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ABSTRACT
The paper describes the approach, the experimental set-
tings, and the results obtained by the proposed methodology
at the ACM Yahoo! Multimedia Grand Challenge. Its main
contribution is the use of fast and efficient features with a
highly scalable semi-supervised learning approach, the Ap-
proximate Laplacian Eigenmaps (ALEs), and its extension,
by computing the test set incrementally for learning con-
cepts in time linear to the number of images (both labelled
and unlabelled). A combination of two local visual features
combined with the VLAD feature aggregation method and
PCA is used to improve the efficiency and time complexity.
Our methodology achieves somewhat better accuracy com-
pared to the baseline (linear SVM) in small training sets,
but improves the performance as the training data increase.
Performing ALE fusion on a training set of 50K/concept
resulted in a MiAP score of 0.4223, which was among the
highest scores of the proposed approach.

Categories and Subject Descriptors
I.5 [Pattern Recognition]: Design Methodology

General Terms
Experimentation, Measurement, Performance, Algorithms

Keywords
Concept Detection, Laplacian Eigenmaps, Large-scale An-
notation, Machine Learning

1. INTRODUCTION
This document describes our participation in the ACM

Yahoo! Multimedia Grand Challenge 2013. The competi-
tion introduces a new challenging dataset that features 10
noisy concepts with 150K images per concept.

In recent years, the available online content constantly
increases. In this context, semi-supervised learning is a
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promising approach for concept detection since it can benefit
from the inclusion of unlabelled images in the training pro-
cess. More specifically, manifold learning approaches rely
on the assumption that there is an underlying image mani-
fold, wherein semantically similar images are placed close to
each other and semantically dissimilar images are positioned
far from each other. Typically, manifold learning is imple-
mented by means of constructing a similarity graph between
labelled and unlabelled images and leveraging the graph to
estimate the labels of the unlabelled images by considering
the labels of neighbouring labelled images. Considering the
beneficial results of using a manifold learning method in a
concept detection problem, we choose to employ an approx-
imate semi-supervised method for this challenge. However
the manipulation of such large graphs is computationally
costly, which is impractical for large datasets. Also, once
new images are observed the graph must be updated.

Our approach, described in Section 2, tackles the scaling
problem by constructing approximate eigenvectors based on
the density structure of the data and by updating the eigen-
vectors of the test set incrementally. This is implemented
with the use of the marginal distribution by building a den-
sity histogram to compute the eigenfunctions considering the
limit as the number of points go to infinity. After computing
the eigenfunctions, we interpolate them at each of the data
points to extract the first k-approximate eigenvectors with
the smallest eigenvalues. We will refer to this approach as
Approximate Laplacian Eigenmaps (ALE) [1]. Extending
the ALE, we devise an incremental method, in which once
a new image is inserted, we interpolate its feature vector
based on the eigenfunctions and eigenvalues of the training
images. In this paper, we construct features that are easy to
manipulate especially in large scale problems, by combining
SIFT and RGB-SIFT with the VLAD feature aggregation.

2. OVERVIEW OF METHOD
Our approach is based on Semi-Supervised Learning (SSL)

by constructing Laplacian Eigenmaps (LEs) approximately
and incrementally. We use the LEs as new features to train
concept classifiers. SMaL is a Scalable Manifold Learning
framework [3] on top of ALE, which is linear to the number
of images, making possible to use the graph Laplacian in
large-scale problems. SMaL makes use of the Vectors of
Locally Aggregated Descriptors (VLAD), and reduces their
dimensionality by PCA.

VLAD [2] is a simplified non-probabilistic version of the
Fisher Vector for feature aggregation, which uses a codebook
of size µK computed using k-means. By applying nearest
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(b) RGB-SIFT

Figure 1: Comparison of MiAP between SVM (black) and SMaL (light gray).

neighbour (NN) search, each local descriptor xt is associated
with its nearest centroid. Then, the differences between the
descriptors xt and the centroid µi are accumulated to ui.
The d-dimensional vector of each feature is concatenated
with ui constructing the Kd dimensional final VLAD vector.

