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Energy efficiency of Convolutional Neural Networks (CNNs) has become an important area of research, with
various strategies being developed to minimize the power consumption of these models. Previous efforts,
including techniques like model pruning, quantization, and hardware optimization, have made significant
strides in this direction. However, there remains a need for more effective on device Al solutions that balance
energy efficiency with model performance. In this paper, we propose a novel approach to reduce the energy
requirements of inference of CNNs. Our methodology employs two small Complementary CNNs that collaborate
with each other by covering each other’s “weaknesses” in predictions. If the confidence for a prediction of
the first CNN is considered low, the second CNN is invoked with the aim of producing a higher confidence
prediction. This dual-CNN setup significantly reduces energy consumption compared to using a single large
deep CNN. Additionally, we propose a memory component that retains previous classifications for identical
inputs, bypassing the need to re-invoke the CNNs for the same input, further saving energy. Our experiments
on a Jetson Nano computer demonstrate an energy reduction of up to 85.8% achieved on modified datasets
where each sample was duplicated once. These findings indicate that leveraging a complementary CNN pair
along with a memory component effectively reduces inference energy while maintaining high accuracy.

1. Introduction layers, require less computational power and energy, making them
more suitable for resource-constrained devices. However, their limited

Energy efficiency is essential for edge devices in resource-
constrained smart environments, where reducing energy consump-
tion is critical for extending device life and lowering maintenance
costs [1]. Although techniques like network condition estimation and
transmission power adjustment have been explored to improve energy
efficiency at the network edge, optimizing deep neural network (DNN)
models for on-device Al applications remains underexplored [2]. DNNs
have proven to be highly effective for solving complex problems in

capacity can restrict their ability to capture complex patterns and
nuances in data, potentially leading to lower accuracy on challenging
tasks [6]. In contrast, large DNN models, with more parameters and lay-
ers, have a greater capacity to learn intricate features and relationships,
often resulting in superior performance on complex problems. This
increased complexity, however, demands substantial computational re-
sources and memory [7], posing a significant challenge for deployment

smart environments, leveraging advancements from various fields, such
as computer vision [3]. As Internet of Things (IoT), smart homes,
and edge computing devices become more widespread, there is an
increasing need to run DNN models directly on edge devices to enable
real-time processing and minimize latency [4]. However, deploying
large DNNs on these devices presents significant challenges due to
their limitations, such as low-power processors and limited memory,
making it difficult to manage intensive computations and large storage
needs [5]. Given that these devices typically operate on batteries, the
high energy demands of DNNs can rapidly drain their power, reducing
their operational longevity.

To address these limitations, one strategy is to compress DNN
models into smaller ones. Smaller models, with fewer parameters and
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on edge devices.

Efforts to mitigate the computational and memory burdens of DNNs
have led to numerous works in the area of DNN compression [8]. These
aim to reduce the model’s computational and memory demands with-
out compromising its performance. However, in practice, these efforts
typically involve a trade-off between reducing model size and compu-
tational resources against the potential loss in model performance and
predictive accuracy [9].

A wide range of smart environment applications, from homes to
cities, are driven by advancements in the field of computer vision [10].
In computer vision, several methods have been developed to build
efficient CNNs [11]. Quantization reduces the precision of weight
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values to conserve memory. Pruning involves the removal of redun-
dant or insignificant neurons to decrease the computational load [12].
Convolutional filter compression and matrix factorization reduce model
size by optimizing the structure of the network. Network Architecture
Search (NAS) is another approach that finds DNNs optimized for in-
dividual devices, ensuring good performance trade-offs. Additionally,
knowledge distillation involves training a smaller student neural net-
work to mimic the behavior of a larger teacher model, with the goal
of maintaining performance while reducing model size [13]. All these
approaches have several limitations, including loss of accuracy in the
compressed model, inefficient capturing of the teacher model’s knowl-
edge, and often considerable computational requirements, increased
complexity and time needed for training, fine-tuning, and knowledge
distillation [14].

Our goal is to implement a CNN architecture that achieves the per-
formance of a large deep CNN while maintaining the energy efficiency
of smaller, more compact models. We explore deploying two small
CNN models on resource-constrained devices in order to attain higher
predictive accuracy than each model could achieve individually. To
this end, we investigate the concept of complementarity. Given a pair
of small CNN models trained on the same dataset, complementarity is
present if each model correctly predicts distinct subsets of the dataset.
This suggests that each model has learned different aspects of the
dataset. By leveraging the correct predictions from each model and
discarding the incorrect ones, we aim to maximize the coverage of
accurate dataset predictions.

To evaluate the validity of a prediction, we employed the confidence
score based on the output logits of the model’s prediction. This provides
a reasonably accurate estimate of prediction validity during inference,
while having the least computational and energy requirements than
other more advanced methods [15]. By utilizing this confidence score
for both deployed models, we select the prediction that is deemed more
accurate.

To further reduce energy consumption, we investigate the possi-
bility of bypassing classification by invoking the CNNs only if the
same input was not previously encountered. We focus on perceptual
hashing [16], a technique that generates a hash value from an image’s
visual content, enabling similar images to have similar hash values.
This method facilitates rapid identification and comparison of images.
By storing the hash and classification for each previous prediction, we
are able to avoid unnecessary CNN inferences.

While our experiments are conducted on CNN architectures, we also
refer to DNNs throughout the manuscript because CNNs are a specific
subcategory of DNNs. Our contributions include the following:

» We propose using two complementary CNNs to improve accuracy
by addressing each other’s prediction weaknesses.

» We introduce a confidence-based mechanism that dynamically
selects the more accurate CNN prediction.

» We present a memory system that stores previous classifications,
allowing the system to bypass the more energy-intensive CNNs.

» We propose an architecture that integrates memory with infer-
ence, activating its components progressively to minimize energy
consumption and response time.

The structure of this paper is as follows: Section 2 reviews related
work, Section 3 describes our proposed methodology, Section 4 reports
our experimental results, and Section 5 presents our conclusions.

2. Related work

The objective of our research is to reduce the energy consumption
and response time of DNN inference, making DNN solutions suitable
for resource-constrained edge devices without compromising predic-
tion accuracy. As we will show in this section, the literature reveals
a gap in solutions that can run on a single edge device, are not
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hardware-specific, and do not rely exclusively on compression tech-
niques. Although compression techniques are the go-to approach, they
involve a computationally intensive process like knowledge distillation
or fine-tuning of pruned models, and they often result in significant
performance degradation.

Apart from pruning and knowledge distillation, the other two promi-
nent compression approaches are quantization, and low-rank factor-
ization [8]. These compression methods do not require a computa-
tional heavy process but they still result in performance degrada-
tion. Recently, researchers have been investigating approaches such
as automating the deactivation of DNN layers, offloading computa-
tional workloads to other computing nodes, and co-designing hardware
and software. We will briefly present these approaches along with
their limitations to better contextualize our work within the relevant
literature.

Hu et al. [17] present a method aimed at improving the energy
efficiency of DNN inference on edge devices by dynamically adapting
the network structure in real time. This technique, known as adaptive
DNN surgery, selectively activates or deactivates certain layers and neu-
rons based on the current computational load and resource availability.
By doing so, the network can optimize its inference speed and reduce
energy consumption, making it well-suited for energy-constrained edge
environments. The dynamic adjustments ensure that only the necessary
parts of the network are active at any given time, thus minimizing
unnecessary computations and associated energy costs. The limitation
of this method is that it is trained for on a specific prediction model
and for every new use case the process should be retrained to activate
and deactivate the layers and neurons.

Zeng et al. [18] present a method to enhance energy efficiency in
DNN inference by offloading tasks across multiple complementary edge
devices. CoEdge dynamically distributes the inference workload based
on each device’s computational capabilities and current energy levels,
ensuring optimal resource utilization and minimizing overall energy
consumption. Real-time adaptability and dynamic load balancing en-
able efficient resource allocation. In this context, Adaptive Stochastic
Learning Automata can dynamically distribute resources to achieve
optimal performance [19]. Additionally, Multi-Agent Deep Learning
has been proposed to adjust resource allocation and enhances the
performance of processing nodes [20]. These “cooperative” approaches
prevent any single device from becoming overburdened, extending the
battery life of all devices involved.

