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Purpose – As User-Generated Content (UGC) is entering the news cycle alongside content 

captured by news professionals, it is important to detect misleading content as early as possible 

and avoid disseminating it. This paper presents an annotated dataset of 380 user-generated 

videos, 200 debunked and 180 verified, along with 5,195 near-duplicate reposted versions of 

them, and a set of automatic verification experiments aimed to serve as a baseline for future 

comparisons. 

Design/methodology/approach – The dataset was formed using a systematic process 

combining text search and near-duplicate video retrieval, followed by manual annotation using a 

set of journalism-inspired guidelines. Following the formation of the dataset, the automatic 

verification step was carried out using machine learning over a set of well-established features. 

Findings – Analysis of the dataset shows distinctive patterns in the spread of verified versus 

debunked videos, and application of state-of-the-art machine learning models shows that the 

dataset poses a particularly challenging problem to automatic methods. 

Research limitations/implications – Practical limitations constrained the current collection to 

three platforms: YouTube, Facebook, and Twitter. Furthermore, there exists a wealth of 

information that can be drawn from the dataset analysis, which goes beyond the constraints of a 

single paper. Extension to other platforms and further analysis will be the object of subsequent 

research. 

Practical implications – The dataset analysis indicates directions for future automatic video 

verification algorithms, and the dataset itself provides a challenging benchmark. 

Social implications – Having a carefully collected and labelled dataset of debunked and 

verified videos is an important resource both for developing effective disinformation-countering 

tools but also for supporting media literacy activities. 

Originality/value – Besides its importance as a unique benchmark for research in automatic 

verification, the analysis also allows a glimpse into the dissemination patterns of UGC, and 

possible telltale differences between fake and real content. 
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1. Introduction 

User-Generated Content (UGC), i.e. media content generated by non-professional bystanders 

during unfolding newsworthy events, has become an essential component of evolving news 

stories. The ubiquity of capturing devices means that it is very likely that bystanders may be 

capturing relevant content and sharing it through various Web and social media platforms. News 

professionals are pressed by competition to integrate such content in their stories, but verifying 

it first is essential to any news provider’s reputation (Hermida & Thurman, 2008). Automatic and 

semi-automatic tools have the potential of considerably easing and speeding up the verification 

of user-generated content. 



News content verification through automated means is a relatively young field, comprising a set 

of distinct disciplines, including rumour analysis (Zubiaga et al, 2018), multimedia forensics 

(Zampoglou et al, 2017), classification of social media content (Castillo et al, 2011), web mining 

and multimedia retrieval (Xie et al, 2011). A recent survey (Kumar & Shah, 2018) presented an 

analysis of known patterns of disinformation dissemination and approaches on automatic 

detection of false information.  

Datasets are an important asset for understanding and addressing the problem of news content 

verification, and range from collections of tampered multimedia content and social media posts, 

to “rumours”, i.e. cascades of unverified information. Carefully designed datasets may contribute 

both to better understanding the patterns of disinformation dissemination and to training and 

evaluating automatic detection systems. 

This paper deals with User-Generated Video (UGV) verification, specifically with the effort to 

discern whether a suspect video conveys factual information or disinformation -in other words, 

for the sake of brevity, if the video is “real” or “fake”. The paper presents the first large-scale 

video verification dataset, consisting of 380 videos and their 5,195 near-duplicates collected 

from YouTube (YT), Facebook (FB), and Twitter (TW), including a number of fake and real 

UGVs and numerous other versions of those videos that were consecutively posted online. The 

dataset is supplemented with 77,258 tweets that contain links to the dataset’s videos.The 

dataset, named Fake Video Corpus 2018 (FVC-2018), was gathered using a systematic 

process and can provide insights to the nature of disinformation, and the types of fake and real 

content circulating the Web. It is also aimed to serve as a benchmark for automatic content 

verification methods. 

 

2. Related work 

The area of multimedia verification consists of several fields of study, tackling various aspects of 

the problem from different viewpoints.  

a. Multimedia forensics 

A large part of related research concerns tampering detection and image/video forensics 

algorithms. Proposed algorithms attempt to detect and localize image modifications, either 

actively by embedding watermarks in multimedia content and monitoring their integrity 

(Dadkhah et al, 2014) (Botta et al, 2015), or passively by searching for telltale self-repetitions 

(Zandi et al, 2016) (Ferreira et al, 2016) or inconsistencies in the image. Such inconsistencies 

may appear in the pixel domain or the compressed domain depending on the specific process of 

tampering. A recent survey and evaluation of such algorithms can be found in (Zampoglou et al, 

2017). Generally, such content-based approaches suffer from a number of issues that often 

render them inapplicable. One problem is their limited robustness with respect to image 

transformations. When the images or videos are recompressed or rescaled, as is often the case 

with social media uploads, the traces of the tampering tend to disappear (Zampoglou et al, 

2017). Another limitation is that such approaches are only relevant in specific cases of 

disinformation. There are cases where a multimedia item is used to convey false information not 

by altering its content but by altering its context. One typical such approach is to reuse content 

from a past event and present it as if it is was captured during a current one. Another is to 

misrepresent the content, e.g. the location where it was taken or the identities of depicted 

people. In such cases, an approach must be able to evaluate the context of the post (e.g. the 



profile of the uploader, the linguistic characteristics of the accompanying post, or the collective 

characteristics of all posts sharing the same item) rather than its actual content. 

b. Automated fact checking 

In automated fact checking (Hassan et al, 2015), statements are isolated and their veracity is 

evaluated using reliable databases providing structured knowledge such as FreeBase and 

DBpedia. Such approaches are generally useful for assessing claims pertaining to historical 

truths rather than unfolding events. Furthermore, the automatic extraction of claims that can be 

cross-checked with a database is very difficult for audiovisual content. Thus, while it is a 

promising field, it is not currently suitable for UGV verification. 

c. Rumour analysis 

With the rise of social media, attention shifted to other aspects of verification. Twitter –and 

micro-blogging platforms in general- have attracted a lot of attention in the recent past. Several 

approaches operate at the “event” level, e.g. sets of tweets discussing one event or statement. 

