552 204 392
YouTube-268 995 4 13 34 78 150 270 433 2562 388 761
YouTube-268 1999 4 13 36 87 181 371 656 5673 | 1754 3584
Spotify-3 85 3 6 14 25 37 49 62 163 18 21
Spotify-3 9 3 6 19 35 52 70 89 238 25 32
Spotify-3 95 3 8 29 58 90 122 155 439 47 61
Spotify-3 99 3 10 60 136 220 314 420 1831 204 252
Spotify-3 995 3 10 71 165 276 407 582 3196 388 480
Spotify-3 1999 3 10 83 201 353 585 1179 7958 | 1754 4967
Spotify-11 85 3 7 14 24 35 47 59 160 18 21
Spotify-11 9 3 7 18 33 50 67 85 236 25 30
Spotify-11 95 3 9 27 53 84 116 149 439 47 56
Spotify-11 99 3 11 49 120 208 307 418 1838 204 256
Spotify-11 995 3 12 56 147 264 404 584 3209 388 502
Spotify-11 999 3 12 65 181 345 590 1207 7988 | 1754 2364

TABLE III

NUMBER OF ITERATIONS (CLOCK TIME PER ITERATION IS CONSTANT IN EACH SETUP).
BOLD VALUES CORRESPOND TO THE FIRST TIME SPEARMAN CORRELATION EXCEEDS 0.999.

Fig. 2. Node ordinality scatterplots between the ground truth scores and
converging at 10~ !! tolerance (left) and Equation 6 (right) for the seed
community YouTube-268 and a = 0.999.

not truly robust, despite their summary into Spearman correla-
tion suggesting otherwise. This phenomenon demonstrates the
usefulness of our approach in avoiding pitfalls a surface-level
empirical investigation could fall into.

Overall, our experiments show that the number of power

method iterations we propose is able to discover a robust node
ordering in every case without needing to perform a human-
driven exploration up to stricter convergence tolerances. For
example, in Figure 3 we can see that even the worst node
ordering obtained by Equation 6 closely follows the ground
truth. Furthermore, although low restart probabilities can in-
duce many iterations under our criteria, these are to a large
degree justified if we want to also maintain a robust node
ordering. At worst, our approach provides a high quality upper
bound of when to stop iterating.

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we explored node order convergence for
the power method of calculating personalized PageRank. In
particular, we analysed the fraction of random walks consid-
ered during its iterations and used that analysis to suggest a
stopping point that reaches a robust node score order with high
confidence. We experimented on four real-world networks, in

248

Authorized licensed use limited to: Centre for Research and Technology (C.E.R.T.H.). Downloaded on September 01,2022 at 12:35:23 UTC from IEEE Xplore. Restrictions apply.



700000
600000
500000
400000
300000
200000

100000
&
014

0 100000 200000 300000 400000 500000 600000 700000

Fig. 3. Weakest-correlated ordinality scatterplot between ground truth scores
and stopping at Equation 6, encountered for the seed community Spotify-3
and a = 0.85.

which we demonstrated the effectiveness of our approach and
that it avoids the time-consuming (and sometimes misleading
if not performed in detail) empirical investigation into which
convergence tolerances to consider robust.

In future work, we are interested in conducting more de-
tailed experiments, as well as adapting our stopping criteria
for use alongside other optimizations of the power method.
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