Zhang et al. [21] introduce the coarse-to-fine method to enhance
the efficiency of DNN inference on resource-constrained edge devices.
This operates by initially deploying a lightweight, coarse-grained model
to make fast, preliminary predictions. When the confidence score, also
known as the confidence level, of these initial predictions is sufficiently
high, the results are accepted. If the confidence score is low, indicating
uncertainty, the system escalates the task to a more complex, fine-
grained model for further analysis and refined predictions. This tiered
approach ensures that only a fraction of the tasks incur the heavy
computational load of the large model, thus optimizing the use of
limited edge resources. By performing initial coarse analysis on edge
devices and offloading expensive analysis to more powerful servers if
needed, coarse-to-fine optimizes resource utilization across the edge
network.

While the two above task offloading methods provide improvements
in energy requirements they rely on a group of devices on the edge
network or to the cloud for the more demanding tasks. Our work
surpasses this limitation because it enhances the performance on a
single device for all possible inference tasks without burdening other
computing devices.

Other studies address the DNN optimization problem through hard-
ware/software co-design. This is an integrated approach that involves
jointly designing both the hardware and software components of a
system to optimize performance and energy efficiency. Hao et al. [22]
introduce a method to improve energy efficiency and performance of
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Fig. 1. Overview of our proposed methodology, which consists of two complementary small CNN’s with a memory component.

DNNs on edge devices by co-designing both hardware (FPGA) and
software DNN. The approach leverages the reconfigurable nature of
FPGAs to create customized, energy-efficient hardware accelerators tai-
lored specifically for DNN tasks. It also employs algorithmic techniques
such as model compression and quantization to optimize the DNNs
for reduced computational load. This co-design ensures that both the
hardware and software are highly tuned to work together, significantly
lowering energy consumption and enhancing processing speed.

Lee et al. [23] outline a strategy to enhance the energy efficiency of
DNN processors on mobile devices through the integrated optimization
of hardware and algorithms. By designing specialized, low-power pro-
cessors and employing algorithmic techniques like model compression,
quantization, and pruning, this approach reduces computational de-
mands while maintaining high accuracy. The co-design ensures mutual
optimization, significantly cutting down energy consumption and mak-
ing sophisticated DNN models feasible for real-time, on-device artificial
intelligence applications.

The research limitation we address, compared to the two approaches
mentioned above, is that we aim to provide a general method for
improving the inference energy requirements of DNNs in a hardware-
agnostic manner, with minimal model optimizations or modifications.
Our goal is to enable rapid deployment on a single device using already
trained DNN models.

The closest research to our work was presented by [24]. This
employs a dual network architecture that dynamically switches be-
tween a “small” CNN for simpler tasks and a “big” CNN for complex
tasks based on whether the confidence score of the small CNN falls
below a certain threshold. This method significantly reduces energy
consumption during inference without sacrificing accuracy. The idea of
using two CNN models and selecting the most suitable prediction for a
specific input inspired us to explore how two network architectures can
collaborate effectively. Our paper distinguishes itself from this work by
making further research contributions through complementarity, post-
check mechanism, and perceptual hashing. Additionally, a limitation of
the work by [24] is that they used a simulator for their experimental
evaluation - in particular, they rely on a Verilog-emulated hardware
accelerator — whereas we conducted our experiments on an actual edge
device and a power meter.

A core concept we use to enable efficient collaboration between
the two models is based on the confidence score. Jayakodi et al. [25]
introduced a method for calculating a confidence estimate of a model’s
prediction. Specifically they present a method to balance the accuracy
and energy consumption of DNN inference on embedded systems. We

applied this method to decide which DNN will provide the prediction
outcome.

For the function of our memory component we explored the use of
perceptual hashing. Tang et al. [26] presents a method for generating
perceptual hashes for color images based on invariant moments. The
proposed technique computes these moments from the color image to
create a unique hash value that reflects the image’s visual content. We
empirically found that these moments are not fully invariant, i.e. they
slightly vary under various transformations. A further improvement of
the invariant moments is presented in the work of [27], where they im-
plement invariants from complex moments. These complex invariants
are fully invariant to transformations, and as such we adopted them in
our methodology.

While model compression techniques such as pruning, knowledge
distillation, and quantization aim to create a smaller model that re-
places a larger one, our approach is fundamentally different. Instead
of focusing on compressing a single model, our work emphasizes the
effective collaboration between two complementary small models, each
with strong accuracy and confidence in distinct parts of the data
samples. This approach is more effective than dynamic switching be-
tween a small and large model, as the latter often relies on a large
model that may not be suitable for edge devices. Additionally, our
method incorporates a memory component, which is absent from other
techniques in the literature. This memory component works in synergy
with the inference process. Our proposed method selectively activates
the memory and inference components as needed, optimizing energy
consumption and response time. This approach further distinguishes
our work from traditional compression methods.

3. Proposed methodology

Our proposed methodology leverages two complementary CNNs
to optimize prediction performance while minimizing computational
and energy demands. These CNNs operate sequentially: for a given
input, the first CNN is initially invoked. The output of the first CNN
is evaluated by a prediction confidence score based on the CNN'’s logits
vector. This score is then compared against a threshold, and if it falls
short, the second CNN is invoked. The threshold is a predefined value
that determines the extent of usage of the second CNN as described
in Section 3.4. For the second CNN, a prediction confidence score is
similarly calculated using the score function. If both CNNs are utilized
for a prediction, their respective confidence scores are compared, and
the final decision is based on the more confident prediction.
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We also employ a memory component designed to store prior
classifications for identical or highly similar inputs. When an input first
passes through the memory component, a unique image fingerprint is
generated. This fingerprint is used as a key to access a hash table. If
the hash table contains a value for the key, this is returned without
invoking the CNNs. If no value exists, indicating a new input, the
prediction process as described above is initiated. After classification
using the CNNs, the classification label is saved to the hash table with
the image fingerprint as the key. This component is illustrated in the
upper part of Fig. 1, enclosed in a dashed box. Note that the proposed
dual-CNN architecture can also operate without this component if it is
considered preferable in specific application contexts.

Fig. 1 illustrates an overview of our solution’s architecture, which
comprises three main components: the small CNN architecture A, the
small CNN architecture B, and the memory component. These compo-
nents are activated based on score comparisons. When an input image
arrives, it is first processed by the memory component, specifically
the perceptual hashing module, to generate a fingerprint hash of the
image. If this fingerprint hash already exists in the access hash table,
the corresponding label is retrieved, and the result is returned from
the hash table. If the hash is not found, the image is passed to the
small CNN architecture A, which makes a prediction and computes a
confidence score. If this score exceeds a predefined threshold, the pre-
diction is returned and the hash table is updated. Otherwise, the image
is forwarded to the small CNN architecture B, which also generates a
prediction and a confidence score. The confidence scores are compared
in a post-check, and the prediction with the highest score is returned,
while the hash table is updated accordingly.

An important aspect, shown by the energy arrow on the right of
Fig. 1, is the varying energy consumption. If the image already exists
in the hash table, the energy usage is minimal. When the image is
processed by the small CNN architecture A, the energy increases, and
it rises further if the small CNN architecture B is also engaged. The
following subsections describe each component and the checks of the
proposed solution in more detail.

3.1. Two complementary CNNs

Our methodology incorporates two distinct and compact CNN ar-
chitectures. This strategy capitalizes on the diverse design principles
of each model, allowing them to complement each other’s deficiencies.
In instances of classification ambiguity, the utilization of an alterna-
tive CNN mitigates such limitations, given that each neural network
captures unique facets of the dataset’s information. Opting for two
small models, as opposed to a mixture of large and small ones, further
minimizes power consumption as we will see in the experimental
evaluation.

The concept of complementarity is illustrated in Fig. 2. The gray
box represents the whole dataset, of which we consider that the volume
outside the circles represent the percentage of labels that are incorrectly
predicted by both models and the correct predictions made by a pair of
CNNs represented by blue and green circles as subsets of the dataset.
The complementarity is function of the symmetric difference between
the correct predictions of the two CNNs. The four parts of the Fig. 2
show four examples that help us understand intuitively the idea of
complementarity.