The task of analysing a collection of social media posts around a claim is commonly referred to 

as rumour detection, defining rumour as a piece of information that may or may not be true 

(Zubiaga et al, 2018). In that definition, rumour detection refers to the process of gathering all 

posts related to a rumour. A classification or verification process can then be used to ascertain 

whether the rumour is true or not. Work by Castillo et al. (2011) was the earliest attempt in this 

category, presenting an algorithm to classify statements pertaining to events into “truthful” or 

“untruthful”. Recent approaches (Vosoughi et al, 2017) attempt to develop methods for 

estimating the veracity of rumours by aggregating all posts disseminating them. The typical 

methodology of such methods is generally the same: a number of features are extracted from 

the tweet texts, the user profiles, and the internal structure of the topic (e.g. retweets), and a 

dataset of annotated rumours is used to train a classifier. A recent survey of approaches and 

datasets for rumour detection and classification can be found in (Zubiaga et al, 2018). 

d. Tweet/post verification 

There exist several verification approaches which aim to classify single posts, without taking into 

account other similar posts. This is an important distinction, since it ultimately concerns the 

speed at which an investigator can come to a conclusion about a piece of information. From the 

moment that the first post (tweet) appears making a claim, to the point where enough posts 

have been gathered into a “rumour”, the time delay may be too long for news cycle standards. 

For that reason, having a system that can operate at the level of single posts is very useful. 

Such an approach was presented in (Gupta et al, 2013), where a set of features are extracted 

from the tweet text and the user profile and are used to classify tweets as truthful or not. A 

similar attempt (Wu et al, 2015) was used to classify microblog posts from the Sina Weibo 

platform. The classification of social multimedia by exploiting the associated tweet and user 

information was the aim of the “Verifying Multimedia Use” benchmarking task, which took place 

in MediaEval 2015 (Boididou et al, 2015) and 2016 (Boididou et al, 2016). A recent study 

(Boididou et al, 2018) compares the three top performing methods in this task. 

e. Contextual video verification 

The work presented here is aimed at video verification. With the exception of a body of works in 

video forensics which, as explained above, have several limitations in terms of applicability, 

there is one relevant recent work that attempts to tackle the problem using contextual 

information (Papadopoulou et al, 2017). In this approach, a small dataset of YouTube videos, 



called Fake Video Corpus (FVC) was used to train and evaluate an automated classifier. The 

dataset contains around 104 videos annotated as “real” or “fake”, and the approach combines a 

classifier based on video and channel/user metadata features and a second classifier based on 

comment-based credibility features. This approach is limited in terms of dataset size and its 

results can only be treated as indicative. 

The dataset presented in this paper, called the FVC-2018, builds upon the data of 

(Papadopoulou et al, 2017), however the methodology and scale are significantly different. 

Besides extending to a much larger number of cases, in this paper multiple copies of the same 

video are also collected from multiple platforms. This means that the total number of items in the 

FVC-2018 is an order of magnitude larger than that of FVC, and much more varied. More 

importantly, it potentially allows us to move beyond single-item methods, to approaches inspired 

by rumour detection (i.e. exploiting the presence of multiple items in each “case” to be verified to 

extract features from its collective properties and temporal evolution). This is partly related to 

the work of (Xie et al, 2011) where partial duplicates of news-related videos were gathered to 

analyze the dissemination of so-called “visual memes”, i.e. short video segments passed from 

one uploader to the other. While their work is in some aspects similar to the one presented here, 

it did not address the problem of fake videos. Furthermore, while (Xie et al, 2011) track all news-

related content regardless of origin, this work deals with UGV verification specifically.  

 

3. Methodology 

a. Design and concepts 

The FVC-2018 is aimed to serve both as a basis for analysis of the dissemination of UGV (real 

and fake videos), and as an evaluation benchmark for video verification systems. The definition 

of fake videos used here follows that of (Papadopoulou et al, 2017) and includes the following: 

1. Staged videos where actors perform scripted actions under direction, falsely presented 

as authentic UGC captured during an event of interest. 

2. Videos where contextual information is false (e.g. the claimed video location is wrong). 

3. Past videos presented as being captured during unfolding events. 

4. Videos of which the visual or audio content has been altered through editing. 

5. Computer-generated Imagery (CGI) posing as real. 

 

Real videos are videos that convey actual facts. For the formation of the dataset, this means 

that they need to have been verified first. Videos of which the veracity could not be confirmed 

with confidence were not included in the dataset. 

There is a limited number of videos that can be collected like this, as the process is constrained 

to established cases of fake and real videos. However, when a newsworthy video is uploaded, 

and especially when it makes an unusual claim (regardless of its veracity), it tends to get further 

disseminated by users. That is, people tend to share and re-upload the content, usually with no 

mention of the original source. These versions are often slightly altered, not only because of the 

downloading and recompression, but also by various forms of editing, e.g. by adding highlights, 

slow motion, commentary, or by changing the audio. Thus, each newsworthy UGV tends to be 

followed by a cascade of other versions, and the overall social media activity around them. All 

this information can be critical for verification, as it can be used both by human investigators and 

by automatic contextual analysis approaches.  



