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ABSTRACT

In this paper, we address the problem of global-scale image geolo-
cation, proposing a mixed classification-retrieval scheme. Unlike
other methods that strictly tackle the problem as a classification
or retrieval task, we combine the two practices in a unified solu-
tion leveraging the advantages of each approachwith two different
modules. The first leverages the EfficientNet architecture to assign
images to a specific geographic cell in a robust way. The second
introduces a new residual architecture that is trained with con-
trastive learning to map input images to an embedding space that
minimizes the pairwise geodesic distance of same-location images.
For the final location estimation, the two modules are combined
with a search-within-cell scheme, where the locations ofmost simi-
lar images from the predicted geographic cell are aggregated based
on a spatial clustering scheme. Our approach demonstrates very
competitive performance on four public datasets, achieving new
state-of-the-art performance in fine granularity scales, i.e., 15.0%
at 1km range on Im2GPS3k.
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• Computing methodologies → Computer vision problems;
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1 INTRODUCTION

We define visual location estimation as the process of estimating
the geographical coordinates of a scene based solely on the visual
cues existing in the given image. One could think multiple varia-
tions of this task, depending on whether we restrict our input to
a particular kind of scenes, e.g., landmarks [3, 5, 46], to be from
a particular area [1, 17, 44], or on whether we are using different
inputs, e.g., a sequence of images per scene [2, 31, 32], or aerial im-
agery [24, 34, 43]. In this study, we focus on global-scale location
estimation from single images, which is the most challenging prob-
lem setting. Without restricting the type and location of the input
images, some ambiguity is unavoidable, as not all images contain
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enough visual cues to allow their precise localization. This ambi-
guity raises the difficulty of the task significantly and highlights
the need to design a general model, resilient to over-fitting, able to
extract the informative characteristics from the depicted scenes.

There are two prevalent formulations of the problem of global-
scale location estimation and accordingly two solutions to tackle
it: classification and retrieval. The former considers a classifica-
tion task [15, 16, 29, 47], partitioning the earth’s surface into a
grid of cells, and then trains a classifier to assign input images to
a grid cell. The latter considers location estimation as a retrieval
task [12, 13, 20, 22, 30, 42], searching in a large-scale background
database of geotagged images to retrieve similar ones based on a
given query, and then aggregates them for estimating the location
of the query image. Both formulations have limitations. The ma-
jor drawback of classification approaches stems from the division
of the earth into large geographic areas, which results in coarse
estimations. A partial solution to that would be to consider a finer
granularity grid, but this could potentially hurt the system’s perfor-
mance [16, 42, 47]. On the other hand, retrieval-based approaches
performworse than classification-based ones [16, 29, 47], and they
need significantly more computational resources during inference.
Also, our investigations indicated that they are prone to noise from
the appearance of visually similar concepts within images that are
not related to the particular location (e.g., humans, animals, vehi-
cles).

Motivated by the above limitations, we propose a scheme that
achieves high geolocation accuracy in all granularity scales. We
build on the strong aspects of both classification and retrieval ap-
proaches. Their combination has already been employed in global-
scale text-based geolocation solutions [19, 40]; yet, to the best of
our knowledge, they have not been successfully employed in the
visual domain. We leverage recent advances in the field of image
classification, employing a state-of-the-art architecture, and con-
trastive learning [7, 14, 18], building a retrieval module that achieves
better performance than using features directly extracted from pre-
trained CNNs. In particular, we make the following contributions:

• We develop robust classification modules based on the state-
of-the-art EfficientNet [37] architecture, which has not been
employed before in the relevant literature, trainedwith three
different training schemes from the literature.

• We build a retrieval module based on a residual architec-
ture trained with contrastive learning. The network learns
to capture location-relevant information and enriches the
image features representations extracted from the CNN.

• We also propose the Search within Cell scheme that com-
bines the twomodules and estimates the final locationswith
an aggregation scheme based on spatial clustering.

http://arxiv.org/abs/2105.07645v1
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• Our approach outperforms several state-of-the-art methods
on four benchmark datasets, achieving up to 42% relative
improvement at the 1km range on the Im2GPS3k. We also
evaluate our method with various configurations to gain in-
sight into its behaviour.