In the case of Fig. 2a, both models correctly predict a large por-
tion of the dataset, but their predictions overlap significantly. This
substantial intersection indicates low complementarity, as the mod-
els frequently predict the same samples. Consequently, this results in
redundant resource utilization and increased energy consumption.

Fig. 2b depicts a scenario with high complementarity and extensive
correct prediction coverage. However, the size disparity between the
models is not optimal, as the larger green model requires higher energy
consumption.
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Fig. 2c illustrates a fully complementary pair with no overlap in
their correct predictions. However, their overall prediction coverage is
low, resulting in limited accuracy. Despite their perfect complementar-
ity and equal size, the limited complexity and small size of these models
lead to suboptimal accuracy.

Finally, Fig. 2d presents the ideal scenario, where both models have
similar size, and together they cover a large portion of the dataset with
minimal overlap, thus achieving high complementarity and optimal
resource utilization.

We define the complementarity of a pair of CNN models with the
formula given in Eq. (1)

n(a U b) — n(anb) — |n(a) — n(b)|

complementarity(a, b) = N )

Given all the correct predictions from a dataset as represented by
the set N, then the subsets a and b represent the correct predictions of
models a and b respectively.

The first term is defined as:

N
nau b)= Y T2yl yme) )
i=1
where the indicator function I! is defined as:
1 lf ya — ytrue
Hl(ya’yb’ytrue) =41, if yb - ytrue (3)
0, otherwise

The second term is defined as:

N

nanb)= Y oL, y0,yme) @
i=1

where the indicator function I2 is defined as:

1, if ya — ytrue and yh — yrrue
o, yP, ye) = : ®)
0, otherwise

The third term components are defined as:

N
n(a) = Y PG, Y O]
i=1
N
n(b) = Y TH(yP, yire) %)
i=1
where the indicator functions I? and I* are defined as:
1’ f a — yftrue
HS(ya’ytrue) - i1y y (8)
0, otherwise
and
1 if b _ true
H4(yb’ytrue) — , 1Ly yt (9)
0, otherwise
respectively.

For the above Egs. (2), (4), (6) and (7), ¥ is the prediction from
model a, y,.b is the prediction from model b and y!™¢ is the true label for
a given input i.

The formula (1) consists of three terms in the numerator. The first
term, n(aub), represents the total number of correct predictions covered
by either of the two models in the given dataset. The objective is to
maximize this term to ensure that the combined predictive capability
of the models is as comprehensive as possible.

The second term, n(a N b), represents the overlap of correct pre-
dictions between the two models, meaning, the instances that both
models predict correctly. The objective is to minimize this overlap
since it is subtracted from the complementarity score. The rationale
is that reducing the intersection of correct predictions helps eliminate
redundancy, optimizing the use of computational resources. Ideally,
the goal is to use smaller models with minimal overlap, ensuring
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Fig. 2. Complementarity based on the predictions of two CNN models.

they together cover the same prediction space as larger models. The
two models become accurate on different data subsets, covering each
other’s weaknesses without leading to poor generalization. The models’
capacity to generalize is preserved because they do not overfit, neither
on samples where they exhibit high confidence nor on samples where
they exhibit low confidence.

The third term, |n(a) — n(b)|, measures the disparity in the sizes of
the two models in terms of number of correct predictions. This term
should also be minimized. A case where a significant size disparity
exists, where one large model may cover the majority of predictions
(e.g., 95%), while a much smaller model covers the remainder (e.g.,
5%), could also be considered a complementary pair. However, this
would lead to inefficient resource usage, as it relies heavily on a large,
resource-intensive model. Ideally, the models should be of comparable
size, each covering distinct portions of the dataset’s predictions to
promote balanced and efficient use of computational resources.

3.2. Confidence score functions

CNNs in a classification problem produce a logits vector Z, which,
upon passing through a softmax function (10), is converted into a
probability distribution vector p.

eci

i €

o(Z); = (10)
where i and j are the ith and jth element of the logits vector.

Each dimension of this vector corresponds to a class, with the value
o(Z); indicating the probability that the input belongs to that class.
We then operate on this probability vector applying one of three score
functions, as presented in [25]:

(a) The Max Probability score function (11) simply selects the
highest value from the probability distribution vector. When the CNN
is confident in its prediction, this top probability will approach 1.

score(p) = max({py. ....p,)) an
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(b) The Difference score function (12) calculates the disparity be-
tween the first and second highest values in the output probability
vector.

score(p) = p; — p; 12)

where p; is the largest value in the probability vector 5 and p; is the sec-
ond largest value. A larger difference signifies greater confidence in the
prediction, as the highest value approaches 1 while the second highest
approaches 0. The Difference score function sometimes outperforms the
Max Probability in confident predictions, as the top probability may be
high, but the second may also hold a small yet significant value.

(c) The Entropy score function (14) computes the entropy of the
output probability vector. A lower entropy value corresponds to higher
prediction confidence. In theory, lower entropy suggests higher confi-
dence in prediction, indicating that the CNN has confidently assigned a
single class. Conversely, higher entropy suggests a more evenly spread
distribution, indicating lower confidence.

N
entropy = — Z p; In(p;) 13)
i=1

We employed a normalized version of the standard entropy formula
to convert the score values into the range of [0, 1], making them more
comparable to the other two score functions:

- Z,]L p; In(p;)
-3 f In (é)
where K is the total number of classes of the dataset.
The selection of a score function among the three available options
depends on the specific CNN pair under consideration, as the perfor-
mance of each function can vary across different pairs. Empirically, we
have determined that the Difference score function (12) generally yields

the best performance in the majority of cases. This observation aligns
with the findings reported by [24].

score(p) = 14

3.3. Score comparison & post-check

The confidence score is utilized in two steps. First, it is employed
to compare the score value of the initial CNN against a predetermined
threshold. This comparison determines whether to trigger the subse-
quent CNN. Second, after the invocation of the second CNN, a second
confidence score is computed. The two confidence scores are compared,
and the prediction of the CNN with the highest (or lowest, if the entropy
score function is applied) score is selected. We name this comparison
“post-check”, indicating an assessment that follows the inference and
confidence score of the second CNN. This approach is advantageous
as we will see in the experimental evaluation because in some cases
the initial CNN may show greater confidence and potentially higher
accuracy in its predictions than the second CNN, even if it fails to
surpass the threshold test.

3.4. Threshold hyper-parameter

The threshold hyperparameter is a fixed value that determines the
extent of usage of the second CNN. By employing lower values (or
higher in the case of the entropy score function), the utilization of
the second CNN is reduced, thereby decreasing energy consumption
but also affecting accuracy. However, by employing a higher threshold
value, although the invocation of the second CNN becomes more fre-
quent, this does not necessarily result in higher accuracy, as evidenced
by [24].

Our selection of CNN architectures is primarily influenced by the
complementary nature of the two CNNs. Since both are nearly equal in
size, prediction accuracy, and capabilities, there is no inherent advan-
tage of the second CNN over the first; however, since the first CNN is
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Fig. 3. Fine-tuning approaches to increase complementarity.

used 100% of the time, it is preferable to refrain from using the second
as much as possible. Nonetheless, there exists an optimal trade-off that
could maximize accuracy. In our methodology, we compute the value
that leads to maximum accuracy for the selected CNNs architectures by
using the following method in the training dataset.

If we define the achieved accuracy result of our setup, given N
samples and a A value as:

N .
1 1, if H(a(x;), b(x;),s,A) = y;rue
acc(A) = ~ Z {O,

@15)
= otherwise

where the function H represents our methodology setup that returns a
prediction J in a single inference and a(x;) and b(x;) are the predictions
of model a and model b respectively of the selected CNN pair given
an input x;, s = score(p) the selected of the three scoring functions
and A the provided threshold hyper-parameter. The optimal value of
4, denoted as 4%, is determined as the one that maximizes the accuracy
of the selected setup and can be calculated:

A* = argmax(acc(4)), for 0 <A<1 (16)
A

where acc(4) is the Eq. (15).