In order to collect alternate versions from videos, search methods combined with near-duplicate 

detection tools were used. Near-duplicate retrieval is the task of locating (within a given 

collection) all videos that visually resemble a given query video. While “visual resemblance” is 

not a strictly defined term, most near-duplicate retrieval tasks focus on the retrieval of different 

versions of the original content, e.g. following editing, post-processing, cropping, etc. Near-

duplicate video detection algorithms have achieved significant progress in the recent past 

(Kordopatis-Zilos et al, 2017), and are mature enough for real-world application. 

 

b. Dataset collection 

The Fake Video Corpus dataset was used as the initial basis of this work. The FVC contains 

104 videos, of which 55 were annotated as fake and 49 as real. The authors of (Papadopoulou 

et al, 2017) created the dataset over an extended period of time (2016-2017) in cooperation with 

media experts from the InVID1 project to serve as a representative collection of past fake 

videos, and was manually extended to also contain a number of real news-related UGVs. The 

first step was to extend it with more cases, both fake and real ones. Between April and July 

2017, the dataset was manually extended and reached 117 fake videos and 110 real videos. 

However, manually gathering news-related UGVs is not a straightforward task. In order to 

further extend the dataset, one additional valuable source was the Context Aggregation and 

Analysis service2, which was developed within the InVID project as a tool for video verification. 

The service, being one of the few publicly available tools for video metadata analysis, generally 

attracts traffic from verification experts who submit suspicious videos for verification. Αll videos 

submitted to the service between November 2017 and January 2018 resulted in an initial pool of 

approximately 1600 videos. This set was filtered to remove non-UGC and other irrelevant 

content, and consecutively, was annotated as real or fake. For this initial annotation, debunking 

sites such as snopes.com were used in addition to –especially for real content- the general 

consensus that reliable news sources publish factual content. Furthermore, snopes.com and 

other debunking sites were consulted in order to collect more debunked fake videos. 

 

 
Figure 1: Indicative cases of real and fake User-Generated Videos. Top: four real videos. a) A Greek 

army helicopter crashing into the sea in front of beach; b) US Airways Flight 1549 ditched in the Hudson 

River; c) A group of musicians playing in an Istanbul park while bombs explode outside the stadium 

behind them; d) A giant alligator crossing a Florida golf course. Bottom: four fake videos. a) “A man taking 

a selfie with a tornado” -CGI; b) “The artist Banksy caught in action” -staged; c) “Muslims destroying a 

                                                
1 http://www.invid-project.eu 
2 http://caa.iti.gr/  

http://www.invid-project.eu/
http://caa.iti.gr/


Christmas tree in Italy” -out of context, there is no indication that the men are Muslim; d) “Bomb attack on 

Brussels airport” -out of context, the footage is from Moscow Domodedovo airport a few years back. 

 

Using the above process, an initial set of 380 videos was formed, of which 200 were annotated 

as fake and 180 as real. Figure 1 presents some indicative cases. This collection is in itself a 

useful dataset for the field and the result of a significant amount of manual effort and 

accumulated knowledge. However, a major contribution of this work is the decision to move 

beyond isolated videos and try to explore how such content is disseminated and reposted 

through time in various platforms. 

To this end, the following approach was followed in order to end up with a collection of videos 

that would be highly likely to contain several versions of the query video: 

1. For each video in the original set, extract the video title 

2. Reformulate the title of the video in a more general form (called the “event title”). For 

example, a video with title “Video Tornado IRMA en Florida EEUU Video impactante” was 

assigned the event title “Tornado IRMA at Florida” 

3. Translate the event title from English into four major languages3: Russian, Arabic, French, 

and German using Google Translate  

4. Use the video title, event title, and the four translations as separate queries to the three 

target platforms: YouTube, Facebook, Twitter. Group all returned videos in a common pool 

5. Use the near-duplicate retrieval algorithm of (Kordopatis-Zilos et al, 2017) to search within 

this pool for near-duplicates of the video 

6. Apply a manual confirmation step to remove any erroneous results of the method and 

only retain actual near-duplicates. 

Using the above process, the collected videos were organized into “video cascades”. The term 

refers to a set of videos, starting with a first posted video and including all its near-duplicates 

temporally ordered by publication time.  

Methodologically, two further steps were applied to extend and refine the dataset. The first was 

to submit the URL of the first video of each cascade to Twitter search, and collect all tweets 

sharing the video as a link. This is a different type of item than the rest of the videos, since it is a 

link pointing to a video in the cascade accompanied by some text. However, the type of Twitter 

traffic that a video attracts can be a useful indicator of its credibility. The second was to scan the 

dataset and separate between “fake” items that reproduce the falsehood from ones that debunk 

it or use it for entertainment purposes, and correspondingly for “real” items. This is important 

because such videos should not be taken into account by certain analysis tasks. 

 

c. Verification algorithm 

One of the potential uses of the FVC-2018 dataset is to train and evaluate automatic verification 

algorithms. As a set of baseline results, such an algorithm (Papadopoulou et al, 2017) was 

applied to the dataset, and its performance on the data was evaluated. 

The algorithm builds classification models over two sets of features (Table 1). The first set is 

based on the video metadata, and specifically linguistic features extracted from the video 

description text and statistics extracted from the video channel. These are concatenated to form 

                                                
3 These languages were selected after preliminary tests indicated that near-duplicate videos appear with 
increased frequency in these languages. 



a feature vector. The second feature set is based on the comments under the video, and the 

descriptor is extracted using a two-level approach. First, a set of features is extracted from each 

individual comment, as shown in Table 1. Then the credibility of each comment is independently 

evaluated using a pretrained model (Boididou et al, 2018). While the model of (Boididou et al, 

2018) was trained on a large set of tweets using their linguistic features, it can similarly be 

applied to video comments. The classifier returns a credibility score in the range [0, 1]. By 

accumulating the scores of all video comments in a single 10-bin histogram, a vector of 10 

variables is produced per video and used for the comment credibility classifier. 