2 RELATED WORK

There are several works in the literature that tackle the problem of
location estimation. These can be roughly classified into two cate-
gories according to [6, 28, 29]: (i) approaches restricted to specific
environments or imagery, and (ii) planet-scale approaches without
any restrictions. Our approach belongs to the second category.

The works in the first category focus on the localization on
fine granularity scales, such as landmarks [3, 5, 46, 49] or at city-
scale granularity [1, 17, 25, 39, 44]. In general, the solutions that
are employed for such problems are based on retrieval systems
that match the query images with ones from a background collec-
tion and then apply a post-processing scheme to estimate the final
location. However, these methods use restricted data from pop-
ular scenes and urban environments and require many instance
matches to perform robustly, which is infeasible at a global scale.
Another instance that falls within this category are methods that
estimate image locations from cross-view imagery, e.g., ground-to-
aerial [23, 24, 34, 36, 43, 50]. Such methods are restricted on the
type of imagery needed as input in order to perform location esti-
mation.

The works in the second category tackle the location estima-
tion problem under no constraints. Hays et al. [12] first introduced
the problem with the composition of a dataset of about 6 million
images collected from Flickr. They proposed an image retrieval
method based on handcrafted features. A breakthrough was made
by [47] when the authors formulated the problem as a classification
one and trained a CNN, namely PlaNet, with the cross-entropy loss.
The classes were defined using a heuristic process for the adaptive
partitioning of the earth into geographic cells. Motivated by the
PlaNet [47], a revision of the original Im2GPS paper was made
in [42], where the authors proposed a retrieval approach for in-
ference, extracting image features from a trained CNN. They also
experimented with Deep Metric Learning for fine-tuning the net-
work, yet without achieving significant performance gains. CPlaNet,
a modification of the original PlaNet [47], was proposed by [15].
The authors usedmultiple coarse partitions of the earth and trained
a different network for each of them. The final finer-granularity re-
sult was calculated by a combinatorial partitioning approach, which
considered the intersections of the partitions. The authors of [29]
experimented with different architectures, simultaneously using
multiple cross-entropy loss functions corresponding to a coarse,
middle, and fine-grained partition of the earth for the training of
the CNN, and a fusion scheme of the probabilities in the three gran-
ularities for the inference of the estimated location. Additionally,
they proposed as an initial step to split the images according to the
scene they represent, such as indoor, natural or urban, and trained
a different model per category. More recently, the authors of [16]
proposed the use of the continuous von Mises-Fisher (vMF) distri-
bution to model the geolocation problem as an alternative to the

simple classification approach. However, to the best of our knowl-
edge, there has been no global-scale location estimation approach
that successfully combines classification and retrieval. Also, the
only recently proposed retrieval-based approach [42] did not man-
age to achieve better performance compared to using the features
extracted from a pre-trained classification network.

3 METHODOLOGY

Figure 1 illustrates the proposed approach. Our method requires
the partitioning of the earth’s surface into cells (Section 3.1), which
is the base of a classification and a retrieval module.We experiment
with three practices to build the classification module (Section 3.2).
For the retrieval module, we propose a residual architecture and
train it with contrastive learning to map images to an embedding
space, where the same location images have large similarity (Sec-
tion 3.3). Finally, we combine the twomoduleswith a search within
cell scheme and a spatial clustering aggregation approach (Section
3.4).

3.1 Earth Partitioning

As the probability distribution of the image locations is not uni-
formly distributed over the earth, it would make sense to create an
adaptive partition of the Earth based on the training data. Similar
to [29, 47], the steps of the process we follow are: (1) create a first
coarse partition of the Earth, (2) assign to each cell the included
images, (3) choose the cell with the most images and split it, (4)
remove the parent cell and assign to each child cell the images lo-
cated within its borders, (5) repeat steps 3-4 until the desired num-
ber of classes is reached. The above process requires a hierarchical
representation of the Earth’s surface; we used Google’s S2 Geom-
etry Library [11] similar to [29, 47]. It is also possible to choose
different termination criteria, e.g., terminate when all classes have
less images than a fixed threshold, or enforce additional restric-
tions, e.g., disallow classes to have less than a fixed number of im-
ages. For each cell of the resulting partition, we define its center
that will be used as a point prediction, estimated as the average
location of the image locations in the cell.