To determine the optimal threshold hyperparameter, we first select
a pair of CNNs exhibiting a high complementarity score based on
equation (1) and one of the confidence score functions (Section 3.2).
We then apply our methodology iteratively for various 4 values within
the range [0, 1]. This procedure is repeated for each score function,
allowing us to identify the optimal combination of score function and
A* that maximizes the accuracy for the chosen CNN pair.
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3.5. Memory component

As an enhancement to our CNN complementary methodology, we
incorporate a memory component designed to reduce energy con-
sumption during predictions under specific conditions. This component
aims to recall whether a previous classification has been made for
a given input, thereby bypassing the need to invoke the CNN when
possible. As noted by [7], data movement through memory is a highly
energy-intensive process. To address this, we utilized a combination of
perceptual hashing [26], which generates a unique fingerprint based
on the contents of an image, and a hash table data structure to store
and retrieve classification labels for each input. For each input, the
required memory access operations are either one read, if the image
classification label exists in the hash table, or one read and one write
operation, if the input image is new. This approach ensures that energy
consumption is kept to a minimum.

According to Fig. 1, every new input image first passes through the
memory component, where a hash value is calculated for that image.
This is then used as a key to either read or add it, if it does not exist,
to a key-value store. The value corresponds to the classification label
of the image. If the same image has been classified before, then the
read operation using the calculated hash value from the hash table
will return the class label, thus skipping the invocation of the CNNs.
If no such key exists in the store, then the image is a new input and is
thus provided to the CNNs for classification. After the classification, the
label, along with the calculated image hash, is added to the key-value
store.

To calculate the image hash code, we explored two Perceptual
Hashing methods [27]:

1. Difference Hash
2. Invariants from Complex Moments.

The Difference Hash method is the simplest and least computation-
ally intensive approach. It functions by detecting gradients within the
image. A bit sequence is computed wherein each bit and denotes a
change in brightness between adjacent pixels. The setting of each bit
is determined by whether the brightness of the left pixel surpasses that
of the right one. This sequence is subsequently serving as the image
fingerprint and key for the hash map. Although the Difference Hash
method offers rapid and energy-efficient hashing, it is susceptible to
alterations in the image, including significant fluctuations in brightness
and contrast, as well as rotations and mirroring, resulting in distinct
calculated fingerprints.

The second method utilizes complex moments of an image to cal-
culate fully rotation-invariant features that remain unchanged despite
spatial transformations, as described in [27]. We obtain six invariant
features represented as a six-dimensional vector of floating points. All
of these values are fully invariant to rotations, and four of them are
both fully invariant to rotations and additionally to mirroring in any
axis, meaning that even if the image is rotated or mirrored these four
values remain the same. We sum these four fully invariant values
to receive a single floating-point number that represents the image
and is considered the fingerprint, subsequently used as the key in the
key-value store, as described above.

3.6. Enhancing complementarity

To enhance the complementarity of a chosen pair, we fine-tune the
CNN models. Our objective is to “push” each model toward different
areas of the dataset, thereby improving accuracy gains and overall
performance. The core idea is to use the failed prediction instances from
one model to train the other model for a few epochs, and vice versa.
We explore two primary approaches to fine-tuning: (a) using only the
instances where predictions failed and (b) using both the failed and
successful prediction instances.
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In the first approach, shown on the left side of Fig. 3, we select a
complementary pair of models and pass the validation dataset through
the first model. We then collect all instances where the model makes
incorrect predictions into a separate subset. This subset is used to train
the second model for a few epochs. After fine-tuning the second model,
we reverse the process. We pass the validation dataset through the
second, now fine-tuned model, collect the failed predictions into a
separate subset, and use this subset to fine-tune the first model.

In the second approach, shown on the right side of Fig. 3, we
again select a complementary pair of models and pass the validation
dataset through the first model as before. However, this time, we also
pass the validation dataset through the second model, capturing the
instances where predictions are correct. We then combine the incorrect
predictions from the first model with the correct predictions from the
second model into a single subset, which is used to train the second
model. Next, we reverse the process by passing the validation dataset
through both models again. This time, we collect the failed instances
from the fine-tuned second model and the correct instances from the
first model, combine them into a single subset, and use it to train the
first model. This method aims to prevent the overfitting observed in the
first approach, which occurs when training on a small subset of data.

4. Experimental evaluation

In this section, we present the experimental evaluation of our
proposed methodology. Our objective is to assess the performance and
efficiency of our method, utilizing Accuracy, Precision, Recall, and
F1 Score for performance evaluation, as well as measuring energy
consumption, current, and tail latency.

Sections 4.1, 4.2, and 4.3 detail the experimental edge device,
the datasets used, and the evaluation metrics, respectively. The CNN
models used in our proposed methodology are described in Section 4.4.
In Section 4.6, we summarize the experimental outcomes and discuss
the evaluation results.

4.1. Edge device

We conducted our experiments on a Jetson Nano computer with
a Quad-core ARM Cortex-A57 MPCore processor, 4GB RAM, and 128
NVIDIA CUDA cores, operating in 5 W mode. The system OS was
Ubuntu 20.04.6 LTS, and as the machine learning framework we used
PyTorch 1.13.0 with Python 3.6. The experiments’ source code is
available on GitHub.! The Jetson was powered through the USB at
5.15V, and we used a USB power meter capable of measuring milliamps
(mAh) and watt-hours (Wh) to the second decimal digit.

4.2. Datasets

We conducted our experiments on CIFAR-10 [28], comprising
10,000 validation images of size 3x32x32 spread across 10 classes,
Intel Image Classification,” comprising 3,000 validation images of size
3 x 150 x 150 spread across 6 classes, FashionMNIST [29], comprising
10,000 images of size 1 x 28 x 28 spread across 10 classes and
ImageNet [30], comprising 50,000 images of size 3 x 224 x 224
spread across 1,000 classes. More specifically, the ImageNet model
architectures are designed to receive 3 x 224 x 224 size inputs, but
the actual images in the ImageNet dataset have higher varying widths
and heights. The vast majority of these images contain 3 channels
(RGB), while a few are grayscale with only 1 channel. The Jetson Nano
was unable to load all 50,000 test images into main memory, at their
default dimensions, as this would require significantly more than the

1 https://github.com/michaelkinnas/Reducing-Inference-Energy-
Consumption-Using-Two-Complementary-CNNs
2 https://www.kaggle.com/datasets/puneet6060/intel-image-classification
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1 2 3 4 5 6 7 8 9 10 11 12 13 14
1 1: mobilenetv2_x0_5
2: mobilenetv2_x0_75
2 3: mobilenetv2_x1_0
3 4: mobilenetv2_x1_4
5: repvgg_a0
4 6: repvgg_al
7: repvgg_a2
5 8: resnet20
9: resnet32

10: resnet44
11: resnet56
12: shufflenetv2_x1_0
13: shufflenetv2_x1_5
: shufflenetv2_x2_0
9-0.61 0.53 0.54 0.52 0.45

1040.54 0.59 0.60 0.55 0.48
1140.48 0.53 0.52 0.51 0.48 0 0.46
1240.59 0.47 0.47 0.47 0.43 0.38 0.56

0.54 0.50 0.51 R«

1340.53 0.54 0.50 0.47 0.46

1440.51 0.53 0.53 0.50 0.42 0.56 0.49 0.45 0.48 [N}

Fig. 4. Complementarity matrix of CIFAR-10 available pretrained PyTorch models.

4GB of available RAM. To address this limitation, we selected a subset
of 10,000 images from the test dataset, comprising 10 images from each
of the 1,000 classes. We pre-processed these images by resizing them to
224 x 224 pixels and converting grayscale images to 3-channel images.

To determine the optimal hyperparameter A* for achieving the
highest accuracy, as mentioned in Eq. (16), we can use a validation
dataset or a part of the training dataset. For ImageNet, we utilized the
additional 40,000 images from the test set as our validation dataset.
However, for the CIFAR-10 dataset, which does not have a designated
validation dataset, we employed the training set for this purpose.
To test the memory component we duplicated our samples for each
dataset at different ratios, while also applying simple transformations
such as rotations and mirroring on the duplicates, and run the same
experiments once using the difference hash method and once using the
invariants from complex moment method as described in Section 3.5.