 

Table 1: Overview of video metadata and comment credibility features 

Video metadata features Comment credibility features 

From channel description 01 Text length 

01 Channel view count 02 Number of words 

02 Channel comment count 03-04 Contains question/exclamation mark (Boolean) 

03 Channel subscriber count 05-06 Contains happy/sad emoticon (Boolean) 

04 Channel video count 07-09 Contains 1st/2nd/3rd person pronoun (Boolean) 

From video description 10 Number of uppercase characters 

05 Text length 11-12 Number of positive/negative sentiment words 

06 Number of words 13 Number of slang words 

07-08 Contains question/exclamation mark (Boolean) 14-15 Has ’:’ symbol/’please’ (Boolean) 

09-10 Contains 1st/3rd person pronoun (Boolean) 16-17 Number of question/exclamation marks 

11 Number of uppercase characters 18 Readability score 

12-13 Number of positive/negative sentiment words  

14 Number of slang words  

15 Has ’:’ symbol (Boolean)  

16-17 Number of question/exclamation marks  

 

In (Papadopoulou et al, 2017), metadata and comment descriptor vectors were used to train 

Support Vector Machine (SVM) classifiers. In the verification methodology used here, the same 

process was used, with the addition of two model variants: a) a concatenation of the two feature 

sets; b) the agreement-based approach of (Boididou et al, 2018) was used, where, following an 

initial classification of all videos using the two classifiers, the cases where the two classifiers 

agree are kept. The rest are re-classified using a concatenated feature, either trained on the 

original training set, or on a new training set consisting of the original plus the agreed-upon 

videos. Such approaches have been shown to increase classifier performance and were 

incorporated in the verification results presented with the dataset. 

The dataset presented here contains videos from three different platforms. This presents a 

challenge in the form of unifying the descriptors and treating each video indistinguishably 

regardless of platform. The main issue with this is the fact that channel description features are 



not available for Facebook videos. Thus, in all experiments run in this dataset, whenever videos 

from all platforms are used, such features are not included. This may lead to a degradation of 

performance. Thus, for comparison, experiments using only the YouTube videos of the dataset 

were also run, to evaluate the potential of platform-specific models. 

 

4. Results 

a. Dataset overview 

The initial, manual collection of videos resulted in 200 unique fake videos and 180 real unique 

videos. While in many cases these initial, manually collected videos were confirmed to be the 

first version of the video to be posted, there was no way to confirm this in every case prior to the 

application of the near-duplicate retrieval approach described in Section 4.a. Following that 

step, the dataset was extended with 3,729 additional fake videos and 2,283 real videos that 

partly or fully reproduced the submitted video, published on YouTube, Facebook, or Twitter, and 

covering a period between April 2006 and June 2018. Overall, 172 fake and 148 real videos had 

at least one near-duplicate in at least one video platform, while for the rest zero near-duplicates 

were found. One first noteworthy observation is that the number of collected fake videos is 

much larger than the corresponding number of real videos. This suggests that fake videos tend 

to be reproduced more, either as repeating acts of disinformation or in videos analyzing, 

parodying, or debunking the video. This is in line with the observations of Vosoughi et al (2017), 

who, while analyzing the distribution of Twitter rumours, also observed a higher rate of 

reproduction for misleading content. 

As described in the “Methodology” section, the next step was to manually study the dataset and 

categorize the near-duplicates based on their intent. This led to five categories of near-

duplicates of fake videos and four categories of near-duplicates of real videos. 

The categories for near-duplicates of fake videos are: a) Fake/Fake: those that reproduce the 

same false claims; b) Fake/Uncertain: those that express doubts on the veracity of the claim; c) 

Fake/Debunk: those that attempt to debunk the original claim; d) Fake/Parody: those that use 

the content for fun/entertainment; e) Fake/Real: those that contain the earlier, original source 

from which the fake was made. For near-duplicates of real videos, the corresponding categories 

are: a) Real/Real: those that reproduce the same factual claims b) Real/Uncertain, those that 

express doubts on the veracity of the claim; c) Real/Debunk: those that attempt to debunk their 

claims as false; d) Real/Parody: those that use the content for fun/entertainment. A special 

category concerns videos labeled Real/Private and Fake/Private, which describes Facebook 

videos that were relevant to the dataset but were published by individual users and thus could 

not be accessed through the API in order to extract their context. These were left out of the 

analysis entirely. Table 2 shows the number of videos that corresponded to each category and 

each platform. The column labeled “Total” corresponds to all videos, and does not include the 

twitter posts that share the video, which are counted separately. 

The most time-consuming part of the process was forming and annotating the initial set of 380 

videos, which was aided by the fact that most of the videos have already been discussed online. 

Following that, the annotation process of the near-duplicates was generally straightforward and 

fast, due to the high degree of content repetition between near-duplicates . As a result, after the 

authors’ team collectively concluded on the appropriate tag for each case’s initial video, the 

individual videos could be correctly and swiftly annotated by a single person. To make the task 



more manageable, the annotation was assigned to two annotators, each of whom was assigned 

a different part of the videos to annotate. The annotation required in total roughly 20 hours for 

the YouTube videos and 20 hours for the Facebook videos, while the annotation of tweets 

sharing the videos took roughly 180 hours. 

 

Table 2: Types of near-duplicate videos collected. Private videos are not included in the totals. 