3.2 Classification module

We describe three ways the classification module can be imple-
mented, for which we provide experimental results in Section 5.

3.2.1 Discrete probability model trained with cross-entropy. The
most straightforward way to implement the classification module
is with a CNN that outputs a discrete probability distribution over
the cells defined in Section 3.1, as done by PlaNet [47]. The CNN
weights can then be trained with the cross-entropy loss, which is
commonly used in classification tasks.

3.2.2 Hierarchical Classification (HC). Another possibility is to fol-
low a hierarchical approach [29] and simultaneously train three dif-
ferent classifiers, each implemented as described in Section 3.2.1,
at different geographical resolutions. That is, we create three dif-
ferent partitions of the Earth, ranging from coarse-grained with
a small number of cells to fine-grained with a large number of
cells, and attach three different classification heads to the backbone
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Figure 1: Overview of the proposed Search within Cell (SwC) scheme. Given a query image, a backbone network is first used

to extract representative features. Then: (i) a Classification Module predicts a cell on the earth’s surface, and (ii) a Retrieval

Module extracts an image embedding. These are combined with the Searchwithin Cell scheme, where themost similar images

that belong to the predicted cell are retrieved. The final location is estimated based on a Spatial Clustering scheme, where the

most similar images are clustered based on their GPS coordinates.

CNN, one per partition. The loss is then calculated as the average
of the cross-entropy loss of each head.

Training the backbone with this loss, as done in [29], could
potentially allow the network to achieve greater generalization
power. However, due to the high computational cost, we fix the
backbone network weights and train only the different classifica-
tion heads, which is equivalent to training three independent mod-
els at different partitions. For the inference, we can take advantage
of the multiple heads by combining the three outputs. Specifically,
we 1) calculate the output of each head, 2) find for every cell of the
fine partition its parent in the mid and coarse partitions, 3) multi-
ply the probability of the cell with that of its parents, 4) select the
cell of the fine partition with the highest probability.

3.2.3 MvMF trained with log-likelihood loss. A shortcoming of the
two previous methods is that they do not take into account that the
data points and classes are defined on the surface of the Earth, and
as such are related to each other in a common spherical coordinate
system. An alternative is tomodel the task in the continuous proba-
bility space using the von Mises-Fisher (vMF) probability distribu-
tion [16] that is specifically targeted towards modeling spherical
data. The vMF distribution is defined as

vMF(x | -, ^) =
^

4c sinh^
4^-

)
x (1)

where ‖-‖ = ‖x‖ = 1 is the mean and ^ > 0 the concentration,
and was used by the authors of [16] to build a probabilistic model
of the geolocation task based on a Mixture of vMF distributions
(MvMF) that would be trained with the log-likelihood loss: first, a
partitioning of the Earth is constructed, as described in section 3.1,
and each cell of this partitioning corresponds to a single compo-
nent of the MvMF with mean the center of the contained images.
Then, the probability that a given image � is located at G is given

by

MvMF(G | � ) =

#∑

8=1

F8 (� )vMF(G | -8 , ^8) (2)

where w (� ) sums up to one and is calculated from the output of
a CNN. The concentration, ^ , of each vMF component is a param-
eter of the model that is learned during training, but is fixed and
independent of the input image � during inference. The network is
trained with the negative log-likelihood loss, a common choice for
training probabilistic mixture models.

As the final result, ideally, we would choose the location that
maximizes the probability density function. However, this would
involve solving a computationally intensive non-convex optimiza-
tion problem; instead, we opt for approximating it with the loca-
tion of themean of themixture component with the highest weight
F .

3.3 Retrieval module

A robust retrieval system has to map the images in the dataset to
an embedding space where the images from the same location are
closer to each other than the rest. The goal is to alleviate the high
inter-class ambiguity and intra-class diversity introduced by the
weak supervision from training with GPS coordinates and noisy
data. To this end, we build a network architecture and train it with
supervised contrastive learning.