4.3. Evaluation metrics

We measured performance using four metrics: Accuracy, Precision,
Recall, and F1-score. Accuracy is defined as the ratio of correctly pre-
dicted instances to the total instances. Precision is the ratio of correctly
predicted positive instances to the total predicted positives. Recall is the
ratio of correctly predicted positive instances to all actual positives. F1-
score is the harmonic mean of Precision and Recall, providing a single
metric that balances both concerns. Precision, Recall, and F1-score are
calculated from the perspective of a specific class, but for our multi-
class classification task, we averaged these metrics across all classes.
For energy consumption, we measured the current in milliamps (mAh)
and energy consumption in watt hours (Wh) used throughout the entire
inference process.

We conducted the inference process for each dataset, processing one
sample at a time to measure response times. We recorded the mean
response time in milliseconds (ms), as well as the 95-th and 99-th
percentile tail latencies, defined as the maximum response times that
95% and 99% of the input samples respectively experienced from the
time a sample enters the system to when it produces a result. Tail
latency [31] is a more important evaluation metric than mean response
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Fig. 5. Post-check Evaluation, using the Difference score function on the ImageNet
validation dataset using our configuration I3.

time in latency-sensitive edge computing systems. The reason is that tail
latency directly impacts user satisfaction and service level agreements
by ensuring that even a small percentage of users do not face unaccept-
ably long delays. It provides a more comprehensive evaluation metric
of on-device artificial intelligence applications by highlighting extreme
values in the response time distribution, which traditional metrics may
overlook.

4.4. CNN models

We utilized benchmark CNN models available from PyTorch Hub.?
Our selection criteria ensured that the largest model could run on
the Jetson Nano device while achieving high prediction accuracy,
along with its smaller variant. Two models from PyTorch Hub will
be used as the basis for our big/little implementation in the com-
parisons. The large CNN also serves as the single large model in our
experimental analysis. Additionally, we included a pruned version of
this large model, along with a smaller model trained through knowl-
edge distillation from the large model. This allows us to compare
our methodology with established model compression techniques for
a comprehensive evaluation. More specifically, with the pruned model,
we began with the large baseline model and systematically pruned it
to a size comparable to the combined size of the CNN pair used in our
methodology, ensuring fair comparison. For the small distilled model,
we started with a single, similarly-sized small model and applied a
standard knowledge distillation method, using the large model as the
teacher. It is important to note that we do not include a distilled model
for the ImageNet dataset due to the substantial challenges in training
with this large dataset, particularly in terms of time and computational
resources. However, we have provided a distilled model for the other
three datasets, CIFAR-10, Intel and FashionMNIST.

We did not find any comprehensive list of pretrained models for the
Intel and FashionMNIST datasets, therefore, we used the already pre-
trained models from CIFAR-10 and applied standard transfer learning,
fine-tuning all layers for a few epochs.

To identify suitable pairs of CNNs for our proposed methodology,
we applied the complementarity formula (1) to the models available
in PyTorch Hub, resulting in the complementarity matrix as shown in
Fig. 4. This matrix displays all possible combinations of model pairs and
their corresponding complementarity scores for the CIFAR-10 dataset.

3 https://pytorch.org/hub/
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The highest score was observed between ResNet-20 and MobileNetV2-
0.5, making this pair our selection for our methodology. For better
illustration, all values are multiplied by 10. The diagonal elements
of the matrix have a complementarity score of 0, as identical models
produce identical predictions, representing full homogeneity.

We employed a similar process for selecting the model pair for the
ImageNet dataset which we do not illustrate for the sake of brevity.
After selecting the most suitable models, we evaluated each one indi-
vidually to establish a baseline. The results are summarized in Table 1.

Table 2 details all the experimental configurations discussed in this
paper including a single large model, a pair of a large and a small model
and four pairs of small complementary models for every dataset. Each
configuration is identified by a prefix letter representing the dataset (CI
for CIFAR-10, IM for ImageNet, IN for Intel and FM for FashionMNIST)
and a suffix number indicating its sequence in the table. Our proposed
methodology configurations are denoted by identifiers CI3 to CI5, IM3
to IM5 and IN3 to IN5 and FM3 to FM5 while the configurations used
for comparison are identified as CI1, IM1, IN1 and FM1 for the single
large model, CI2, IM2, IN2 and FM2 for the big/little representation,
CI6, IM6, IN6 and FM6 for the single large pruned model and CI7, IN7
and FM7 for the small distilled model. We will use this terminology in
the Sections 4.6 of outcomes and discussions.

Confidence score functions and threshold values for all experimen-
tal configurations using two CNNs were determined by applying the
formula (16). The final combination of score function and threshold
value was selected based on the maximum achieved accuracy for each
configuration.

4.5. Fine-tuning CNN pairs

To implement the fine-tuning methods, we first selected five pairs
from the ImageNet dataset, with the highest complementarity using the
complementarity matrix. We then applied the fine-tuning approaches
outlined in Section 3.6. Once the fine-tuning was completed, we evalu-
ated the fine-tuned pairs using our primary methodology as described
in the rest of Section 3. Finally, we compared the accuracy of the
fine-tuned pairs against the same models with their default pre-trained
weights obtained from PyTorch Hub.

4.6. Results

4.6.1. Post-check ablation

First, we want to examine the application of the post-check mech-
anism, described in Section 3.3. Fig. 5 shows the accuracy in the
validation dataset (left axis) with post-check (orange line) and without
post-check (blue line) in the IM3 configuration, which includes the
models MnasNet-1.3 and Densenet-121 using the ImageNet dataset. The
vertical lines show the selected threshold hyperparameter 4*, 0.0983 in
this case, which achieves the best accuracy, for this specific configura-
tion. By incorporating post-check, we observe a slight enhancement in
the total accuracy of the setup. In addition we see the percentage of
usage (right axis) of the second model (red line) as a function of the
A hyperparameter. As the value of 4 increases, the usage of the second
model also increases.

4.6.2. 2 sensitivity analysis

We examine the relationship between accuracy and energy
consumption as a function of the A parameter. As shown in Fig. 9,
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Table 1

Baseline measurements of performance and efficiency metrics on our selection of CNN models.
Dataset Model N. Parameters Response times (ms) Current Power Accuracy

M) mean 95th 99th (mAh) (Wh) (%)

CIFAR-10 Resnet 20 0.27 22.3 23.3 23.8 48 0.25 92.60
CIFAR-10 MobileNetV2-0.5 0.70 42.4 43.8 44.3 81 0.41 93.12
CIFAR-10 RepVGG-AO 7.84 51.9 53.8 54.4 125 0.64 94.46
CIFAR-10 RepVGG-A2 26.82 64.8 65.3 67.0 225 1.20 95.27
CIFAR-10 ShuffleNet V2 X-1.0 (distilled) 1.26 53.0 54.4 56.1 40 0.75 77.36
ImageNet MnasNet-1.3 6.3 46.6 47.2 85.1 165 0.88 69.17
ImageNet DenseNet-121 7.9 131.0 141.1 149.0 398 2.12 69.65
ImageNet RegNet-X-800MF 7.3 118.4 127.7 133.1 283 1.50 67.89
ImageNet RegNet-X-8GF 39.6 235.1 237.8 238.7 845 4.50 73.11
Intel MobileNetV2-X1.0 2.24 43.6 45.3 52.8 0.13 24 86.70
Intel Resnet 44 0.66 44.6 47.2 48.2 0.11 20 85.60
Intel RepVGG-AO 7.84 54.4 55.2 56.3 0.16 30 81.83
Intel RepVGG-A2 26.82 65.0 65.5 87.6 0.28 54 88.03
Intel ShufflenetV2-X1.5 (distilled) 2.48 49.3 54.0 55.6 0.12 23 82.20
FashionMNIST MobileNetV2-X1.0 2.24 44.8 46.8 47.1 0.34 65 86.86
FashionMNIST Resnet 44 0.66 43.5 45.2 45.5 0.38 72 86.59
FashionMNIST RepVGG-AO 7.84 54.0 54.6 55.3 0.52 99 88.88
FashionMNIST RepVGG-A2 26.82 64.8 65.4 68.6 0.93 176 90.00
FashionMNIST ShufflenetV2-X1.5 (distilled) 2.48 52.0 53.0 55.3 0.40 76 87.76