Fake videos Real videos 

 YT FB TW Total TW 
shares 

 YT FB TW Total TW 
shares 

Initial 189 11 0 200 - Initial 158 22 0 180 - 

Fake 1,675 928 113 2,716 44,898 Real 993 901 16 1,910 28,263 

Private - 467 - 467 - Private - 350 - 350 - 

Uncertain 207 122 10 339 3,897 Uncertain  0 1 0 1 30 

Debunk 68 19 0 87 170 Debunk 2 0 0 2 0 

Parody 43 2 1 46 0 Parody 14 6 0 20 0 

Real 22 51 1 74 0       

Total 2,204 1,133 125 3,462 48,965 Total 1,167 930 16 2,113 28,293 

 

While all types of videos were retained in the FVC-2018 dataset for potential future analysis, the 

ones considered relevant to the analysis presented here are those which retain the same claims 

as the initial post, i.e. Fake/Fake and Real/Real. For the rest of this work, all observations and 

analysis concern exclusively these types of video and ignore the rest. 

Overall, the scale of the FVC-2018 dataset is comparable to existing datasets for rumour 

verification. In comparison, the dataset of Gupta et al (2013) contains 16,117 tweets with fake 

and real images, while the MediaEval 2016 verification corpus contains 15,629 tweets of fake 

and real images and videos. The dataset of Vosoughi et al (2017) contains 209 rumours with –

on average- more than 3,000 tweets each, of which the collection was carried out automatically 

in order to reach this scale. One important distinction from rumour verification datasets is that 

the FVC-2018 cascades were assembled from disassociated videos using visual similarity, and 

not from a network of replies or retweets. This is important since, in platforms such as YouTube, 

such relations between items are not available, which makes their collection a challenging 

problem. 

 

b. Video and description characteristics 

Certain aspects of the accumulated data can prove useful for the analysis of the dataset and are 

worth highlighting. These concern the videos themselves, their accompanying text (post, video 

description) and the posting account. In analyzing these characteristics a first approach is to 

compare the distribution of various features for fake and real videos. In the rest of this section, 

when comparing feature distributions we present either the mean or the median, depending on 

whether the variable follows a normal distribution or not. To evaluate the statistical significance 



of the corresponding differences, we compare the means using Welch’s t-test or the Mann–

Whitney–Wilcoxon (MWW) test respectively and report the associated p-values. 

One interesting feature is the difference in video durations. Real videos have an average 

duration of 149 seconds if we only take the initial videos into account, and 124 seconds if we 

include the edited near-duplicates In contrast, initial fake videos have a much smaller average 

duration of 92 seconds (p<10-3), and their near-duplicates have an average duration of 77 

(p<10-3) seconds. While this feature itself is not sufficient to classify a video as fake or real, it is 

interesting to note that fake videos tend to be significantly shorter. Another interesting distinction 

is the age of the channel/account posting the video. For real videos, the YouTube channel 

median age at the time of posting is 811 days prior to the video publication, while for fake videos 

this value is 425 (p<10-3). For Twitter, these values are 2,325 and 473 days (p=10-3), and for 

Twitter shares the corresponding values are 1,297 and 1,127 respectively. In the latter case, 

while the difference does not seem large, given the large sample size it is still statistically 

significant (p<10-3). No such information was available for Facebook. Overall, fake videos tend 

to be posted by “younger” YouTube and Twitter accounts compared to real videos. With respect 

to the channel/account, it is also interesting to observe that, for real videos, the median 

YouTube channel subscriber count is 349 users, while for Twitter the median follower count is 

163,325. The latter value is particularly high due to the fact that only a small number (16) of 

well-established Twitter accounts with many followers were found to have re-uploaded the 

content as a native twitter video. This is contrasted to the median number of followers of the 

Twitter accounts which shared the video as a link, which was 333. For the Fake videos the 

median follower counts are much lower: 98 (p<10-3) and 2,855 (p<10-3) for YouTube and Twitter 

respectively. For Twitter shares the median follower count was 297 which, while closer to the 

one for real videos, is still significantly lower (p<10-3).  

Other interesting conclusions stem from linguistic analysis of the text that accompanies the 

videos (video description or post text depending on the platform). First, language was 

automatically detected for all posts using the Python langdetect4 library. For real videos, the 

relatively most frequent language in the texts is English (YT: 63%, FB: 41%, TW: 75%, TW 

shares: 62%). For fake videos the corresponding values are noticeably lower, although still high 

(YT: 38%, FB: 28%, TW: 43%, TW shares: 52%). A sizeable number of posts/descriptions did 

not contain enough text for automatic recognition, although that number was generally smaller 

for real videos (YT: 13%, FB: 48%, TW: 0%, TW shares: 5%) than for fake ones (YT: 28%, FB: 

51%, TW: 0%, TW shares: 4%). Other languages encountered in the set included Russian, 

Spanish, Arabic, German, Catalan, Japanese, and Portuguese. With the exception of Russian 

fake Twitter videos which are strikingly high (28%), these languages appear at a frequency of 

less than 6% in each category. A number of features were calculated from this text, namely 

Polarity, Subjectivity, Flesh reading ease (Kincaid, 1975) and the Coleman-Liau index (Coleman 

and Liau, 1975). Polarity and Subjectivity were calculated using the Python TextBlob library5 

while the other two were calculated using the Python textstat6 library. No noticeable differences 

were found between fake and real videos. Despite the common assumption that fake posts 

                                                
4 https://pypi.org/project/langdetect/ 
5 http://textblob.readthedocs.io/en/dev/  
6 https://pypi.org/project/textstat/  

http://textblob.readthedocs.io/en/dev/
https://pypi.org/project/textstat/


have distinctive linguistic qualities, e.g. stronger sentiment and poorer language (Castillo et al, 

2011), no such pattern was found in our study. 