As mentioned above, in order to construct the LEs, we
need to build a n×n similarity matrix between labelled and
unlabelled images (n is the number of labelled and unla-
belled images together). A matrix like this is very costly
to compute in large collections. In SMaL, we tackle this
problem based on the approximate computation of LEs by
estimating a smaller covariance matrix, as suggested in [1],
where it is hypothesized that the data xi ∈ <d are samples
from a distribution p(x). Rotating the data to be as inde-
pendent as possible, s = Rx, can result in a B×B histogram
of bins, using only marginal distributions that approximate
the density p(s) of the rotated data.

Then, instead of computing the eigenvectors of the sim-
ilarity matrix between the original data (n × n), one can
define eigenfunctions g corresponding to the eigenvalues of
the rotated data s (B × B), which can be seen as approxi-
mations of the LEs of the original data when n→∞. This
is considerably faster, since typically B � n. These are
recovered by solving the following equation:(

D̃ − PW̃P
)
g = σPD̂g (1)

where W̃ is the affinity between the B discrete points, P is a
diagonal matrix whose diagonal elements give the density at
the discrete points, D̃ is a diagonal matrix whose diagonal
elements are the sum of the columns of PW̃P , and D̂ is a
diagonal matrix whose diagonal elements are the sum of the
columns of PW̃ . An interpolation step follows to the target
dimension CD (described in [1]) and in the end, the n×CD

approximate LE vectors are derived.
To tackle the Yahoo! challenge which does not allow the

use of test data during training, we devised an online im-
plementation by computing the eigenvectors of unlabelled
data incrementally. We build the B × B matrix based on
the histogram bins of labelled data. From this matrix the
eigenfunctions and the eigenvalues of the eigenfunctions are
derived. We use these values to interpolate both the labelled
and unlabelled data separately.

In the final step, the LEs are used to define a smoothness
operator that takes into account the unlabelled data. The
key idea is to find functions f , which agree with the labelled
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Figure 2: Precision-Recall curve at 50K/Concept between
SMaL and Linear SVM, when SIFT & RGB-SIFT are fused.

data and are also smooth with respect to the graph. To
avoid the trivial solution f = 1, a combination of smooth-
ness vector and the training error loss is minimized [1]. The
smoothness of an eigenvector φ has the form

f = Σiαφi (2)

Thus, smooth vectors are linear combinations of the eigen-
vectors with small eigenvalues. In our implementation, we
define f as f = Uα. Thus, the minimization problem re-
duces to the minimization of α, defined as

(Σ + UT ΛU)a = UT Λy (3)

where Σ are the smallest eigenvalues, U is the n × CD ap-
proximate LE vectors, Λ is a diagonal matrix, whose diag-
onal elements are Λii = λ if i is labelled, otherwise λ = 0,
and y are the labels.

3. EXPERIMENTAL SETUP
Training Set Creation: As suggested by the organizers,

we evaluate our results on 1K, 5K, 10K, 20K, 50K, 100K and
150K training images per concept. For better consistency of
the results, we take random sets and use 10 repetitions at
each split (except 150K/concept since it uses all the training
data and cannot be split).

Feature Extraction: We have used the SIFT (d = 128)
and RGB-SIFT (d = 384) local descriptors [6] as features.
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SMaL SVM
Train Test Train test

B ×B, g, U f Model Prediction
1K 5.3 sec 10 mins 1K 23 sec 2.5 sec
50K 59 sec 10 mins 50K 19 mins 2.5 sec
150K 3 mins 10 mins 150K 71 mins 2.5 sec

Table 1: Time Trade-Off between SMaL and linear SVM in
three different splits. Times refer to one repetition

We use a dense regular grid with a spacing of 6 pixels and
perform K-means clustering with a vocabulary size of K =
64 centroids for better performance as proposed in [2]. The
clustering was performed on an independent set of 10,000 im-
ages, randomly sampled from the MIRFLICKR-1M dataset
[4]. The final VLAD vectors are power-and L2-normalized
and then reduced from D = Kd to D′ = 512 and L2-
normalized again [7]. The choice of D only marginally af-
fects accuracy as observed experimentally. We tested the
BoW features, provided by the organizers, with our imple-
mentation, but with inferior results. Probably, BoW would
also need to be reduced by PCA to perform well with SMaL
due to the hypothesis that the data must be as separate as
possible [1]. However, we could not apply PCA on BoW,
since we would need to extract BoW features for an inde-
pendent set of images (we did not have access to the BoW
extraction software).