Table 2

Experimental configurations.
Identifier Description First model Second model Score Threshold Memory

function value

CI1 Single large model RepVGG-A2 - - - -
CI2 Big/little representation RepVGG-AO RepVGG-A2 Difference 0.99 -
CI3 Small complementary pair Resnet 20 MobileNetV2-0.5 Difference 0.8724 No
CI4 Small complementary pair Resnet 20 MobileNetV2-0.5 Difference 0.8724 DHash
CI5 Small complementary pair Resnet 20 MobileNetV2-0.5 Difference 0.8724 Invariants
CI6 Single large model (pruned) RepVGG-A2 - - - -
CI7 Single small model (distilled) ShuffleNet V2 x1.5 - - - -
M1 Single large model RegNet-X-8GF - - - -
M2 Big/little representation RegNet-X-800MF RegNet-X-8GF Difference 0.9074 -
M3 Small complementary pair MnasNet-1.3 Densenet-121 Difference 0.0983 No
M4 Small complementary pair MnasNet-1.3 Densenet-121 Difference 0.0983 DHash
M5 Small complementary pair MnasNet-1.3 Densenet-121 Difference 0.0983 Invariants
M6 Single large model (pruned) RegNet-X-8GF - - - -

IN1 Single large model RepVGG-A2 - - - -

IN2 Big/little representation RepVGG-AO RepVGG-A2 Difference 0.6 -

IN3 Small complementary pair MobileNetV2-1.0 Resnet 44 Difference 0.2166 No

IN4 Small complementary pair MobileNetV2-1.0 Resnet 44 Difference 0.2166 DHash
IN5 Small complementary pair MobileNetV2-1.0 Resnet 44 Difference 0.2166 Invariants
IN6 Single large model (pruned) RepVGG-A2 - - - -

IN7 Single small model (distilled) ShuffleNet V2 x1.5 - - - -

FM1 Single large model RepVGG-A2 - - - -

FM2 Big/little representation RepVGG-AO RepVGG-A2 Difference 0.9 -

FM3 Small complementary pair Resnet 44 MobileNetV2-1.0 Max Probability 0.7917 No

FM4 Small complementary pair Resnet 44 MobileNetV2-1.0 Max Probability 0.7917 DHash
FM5 Small complementary pair Resnet 44 MobileNetV2-1.0 Max Probability 0.7917 Invariants
FM6 Single large model (pruned) RepVGG-A2 - - - -

FM7 Single small model (distilled) ShuffleNet V2 x1.5 - - - -

increasing the A parameter tightens the acceptance threshold for pre-
dictions from the first model. As a result, the second model is invoked
more frequently, leading to higher energy consumption. In this figure,
the blue curve represents the accuracy as A varies, with its correspond-
ing y-axis on the left, while the red curve depicts the total energy
consumed during inference on the test set, with its y-axis on the
right. When A approaches 0, the first model predominantly generates
the predictions, resulting in lower overall accuracy, similar to the
performance of using only the first model, as only its predictions are
accepted. As 1 increases, the second model is invoked more frequently.
Additionally, the figure shows that accuracy remains largely stable,
except for very small values of A. This stability is maintained by the
Post-check mechanism, which ensures that the most reliable prediction
is selected for each input. Without this mechanism, as shown by the
blue curve in Fig. 5, accuracy declines because the second model’s pre-
dictions are accepted unconditionally when the confidence threshold of
the first model is not met.

4.6.3. Score functions comparison

To gain a deeper understanding of the selection process among the
three available score functions, we present a comparative performance
analysis using the 1* parameter search function (Eq. (16)). Two addi-
tional figures are included to illustrate the Post-check evaluation for the
Max Probability score function (Eq. (11)) in Fig. 10 and for the Entropy
score function (Eq. (14)) in Fig. 11. These are compared alongside
the previously discussed Difference score function (Eq. (12)) shown in
Fig. 5.

From the comparison of these figures, it is evident that for our spe-
cific ImageNet configuration (IM3), utilizing the pair of CNNs MnasNet-
1.3 and Densenet-121, the best performance is achieved with the
Difference score function at A* = 0.0981, yielding the highest accuracy
on the validation dataset. Notably, the Entropy score function performs
the worst for this particular CNN pair. Additionally, it is observed that
in all three cases, the use of the Post-check mechanism consistently
results in either improved or, at minimum, comparable performance
across the full range of 4 values.
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Fig. 6. Current and Energy consumption measurements of tested configurations for (a) CIFAR-10, (b) ImageNet, (c) Intel and (d) FashionMNIST datasets.
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4.6.4. Energy evaluation

Fig. 6 presents a comparison of energy consumption across different
experimental configurations (Table 2) for the CIFAR-10, ImageNet,
Intel and FashionMNIST datasets. For the CIFAR-10 dataset, our config-
uration (CI3) demonstrates a substantial reduction in energy consump-
tion, achieving a 62.6% decrease compared to the big/little configura-
tion (CI2) and a 76.9% decrease relative to the single large model (CI1).
Additionally, it reduces energy consumption by 25.6% compared to the
large pruned model (CI6) and by 30.7% when compared to the small
distilled model (CI7).

A similar trend is observed with the ImageNet dataset. Our con-
figuration (IM3) reduces energy consumption by 62% relative to the
big/little configuration (IM2) and by 65.3% when compared to the
single large model (IM1). In comparison to the large pruned model
(IM6), energy consumption is decreased by 32.6%.

For the Intel dataset, our configuration (IN3) achieves a 43.5% re-
duction in energy consumption compared to the big/little configuration
(IN2) and a 52.9% reduction relative to the single large model (IN1).
However, it shows a slight 4% increase in energy consumption com-
pared to the large pruned model (IN6) and a 13% increase compared
to the small distilled model (IN7).

Lastly, for the FashionMNIST dataset, our configuration (FM3)
results in a 49% decrease in energy consumption compared to the
big/little configuration (FM4) and a 57.5% reduction relative to the
single large model (FM1). It also achieves a 6.2% reduction in energy
consumption compared to the large pruned model (FM6), while con-
suming an equivalent amount of energy as the small distilled model
(FM7).

To evaluate the system’s performance in a dynamic IoT setting
with constantly changing inputs, we conducted the following exper-
iment. We provided 10 randomly selected batches (each containing
100 images) from CIFAR-10 and 10 batches (each containing 100
images) from ImageNet, which were fed to the Jetson Nano device in
random order. The Jetson Nano forwarded each image to the DNNs
presented in Table 2. This setup created a highly dynamic scenario with
continuously changing and unpredictable input streams. Power con-
sumption was measured using a power meter, and the results showed
that the approach with the Single large models consumed 0.57 Wh,
the Big/Little models consumed 0.484 Wh, and the small comple-
mentary pairs consumed 0.177 Wh. These findings demonstrate that
the proposed approach effectively balances energy efficiency in high-
throughput, variable data streams and outperforms other methods in
this dynamic environment.

4.6.5. Performance evaluation

Fig. 7 illustrates the inference performance metrics. For the CIFAR-
10 dataset, our configuration (CI3) shows a 1.67% performance degra-
dation compared to the big/little configuration (CI2) and a 1.39%
degradation relative to the single large model (CI1). However, when
compared to the large pruned model (CI6), our configuration shows
a 9.0% improvement in performance, and a 16.5% increase when
compared to the small distilled model (CI7).

A similar trend is observed on the ImageNet dataset. Our configu-
ration (IM3) shows a 2.19% performance degradation relative to the
big/little setup (IM2) and a 2.12% degradation compared to the single
large model (IM1). In contrast, our configuration demonstrates an 8.0%
performance improvement over the large pruned model (IM6).

For the Intel dataset, our configuration (IN3) shows a slight per-
formance increase of 0.03% compared to the big/little configuration
(IN2), though there is a 0.57% decrease in performance relative to the
single large model (IN1). However, it achieves a 2.0% performance im-
provement over the large pruned model (IN6) and a 3.2% improvement
compared to the small distilled model (IN7).

Last, for the FashionMNIST dataset, our configuration (FM1) ex-
hibits a 2.12% decrease in performance relative to the big/little config-
uration (FM2) and a 2.06% decrease compared to the single large model
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(FM1). In contrast, it demonstrates a 0.56% performance improvement
over the large pruned model (FM6) and a 0.18% increase relative to
the small distilled model (FM7).