 

c. Temporal distribution 

An important aspect of the FVC-2018 dataset is the temporal distribution of the near-duplicates, 

and their relative importance in terms of popularity and user attention. To explore this, a timeline 

was created (Figure 2), showing all near-duplicates per cascade. This shows how the near-

duplicates of real and fake videos are distributed in the dataset. Each line corresponds to one 

original video and its near-duplicates (i.e. a cascade). The horizontal axis corresponds to the 

time (log-scale) between the posting of the initial version and its near-duplicates. In principle, 

each dot corresponds to a near-duplicate being posted at that time, and the color of the dots 

corresponds to the platform (red: YouTube; blue: Facebook; green: Twitter; light blue: sharing 

the original video link as a tweet). The videos are sorted from the most duplicated ones at the 

top, to the least duplicated ones at the bottom. 

 

 
Figure 2: Temporal distribution of video near-duplicates. Red: YouTube; Blue: Facebook; Green: Twitter; 

Light blue: posting on Twitter (as link) of the first video in the cascade. 

 

The time range of the dataset reaches a maximum at about 10 years between the first posting 

of a video and its most recent near-duplicate. The difference in the temporal distribution of the 

fake videos compared to that of real ones is conspicuous. There are relatively few near-

duplicates of real videos posted on YouTube after 10 days from the original post, and the same 

pattern also holds for Twitter shares. Instead, for fake videos, near-duplicates are posted at a 

much higher rate for a much longer interval. This discrepancy is also reflected in the fact that 

the median time difference between the initial video and its near-duplicates is much higher for 

fake videos than real ones on YouTube and Facebook. While for real videos the median 

temporal distance is 1 and 3 days respectively, for fake videos the corresponding values are 62 

(p<10-3) and 148 (p<10-3). For Twitter videos the values are comparable, 1 and 0 days for real 

and fake videos respectively, although the difference is still significant (p=3×10-2), but this 



concerns only a few items. For videos tweeted as links, the median distance is 6 days for real 

videos and 27 days for fake videos (p<10-3).  

 

d. Video categories 

Another interesting feature of the collected videos is the category assigned to them by their 

uploader. YouTube and Facebook both have a “Category” tag allowing the user to categorize 

the video. Figure 3 shows the distribution of category tags for fake and real videos on YouTube 

and Facebook. Twitter does not offer a corresponding feature and was thus not considered. 

One may observe clear differences between fake and real videos on both platforms. Real 

videos on Facebook tend to be categorized as “News” more frequently than fake ones, where 

the “Entertainment” and “Music” categories are more prominent. Similarly for YouTube, 

categories “Video blogging” and “Comedy” are more frequent for fake videos. Taken alone, this 

distinction is not enough to identify disinformation. However, it may offer a useful verification 

signal in some cases.   

 

 
Figure 3: Video category distribution for YouTube and Facebook. 

 

e. Video comments 

Another noteworthy component of the dataset is the number and distribution of user comments 

in the videos. Comments can provide a sort of “wisdom of the crowd”, which may assist 

investigators in identifying inconsistencies that expose fake UGVs, or by providing clues that 

strengthen the claims made by a video. Previous research (Papadopoulou et al, 2017) has also 

highlighted the importance of user comments for automatic verification. It is therefore important 

to study the comment distribution in FVC-2018. Overall, the dataset contains 491,636 

comments on fake YouTube videos, and 433,139 comments on real ones, 105,814 and 86,326 

respectively for Facebook videos, and 561 and 215 for Twitter videos (in this case, we treat 



replies as comments).  A significant percentage of these, especially for YouTube, is found in the 

first video of each cascade (YouTube: 81% and 69% for fake and real videos; Facebook: 22% 

and 9% respectively). Figure 4 presents the cumulative average number of comments over time 

per video for the three video platforms.  

There are some features that stand out. One is the difference in the number of comments 

between platforms, with YouTube attracting significantly more than the others.  The second is 

the difference between the number of comments on fake and real videos on YouTube, with real 

ones attracting much more comments. A third observation is the steep increase in the number 

of YouTube comments in real videos, between 12 hours and 10 days after the video is posted, 

which consecutively tapers off. In contrast, fake videos maintain a steadier rate of accumulation, 

which, especially after one year from the posting, ends up relatively steeper than for real videos. 

 

 
Figure 4: Timeline view of video comment accumulation. 

 

f. Automatic verification 

This section provides a set of experimental results using an existing state-of-the-art automatic 

verification approach, which can serve as a benchmark for future methods and provides an 

estimate of the level of challenge that the dataset poses to automatic methods. 

The video metadata and comment credibility features described in Section 3.b were extracted 

from all videos where this was possible, and the approach of (Papadopoulou et al, 2017) was 



applied for verification. Two separate sets of experiments were run: The first set used only the 

oldest video from each cascade, resembling the setting of (Papadopoulou et al, 2017). The 

second set used all videos in the dataset. In both cases, one run considered only YouTube 

videos, in order to exploit all possible features, and the other considered videos from all 

platforms, with reduced features in order to create uniform descriptors. Since there are no first 

videos from Twitter, the first video per cascade run does not include Twitter videos. 

The evaluations were run using 10-fold cross-validation. For the experiments using all near-

duplicates, the cross-validation was cascade-based, i.e. all videos from the same cascade were 

put into the same fold. This ensures that there is no leakage of information between the training 

and test sets. The results of the runs are presented in Table 3.  