SMaL Optimization: In ALE, no variable needs opti-
mization, since it was observed that different values of B
and CD did not affect accuracy. Thus, we choose to set
B = 50 for computational efficiency reasons. For the number
of eigenvectors and the Smooth Functions the best results
were obtained with CD = 500 and Λ = 100 respectively. All
values were experimentally defined using the ImageCLEF
2012 dataset [5].

Incremental Learning: Our approach performs incre-
mental learning in batches. We assume that the unlabelled
data come in batches (e.g. 1000 images). We chose to in-
clude 1000 images in a batch (instead of one) for time ef-
ficiency reasons, making sure that the accuracy was unaf-
fected. At first, the algorithm builds the histogram of the
selected training set. From this histogram, we derive the
B×B matrix, the eigenfunctions (g) and the eigenvalues of
the eigenfunctions (σ). After computing the g and σ, we in-
terpolate g at each of the training data to extract Utrain and
Σ. The B × B and g, are then used to compute the eigen-
vectors of the unlabelled data (Utesti) for each batch, by
interpolating g of the training set to the batch data. Utrain

and Utest are then concatenated to produce U .
To measure accuracy, we use the Mean interpolated Aver-

age Precision (MiAP) measure as proposed by the organiz-
ers. The MiAP scores reported in Section 4 are the average
scores from 10 repetitions at each split. Finally, as baseline
a linear SVM was trained using the same local descriptors
as input. A linear SVM was chosen as a smore competitive
method than a kNN algorithm, since it typically achieves
better results in concept detection problems. Also, we could
not use a non-linear SVM (i.e. RBF) due to the excessive
computational cost.

All experiments were coded in Matlab and executed on an
8-core (Intel Quad Core i7-950 @3.07Ghz, 12G RAM) and
a 24-core (an Intel Xeon Q6600 @2.0Ghz, 128G RAM) ma-
chine. The reported execution times (Table 1) were obtained
from measurements on the 24-core machine.
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Figure 3: Comparison of MiAP between SVM (black) and
SMaL (light gray) in case of fusion.

4. DESCRIPTION OF RESULTS
In this section, we provide the experimental results of our

submission. As mentioned above, our method is bench-
marked against a linear SVM classifier. Figure 1 presents
the MiAP of these two methods, as measured using the
SIFT and RGB-SIFT respectively. When using SIFT, it is
observed that as the training set increases, SMaL performs
better than the linear SVM. For instance, if 1K/concept are
used, SMaL yields a MiAP score of 0.3537, while the linear
SVM yields a score of 0.3543, but if 10K/concept are used,
MiAP in SMaL is 0.3842, instead of linear SVM which is
0.3831.

The main observation is that the execution time of SMaL
remains almost unaffected as the training set increases as il-
lustrated in Table 1. For example, if a 50K/concept training
set is used, SMaL needs 59 secs for training and 10 mins to
predict the 500K test set in batches, while linear SVM needs
19 mins for training and 2.5 secs for prediction. Moreover,
if 150K/concept is used SMaL needs 3 mins to compute the
training variables (B × B, g and U) and 10 mins for pre-
diction, while linear SVM needs about 71 mins to learn the
model and 2.5 secs for prediction. This capability of SMaL,
gives us the advantage of using as many training images as
possible, since the computation of eigenvectors is linear to
the number of images and the computation of each batch
is consistent in each split. On the other hand, we report
that SMaL does not perform as well when the RGB-SIFT
descriptor is used.