We should clarify that classification in ImageNet generally has
lower performance than in CIFAR-10, Intel and FashionMNIST due to
the significantly larger and more diverse set of images and classes in
ImageNet, which increases the complexity and difficulty of the classi-
fication task. Although our methodology results in a slight decrease in
performance metrics close to 2% due to the use of significantly smaller
models, it achieves substantial improvements in energy consumption
close to 70%, which is the primary objective of this research.

4.6.6. Complementarity evaluation

To evaluate the improvement in accuracy achieved by leveraging
the complementarity of the CNN pairs we made experimental com-
parisons of the CNNs pairs against the single CNNs they include and
six CNNs pairs with different complementarity values. In Fig. 7 we
see the performance of the pair configurations against the baseline
performance of each individual model within each pair, as shown in
Table 1.

For the CIFAR-10 dataset, our implementation (CI3) exhibits a
0.76% increase in prediction accuracy over the best-performing indi-
vidual model it includes (i.e. MobileNetV2-0.5), while the big/little
configuration (CI2) shows a 0.28% improvement against the single big
CNN (i.e. RepVGG-A2).

Similarly, for the ImageNet dataset, our implementation (IM3)
achieves a 1.34% increase in prediction accuracy compared to the
highest-performing single model (i.e. DenseNet-121), whereas the big/
little configuration (IM2) demonstrates only a 0.07% enhancement
compared to the single large CNN (RegNet-X-8GF).

For the Intel dataset our configuration (IN2) achieves a 0.7%
increase in prediction accuracy over the best-performing individual
model in includes (i.e. MobileNetV2-X1.0), while the big/little config-
uration (IN3) shows a 0.9% decrease in predictive performance against
the single big CNN (i.e. RepVGG-A2).

Last, for the FashionMNIST dataset our implementation (FM3)
shows a 1.35% increase in prediction accuracy over the best-performing
individual model it includes (i.e Resnet44) whereas the big/little con-
figuration (FM3) shows only an 0.06% increase in prediction accuracy
compared to the single large model (i.e. RepVGG-A2).

The experiments using six pairs of CNNs with different complemen-
tarity values are illustrated in Fig. 12. The green and orange segments
of the stacked bars represent the accuracy of the individual CNNs.
The purple segment indicates the accuracy of CNN pairs based on our
proposed methodology. The numbers inside the stacked bar charts show
the accuracy gain of the CNN pairs compared to the best-performing
individual CNN. The outcomes show that utilizing a pair of CNNs with
a relatively higher complementarity factor leads to improved accuracy.
This is achieved by covering a larger portion of the dataset, despite
employing smaller and less complex models as we described in the
Section 3.1.

4.6.7. Response time evaluation

Additionally, our methodology improves response times, as shown
in Fig. 8. For the CIFAR-10 dataset, our configuration (CI3) has 52.7%
lower mean response time, 44.6% lower 95-th percentile tail latency
and 43.7% lower 99-th percentile tail latency compared to the big/little
configuration (CI2). Similarly it has 56.9% lower mean response time,
2.5% lower 95-th percentile tail latency and 2.5% lower 99-th per-
centile tail latency compared to the single large model (CI1). Compared
to the large pruned model (CI6) it has 41.1% lower mean response time
but a 26.1% higher 95-th percentile tail latency and 24.6% higher 99-th
percentile tail latency. Compared to the small distilled model (CI7) it
has 47.3% lower mean response time but 17.1% higher 95-th percentile
tail latency and 16.4% 99-th percentile tail latency.
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validation dataset using configuration IM3.

We have the same observations with the ImageNet dataset: our
configuration (IM3) has 65.2% lower mean response time, 49.5% lower
95-th percentile tail latency and 49% lower 99-th percentile tail latency
compared to the big/little setup (IM2) and 60.3% lower mean response
time, 22.9% lower 95-th percentile tail latency and 21.1% lower 99-
th percentile tail latency compared to the single large model (IM1).
Compared to the large pruned model (IM6) it has 31.6% lower mean
response time but 33.8% higher 95-th percentile tail latency and 34.5%
increase in 99-th percentile tail latency.

For the Intel dataset, our configuration (IN3) achieves a 27.4% re-
duction in mean response time, a 17.6% decrease in 95th percentile tail
latency, and a 17.4% decrease in 99th percentile tail latency compared
to the big/little setup (IN2). When compared to the single large model
(IN1), our implementation shows an 18.2% reduction in mean response
time, though it exhibits a 48.9% increase in 95th percentile tail latency
and a 45.0% increase in 99th percentile tail latency. Relative to the
large pruned model (IN6), it features a 1.7% decrease in mean response
time but has 77.9% higher 95th percentile tail latency and 76.9%
higher 99th percentile tail latency. Compared to the small distilled
model (IN7), it shows a 5.7% increase in mean response time, alongside
an 80.6% increase in 95th percentile tail latency and a 76.3% increase
in 99th percentile tail latency.

Last, for the FashionMNIST dataset, our configuration (FM3) deliv-
ers an 18.8% reduction in mean response time, a 40.7% decrease in
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Fig. 12. Accuracy gains as a function of the complementarity of two CNN pairs.

95th percentile tail latency, and a 35.8% decrease in 99th percentile tail
latency compared to the big/little setup (FM2). Compared to the single
large model (FM1), our implementation shows an 11.9% reduction
in mean response time, but with a 40.0% increase in 95th percentile
tail latency and a 35.8% increase in 99th percentile tail latency. In
comparison to the large pruned model (FM6), it has a 9.6% increase
in mean response time, with 69.4% higher 95th percentile tail latency
and 70.3% higher 99th percentile tail latency. Relative to the small
distilled model (FM7), it exhibits a 9.8% increase in mean response
time, a 73.6% increase in 95th percentile tail latency, and a 40.5%
increase in 99th percentile tail latency.

Using two CNNs results in an increase in response time and tail
latency compared to a single CNN, as shown in Table 1. This occurs
because the second CNN is triggered when the first CNN’s prediction
confidence is low, introducing an additional delay in response time.
This effect is observed in both our methodology and the big/little
configuration. Despite the increased tail latency, our implementation
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Table 3
Enhancing complementarity evaluation.
CNN pairs Individual Accuracy using our methodology
accuracy Default Fine-tuned Fine-tuned
pre-trained approach (a) approach (b)
weights
1 MnasNet-1.3 69.17% 70.33% 69.33% 70.31%
DenseNet-121 69.65%
2 MobileNet-V3-Large 66.94% 69.12% 71.20% 70.78%
GoogleNet 65.27%
3 MnasNet-1.3 65.57% 68.01% 66.95% 68.65%
GoogleNet 65.27%
4 RegNet-X-400MF 66.84% 69.39% 69.38% 70.82%
RegNet-Y-400MF 67.12%
5 RegNet-Y-400MF 67.12% 69.03% 69.03% 69.74%
GoogleNet 65.27%

achieves a lower overall response time when compared to configura-
tions with similar performance, such as the single large model and
the big/little configuration. In comparison to the pruned model and
the small distilled model, our configuration shows a higher tail latency
due to the extra time needed to invoke the second CNN; however, its
performance is higher.

4.6.8. Perceptual hashing ablation

Fig. 13 presents the energy consumption comparisons when using
the memory component. The comparison includes a single large model
(CI1, IM1, IN1 and FM1) and a big/little architecture (CI2, IM2, IN2
and FM2) against our implementation without the memory component
(CI3, IM3, IN3 and FM3), our implementation using the memory com-
ponent with the Difference Hash (DHash) method (CI4, IM4, IN4 and
FM4), and our implementation using the memory component with the
Invariants from Complex Moments method (CI5, IM5, IN5 and FM5).
The configurations without a memory component (CI1 to CI3, IM1 to
IM3, IN1 to IN3 and FM1 to FM3) exhibit a linear increase in energy
consumption as the number of duplicated samples increases. In con-
trast, our implementations utilizing the memory component (CI4, CI5,
IM4, IM5, IN4, IN5, FM4, and FM5) show almost no increase in energy
consumption, with the slopes of the corresponding lines being very
close to zero. This indicates that leveraging the memory component
in an environment with identical, mirrored and rotated inputs sig-
nificantly reduces energy consumption. Additionally, it is noteworthy
that while the Invariants method is robust to image transformations,
it demands more computational and energy resources compared to the
DHash method.