 

Table 3: Automatic verification results for the dataset of (Papadopoulou et al, 2017), the first video per 

cascade, and the entire FVC-2018. In all labels, “Prec”: Precision, “Rec”: Recall, “F1”: F1-score. 

 (Papadopoulou 
et al, 2017) 

First video 
per cascade 
(YT only) 

First video 
per cascade 
(YT + FB) 

All videos in 
the cascade  
(YT only) 

All videos in 
the cascade 
(YT + FB + TW) 

Comment 
credibility 

Prec.: 0.88  
Rec.:  0.74 
F1:  0.79 

Prec.: 0.91  
Rec.:  0.53 
F1:  0.67 

Prec.: 0.97 
Rec.:  0.52 
F1:  0.68 

Prec.: 0.96  
Rec.:  0.64 
F1:  0.77 

Prec.: 0.94 
Rec.:  0.60 
F1:  0.73 

Video 
metadata 

Prec.: 0.88  
Rec.:  0.79 
F1:  0.82 

Prec.: 0.87  
Rec.:  0.59 
F1:  0.70 

Prec.: 0.87 
Rec.:  0.58 
F1:  0.70 

Prec.: 0.95 
Rec.:  0.69 
F1:  0.80 

Prec.: 0.95 
Rec.:  0.60 
F1:  0.74 

Concat. Prec.:  0.88 
Rec.:  0.82 
F1:  0.85 

Prec.: 0.79 
Rec.:  0.61 
F1:  0.69 

Prec.: 0.77 
Rec.:  0.60 
F1:  0.67 

Prec.: 0.92 
Rec.:  0.70 
F1:  0.79 

Prec.: 0.87 
Rec.:  0.64 
F1:  0.74 

Agreement-
based 

Prec.:  0.84 
Rec:  0.88 
F1:  0.86 

Prec.: 0.58 
Rec.:  0.93 
F1:  0.71 

Prec.: 0.53 
Rec.:  0.98 
F1:  0.70 

Prec.: 0.70 
Rec.:  0.96 
F1:  0.80 

Prec.: 0.61 
Rec.:  0.96 
F1:  0.74 

Agreement-
based with 
retraining 

Prec.:  0.77 
Rec.:  0.86 
F1:  0.81 

Prec.: 0.57 
Rec.:  0.92 
F1:  0.70 

Prec.: 0.54 
Rec.:  0.98 
F1:  0.69 

Prec.: 0.69 
Rec.:  0.96 
F1:  0.80 

Prec.: 0.60 
Rec.:  0.97 
F1:  0.74 

Ideal fusion Prec.:  1.00  
Rec.:  0.83 
F1:  0.90 

Prec.: 0.64 
Rec.:  0.99 
F1:  0.79 

Prec.: 0.56 
Rec.:  0.99 
F1:  0.71 

Prec.: 0.73 
Rec.:  0.99 
F1:  0.84 

Prec.: 0.64 
Rec.:  0.99 
F1:  0.78 

 

The rows correspond to different feature sets. The first two correspond to the basic features 

described in Section 3.b, and the third to their concatenation. “Agreement-based” refers to the 

practice of separately using the comment credibility and video metadata models, keeping the 

videos for which the two classifications agree, and re-classifying the rest using the concatenated 

feature vector. “Agreement-based with retraining” refers to a similar approach, the difference 

being that the concatenation-based classifier is retrained using the videos for which the 

classifiers agreed, thus providing some additional adaptation to the dataset. For every run, the 

table shows the Precision, Recall, and F1-score. Finally, “ideal fusion” is a theoretical result 

which takes the outputs of the comment credibility and video metadata classifier, and assumes 

there exists a perfect fusion system that knows which one is correct on every case. Thus, it 



correctly classifies a video if at least one of the two results is correct. This provides an estimate 

of the maximum performance possible if the system had access to the best possible fusion 

approach. 

The evaluation metrics show a degradation of performance on the new dataset compared to the 

earlier experiments of (Papadopoulou et al, 2017), both in the case of only using the first posted 

video in each cascade and when using all the videos in the dataset. When looking at the F1 

scores, results are significantly lower than the first column in all cases. Furthermore, removing 

the channel-based features in order to merge Facebook, Twitter and YouTube videos leads to 

significantly reduced performance, both when using only the first video of each cascade and for 

the entire cascade. Ideal fusion between the two features does increase performance, but not at 

the levels of (Papadopoulou et al, 2017)  

 

5. Discussion 

a. Video and channel characteristics 

The aim of this work is to provide insights into the dissemination patterns of fake and real UGVs, 

in order to assist verification. The results of Section 4 give ground for several such observations. 

A first set of observations concern the video and associated text. To the extent that we consider 

the dataset to be representative of the UGV circulating the Web, there are certain patterns that 

distinguish fake from real videos. One is the length of the video itself, and another is the fact 

that outlets sharing fake videos tend to be younger and have fewer followers. Another 

characteristic is the lack of distinctive differences in linguistic terms between fake and real 

videos. While such features have in the past been used in automatic verification systems 

(Castillo et al., 2011) (Wu et al, 2015) (Boididou et al, 2018), it seems that on this dataset these 

features do not have strong distinctive power. However, that does not mean that such features 

are useless, since machine learning algorithms may identify complex correlations among them 

and utilize them for improving classification performance. The same applies to the statistical 

differences between content categories for fake and real videos on YouTube and Facebook. 

While these differences cannot be directly used as a criterion by a human investigator, they may 

prove useful if combined with other distinguishing features. 

Another observation pertains to the large time range that the circulation of a given video may 

span. In contrast to rumour verification, where generally the duration of rumours is in the scale 

of hours (Vosoughi et al, 2017), the dissemination of fake videos may cover an entire decade. 