Table 2 depicts the Mean interpolated Precision (MiP)
for each concept in the smallest (1K) and the biggest split
(150K). Generally, we hypothesize that some concepts like
Sky are more visually coherent, while some others, like Na-
ture or 2012, are more noisy. According to this hypothesis,
we observe that SMaL can predict better than linear SVM
the more noisy concepts. More specifically, in the 1K set
in the Nature concept SMaL performs 0.3535, while SVM
0.3387. Another example is the concept 2012, where the MiP
of SMaL is 0.1967 and of the linear SVM is 0.1849. These
differences increase as we use more training examples. In
150K, in the concept Nature SMaL performs 0.3987, while
the linear SVM yields a MiP of 0.3674. For the concept 2012
the MiP in SMaL is 0.2572 and in linear SVM it is 0.2246.
The best performance for both methods is attained for the
concept Sky, which is much more coherent than the other
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SIFT
Concept # 1K 150K Diff

Nature
SMaL 0.3535 0.3987 0.0452
SVM 0.3387 0.3674 0.0287

Food
SMaL 0.5122 0.5460 0.0338
SVM 0.5146 0.5499 0.0352

People
SMaL 0.2146 0.2623 0.0477
SVM 0.2189 0.2605 0.0416

Wedding
SMaL 0.3925 0.4319 0.0394
SVM 0.3993 0.4436 0.0442

Music
SMaL 0.4064 0.4406 0.0342
SVM 0.4078 0.4342 0.0264

Sky
SMaL 0.5856 0.6101 0.0245
SVM 0.5943 0.6235 0.0292

London
SMaL 0.2686 0.2961 0.0275
SVM 0.2710 0.2903 0.0193

Beach
SMaL 0.4118 0.4392 0.0274
SVM 0.4154 0.4430 0.0276

2012
SMaL 0.1967 0.2572 0.0605
SVM 0.1849 0.2246 0.0397

Travel
SMaL 0.1947 0.2104 0.0157
SVM 0.1981 0.2070 0.0090

RGB-SIFT
Concept # 1K 150K Diff

Nature
SMaL 0.3897 0.4234 0.0337
SVM 0.3812 0.4313 0.0501

Food
SMaL 0.5492 0.5786 0.0293
SVM 0.5527 0.5785 0.0258

People
SMaL 0.2034 0.2301 0.0268
SVM 0.2123 0.2644 0.0520

Wedding
SMaL 0.4115 0.4507 0.0392
SVM 0.4181 0.4563 0.0383

Music
SMaL 0.4239 0.4557 0.0319
SVM 0.4271 0.4617 0.0346

Sky
SMaL 0.6143 0.6376 0.0232
SVM 0.6236 0.6501 0.0266

London
SMaL 0.2665 0.3071 0.0406
SVM 0.2775 0.3059 0.0284

Beach
SMaL 0.4404 0.4656 0.0252
SVM 0.4436 0.4735 0.0300

2012
SMaL 0.2073 0.2616 0.0543
SVM 0.2136 0.2564 0.0428

Travel
SMaL 0.2001 0.2299 0.0298
SVM 0.2094 0.2121 0.0027

Table 2: Comparison of MiP scores between 1K and 150K.

concepts. On the other hand, one of the most difficult con-
cepts proves to be the Travel concept, which in most cases
has a MiP under 0.20. However, RGB-SIFT seems to yield
good performance in this concept at 150K, as depicted in
Table 2.

Fusion: Within SMaL, fusion takes place at the level of
the Laplacian Eigenmap vectors. As a result, we obtained
improved efficiency and better results than SVM. As illus-
trated in Figure 3, SVM performs better than SMaL in 1K,
but as the training set increases, SMaL improves its accu-
racy. In 50K, MiAP in SMaL is 0.4223, while in SVM it
is 0.4133. Figure 2 illustrates the performance comparison
between SMaL and SVM in terms of Precision-Recall curve.
Figure 4 illustrates the top 18 results of the test set (ranked
by prediction score) for four concepts of the GC dataset.

5. CONCLUSIONS
In this paper, we proposed an approximate incremental

semi-supervised learning approach, leveraging VLAD vec-
tors, with the goal of learning very general concepts with
high noise. Our framework significantly decreases the com-
putational requirements of training in view of large amounts

Figure 4: Top 18 images for the concepts: Nature, Food,
Beach and Travel (top-to-bottom) on a 150K training set:
SVM (left), SMaL (right).

of training data, while improving the performance. Our ex-
periments demonstrate that the proposed framework gives
slightly better results compared to the baseline method,
while achieving large computational gains. In the future,
we plan to further investigate the behaviour of our method
to better manage the noisy labels.
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