We also evaluated the computational overhead introduced by the
memory component. To quantify this, we measured the energy con-
sumption and current draw using the standard dataset without dupli-
cated samples, allowing us to determine the additional energy required
for the memory component’s operation. As shown in Fig. 14, for the
CIFAR-10 dataset, the Difference Hash method led to a 1.9% increase
in energy consumption, while the Invariants From Complex Moments
method resulted in a 30.9% increase compared to not using the memory
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component. For the ImageNet dataset, energy consumption increased
by 1.0% with the Difference Hash method and by 5.8% with the
Invariants From Complex Moments. In the case of the Intel dataset,
the Difference Hash method did not show any measurable increase in
energy consumption, whereas the Invariants From Complex Moments
led to a 7.1% increase. Finally, for the FashionMNIST dataset, there
was no measurable increase in energy consumption with the Difference
Hash method, while the Invariants From Complex Moments increased
energy consumption by 20%.

4.6.9. Enhancing complementarity evaluation

Table 3 summarizes the results of our methodology, using fine-tuned
model pairs from both approaches outlined in Section 3.6 to enhance
complementarity. The table presents five CNN pairs with their default
weights, the individual accuracy of each CNN, the accuracy of each pair
of CNNs, and the results after applying the first and second fine-tuning
approaches. Some pairs exhibit marginally better performance with the
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first approach, while others perform slightly better with the second
approach, with a performance gain of approximately 1% in most cases.
A notable result is observed with the second pair, where performance
increased by 2.08%, achieving an overall accuracy of 71.20%, which
surpassed even our main selected ImageNet configuration IM3 (see
Table 2). Given that the highest-performing individual model in the
pair achieved an accuracy of 66.94%, this results in an overall accuracy
improvement of 4.26% using our methodology with fine-tuned models.

4.6.10. Correlation between complementarity & increased performance

To better understand the correlation between complementarity
scores and accuracy gains, we applied our methodology, as described
in Section 3, to all possible pair combinations of the ImageNet dataset
models used in the complementarity matrix, to assess performance
outcomes. The results are illustrated in Fig. 15. Each point on the graph
represents a CNN pair, with the X-axis showing the complementarity
score calculated using the complementarity formula (1), and the Y-
axis showing the accuracy gain—defined as the additional accuracy
achieved through our methodology compared to the best-performing
model in the pair.

To provide additional insight, we included two additional dimen-
sions of information: the size of each point reflects the combined
number of parameters (M) of both models, and the color indicates
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the overall accuracy achieved by the pair. The graph reveals a posi-
tive linear correlation between complementarity scores and accuracy
gains, suggesting that utilizing more complementary CNN pairs leads to
improved accuracy. When examining overall performance, the largest
models achieve the highest absolute accuracy, as expected. Despite this,
their low complementarity scores result in minimal accuracy gains. This
indicates that, in addition to their higher energy demands, these large
pairs of models are also less efficient, as a single large model would
provide nearly the same level of performance.

To further explore the nature of complementarity, in Fig. 16, we
plotted the same results but with different axes. In this graph, the X-
axis represents the combined model size in millions of parameters (M),
and the Y-axis represents the overall accuracy achieved by the pair
using our methodology. Additionally, the size of each point corresponds
to the accuracy gain, while the color indicates the complementarity
score. The graph reveals a logarithmic correlation, rather than a linear
one, between model size and performance. This implies that although
larger models tend to improve accuracy, the gains become progressively
smaller as size increases, leading to a higher energy cost per unit
of accuracy. Based on these insights, we can conclude that using a
highly complementary pair of smaller CNN models results in increased
accuracy with lower energy demand.

4.7. Discussion

Our methodology contributes to advancing knowledge in the field
of energy-efficient on-device Al applications by making research on a
relatively unexplored approach: dynamically switching between small
DNNs based on confidence scores. This strategy significantly enhances
energy efficiency while maintaining predictive accuracy, offering a
novel solution for resource-constrained smart environments. Two in-
novative aspects of our approach have the potential to shape future
research directions. First, we illustrate how an effective collaboration
between complementary DNNs can improve prediction accuracy by
leveraging the strengths of each model to compensate for the weak-
nesses of the other. This work demonstrates the potential for DNNs
to collaborate on the same task, setting the stage for further explo-
ration of cooperative model architectures. Second, we highlight the
importance of integrating a memory component that retains previous
decisions, allowing the system to bypass redundant inference processes
for repeated inputs. This synergy between inference and memory opens
new opportunities for optimizing both energy efficiency and predictive
performance in Al-driven edge computing environments.

In terms of effectiveness, unlike traditional compression techniques
or the big-little architecture, the proposed dual complementary CNN
methodology leverages two smaller models that compensate for each
other’s weaknesses. This design achieves accuracy comparable to larger,
more complex models while significantly reducing energy consump-
tion. By dynamically selecting predictions based on confidence scores,
the method ensures that only the most accurate predictions are used,
enhancing overall inference reliability. This approach effectively main-
tains high accuracy without the computational overhead typically
associated with large models.

In terms of efficiency, the methodology is specifically designed
to reduce energy consumption and response time, a critical concern
for edge devices with limited power and computational resources.
The dual-CNN setup selectively activates the second CNN based on
prediction confidence, ensuring it is only invoked when necessary.
Additionally, the integration of a memory component, which stores and
recalls previous classifications, further reduces energy consumption by
bypassing repeated inference on identical or similar inputs.

In terms of applicability, the methodology is broadly suitable for
resource-constrained devices, such as those in IoT, smart homes, or
edge computing environments. Unlike hardware-specific optimizations,
such as co-design approaches requiring custom hardware or intensive
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model compression techniques (e.g., pruning, quantization), this dual-
CNN method is hardware-agnostic and can be deployed on a wide range
of devices without substantial modifications. The use of perceptual
hashing in the memory component also makes it ideal for dynamic
environments where inputs may frequently repeat or vary slightly,
providing practical benefits in real-world scenarios.

Our proposed methodology focuses on multi-class classification,
but not multi-label classification, specifically using visual data. At
present, it does not support data samples that can be assigned multiple
labels or categories simultaneously. Our design has the limitations
of being tailored and evaluated for visual data, opening opportu-
nities for further research to explore other data modalities such as
audio, biometric, geo-location, and sensor time series data in smart
environments. Additionally, we acknowledge the limitation that our
methodology operates on two small prediction models, and if such
models are unavailable, a transfer learning process will be necessary.
In cases where the transfer learning models have low accuracy, our
experimental results demonstrate that our methodology significantly
improves their performance.

To ensure the robustness and validity of our experimental results,
we conducted experiments using four different datasets. We carefully
managed data splitting by employing random shuffling, stratification,
and preventing data leakage. The evaluation was performed on unseen
data to provide unbiased performance estimates. Furthermore, we com-
pared the performance of our proposed model against well-established
baseline models, including pruning, knowledge distillation, and the
big/little model [24]. We also ensured the reproducibility of our ex-
periments by testing with a variety of architectural pairs, thereby con-
firming the consistency of the improvements observed across different
model synergies.

5. Conclusion and future work

In this study, we propose a methodology for reducing the energy
requirements of on-device CNNs inference through the utilization of
two complementary CNNs integrated with a memory component. Each
CNN addresses the weaknesses of the other, while the memory com-
ponent retains previous classifications, thereby bypassing the need for
repeated CNN invocations. Our implementation demonstrates up to
85.8% reduction in energy consumption compared to a single large
CNN for inferences with multiple identical inputs on the CIFAR-10
dataset up to 80.9% energy reduction on the ImageNet dataset, up to
76.0% energy reduction on the Intel dataset and up to 77.5% energy
reduction on the FashionMNIST dataset with a minor loss of accuracy.

Our future work involves adapting the concept of complementarity
to various data modalities and applications in smart environments. Fur-
ther research directions include examining complementarity based not
only on the number of predictions made by the models in a validation
dataset but also by focusing solely on confidence scores. Additionally,
we aim to develop a new complementarity formula that considers the
intrinsic structural characteristics of the CNNs. Last, since the concept
of complementarity is a significant contribution of our work, we aim
to explore its application for enhancing accuracy, rather than solely
focusing on reducing energy consumption.
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