From a verification perspective, this means that a large bulk of fake videos posted at any given 

time are actually old fakes that have probably already been debunked. This implies that 

investigators and the general public could dismiss the majority of misleading content if they had 

the means to easily match them with their previous, debunked versions. 

 

b. Comment distribution 

With respect to comment distribution, the overall difference in the average number of comments 

between fake and real videos can be attributed, at least in part, to the relatively smaller number 

of near-duplicates for real videos. Indeed, the fake set contains many near-duplicates that 

attracted relatively little user discussion. On the other hand, real videos are generally not 

reproduced as much, rather containing a small number of videos with much higher engagement. 



The high number of near-duplicates (often without comments) for fake videos highlights the fact 

that only a few fake video reposts have a noticeable disinformation impact. 

One explanation for the steady increase of comments in fake videos through time is the 

tendency of users to link to old fake videos in social media platforms in the context of unfolding 

news events. This is clearly observed in Figure 3, in which tweets sharing the video links to fake 

videos appear consistently throughout the decade that the dataset covers. When a video is 

uploaded with a new date, perhaps slightly edited, it might convincingly appear as a new event 

and might even mislead an experienced investigator. On the other hand, the practice of simply 

posting a link to an old fake video is a cruder form of misinformation that is unlikely to fool a 

professional. It nonetheless seems to be able to misguide part of the public and reinvigorate 

traffic in an old video, even one that is several years old. Thus, fake videos tend to remain 

engaging for longer periods, compared to real newsworthy videos which tend to exhaust their 

engagement with the passing of time both in terms of comment activity in old uploads and with 

respect to the possibility of being re-uploaded. 

 

c. Automatic verification 

The observation that user/channel features were important for classification is interesting in the 

sense that it comes in contrast to the observations of (Gupta et al, 2013), where user features 

(on Twitter) led to a degradation of performance. Overall, the experiments imply that existing 

approaches building on supervised learning and fusion models may be currently inadequate to 

deal with the complexity of the problem. This is in contrast to recent works in the related field of 

rumour/tweet verification, where such methods seem to lead to high classification accuracy 

(Gupta et al, 2013) (Vosoughi et al, 2017) (Boididou et al, 2018).  

Another important consideration derives from the observation that the experiments using videos 

from all platforms by removing the channel features led to significant degradation in accuracy. 

This highlights the importance of platform-specific models for verification. If videos from multiple 

sources are to be included in an analysis, designing dedicated models for them seems to be 

necessary in order to achieve good accuracy. 

 

6. Conclusions 

This work presented a novel annotated dataset of debunked and verified videos (termed fake 

and real respectively) collected from three platforms, and supplemented by the collection of 

Twitter posts that share the links to them, and organized into cascades. The dataset, named 

Fake Video Corpus 2018 (FVC-2018) is also accompanied by a set of experimental results 

using standard supervised learning and different fusion schemes. Besides its value as a 

benchmark for future approaches, a third novel contribution of this work is the analysis of the 

differences in the characteristics and evolution of real and fake video cascades over time with 

respect to the appearance of near-duplicates, the accumulation of comments and the 

distribution of various features. 

The implications of this work for future research are manifold: The data gathering methodology 

itself followed a novel protocol, exploiting advances in near-duplicate video retrieval to move 

from isolated videos into cascades. Furthermore, analysis of the collected data showed certain 

interesting patterns in real and fake videos, which could be exploited by human investigators 

and verification algorithms. Also, with respect to automatic verification, while the dataset proved 



to be challenging for the algorithm used, the increased F1-score for the theoretical ideal fusion 

classifier over all YouTube videos shows that there could be potential for a fusion scheme to 

benefit from the relative complementarity of video metadata and comment credibility features.  

The observations made on the distribution of fake videos in particular could also be of 

immediate practical importance. It was observed that videos keep attracting comments for a 

very long time after they are posted, as a result of being reposted in social media. In raising 

awareness against disinformation, flagging such old fakes on the platforms where they have 

been published could be an easy step that could assist users in identifying them and remove 

one significant source of disinformation. Also, given that a large proportion of misleading videos 

posted at any given time are actually near-duplicates of past, debunked videos, identifying them 

as such would greatly reduce the amount of disinformation circulated. With recent advances in 

near-duplicate detection, this could be a feasible task. Platforms such as YouTube already 

apply near-duplicate detection to detect copyright infringement. If the platforms would be willing 

to open these functionalities to third parties in order to run their own searches, this could 

empower investigators and the general public to timely identify and dismiss such fakes. 

The current work has certain limitations which leave open possibilities for future research. One 

is the choice of video sharing platforms. Videos were collected from YouTube, Facebook, and 

Twitter. Other platforms, such as Instagram, could also be studied in the future.  Also, the 

current work did not take into account another form of information sharing, namely messenger 

applications such as Viber and WhatsApp. While it is difficult to automatically collect information 

exchanged through such applications, including cascades from such sources would provide new 

important insights on the dissemination of disinformation. Another limitation is the mixing of 

established news outlets sharing real videos, with independent users sharing them. A more 

refined annotation step could be carried out on the dataset to distinguish between the two. 

Furthermore, the limitations of the automatic classification method may be surpassed by taking 

advantage of the cascade structure provided by the dataset. This would be similar to rumour 

detection algorithms which exploit not only the individual features of posts, but the way they are 

disseminated and distributed within the cascade. While tools such as the InVID plugin (Teyssou 

et al, 2017) already provide relevant verification functionalities for isolated videos, research in 

cascade analysis could provide tools with more empowering functionalities, and the dataset 

presented here is aimed as a suitable evaluation benchmark for such a challenge. 
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