3.3.1 Network architecture. To build our retrieval system, we em-
ploy a backbone CNN training based on a classification scheme,
andwe extract feature representations for the images in our dataset.
Given an input image, we feed it to the CNN and apply Global Av-
erage Pooling (GAP) on the activations of the final convolutional
layer to extract a feature vector z ∈ R� , where � is the dimension-
ality of the output vectors. Inspired by the Feed-Forward Layer
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Figure 2: Overview of the Residual Retrieval Module. The

symbol ⊕ indicates element-wise summation.

from [41], we build a residual network for the projection of the im-
age vectors to the embedding feature space. Figure 2 displays the
network architecture of the retrieval module. The network com-
prises two fully-connected layers, with �ℎ hidden size and Recti-
fied Linear Unit (ReLU) [21] activation between them. The output
is added with the input feature vector with a residual connection.
Before and after the residual connection, feature vectors are nor-
malized with LayerNorm [4]. Finally, ℓ2-normalization is applied
on the feature vectors to transform them to the unit sphere. The
network output is an enriched embedding vector, ẑ ∈ R� , with
the same dimensionality as the input. With this architecture, our
model is able to capture the relevant information from the feature
vectors and enrich the image representations without drastically
altering them. This is achieved with the use of the residual con-
nection that we empirically found to boost the performance of the
proposed system. Our main intuition for the proposed scheme is
that the image vectors are already good representations and that
the network learns to extract and amplify useful information in the
output embeddings.

3.3.2 Training process. For training, we propose a supervised con-
trastive learning method [18] based on the image locations. We
aim to map the images captured from the same location closer in
the embedding space than the rest. Hence, given the Earth’s parti-
tioning as described in Section 3.1, images that belong to the same
geographic cell are considered as positive pairs; instead, images
from different cells are considered as negatives. Let ẑ@ , ẑ? , and

ẑ8= , 8 = 1, 2, ..., # − 2, be the embeddings, derived from our net-
work, of a query image, a positive image (an image from the same
cell with the query), and several negative images (images from dif-
ferent cells). We train our network so that the similarity between
the query-positive pair is significantly larger than the similarities
between the query-negatives. Since all vectors are ℓ2-normalized,
their dot product measures the similarity between images in the
embedding space. To train our network, we employ the infoNCE
[33] contrastive loss function, as follows:

L=24 = − log
4G? (ẑ@ · ẑ?/g)

4G? (ẑ@ · ẑ?/g) +
∑#−2
8=1 4G? (ẑ@ · ẑ8=/g)

(3)

where g is a temperature hyperparameter [48]. The training loss
drops as the similarity between the query-positive pair is signifi-
cantly greater than the similarities of the query and all negatives.
Therefore, by minimizing this loss, we force the network to assign

high similarity values on the positive pairs, i.e., the images originat-
ing from the same cell, and low similarity values on the negative
pairs, i.e., the images that come from different cells. To utilize more
negative samples during the loss calculation, we employ a cross-
batch memory bank [45, 48]. Additionally, to eliminate the bias
from the cells that contain many images, in each training epoch,
we sample one image pair from each cell. In that way, all cells are
equally represented during the training process.

3.3.3 Background collection. In a retrieval system, it is essential to
build a background collection where retrieval is performed. In the
current problem, the selection of a representative background col-
lection can affect the system performance, as pointed out in [42].
However, a huge background collection significantly increases the
total time needed for retrieval. In this work, we build the back-
ground collection with images from the training set, and we pop-
ulate it with those that our classifier is able to place in the correct
geographic cell. In that way, we compose a background collection
of “placeable” images, i.e., suitable images that serve our retrieval
scheme for the visual location estimation task.

3.4 Search within Cell

We employ an aggregation scheme to combine the two geoloca-
tion modules, classification and retrieval, called Search within Cell
(SwC). First, we perform classification to derive the cell with the
largest probability. Then, we retrieve the top-most similar images
of the background collection, with the constraint that the retrieved
images fall within the borders of the estimated cell.

Finally, to enhance the robustness of the results, we develop a
density-based spatial clustering scheme. Given a query image with
its predicted cell, we first retrieve the top  most similar images
from the background collection that belongs to the same cell. Our
intuition is that the most visually similar images are the most ap-
propriate to infer the location of the query. Then, we apply the
DBSCAN [10] algorithm on the GPS coordinates of the  images
to form clusters based on their spatial proximity. DBSCAN is se-
lected because it does not require setting a predefined number of
clusters, which would be impractical to select optimally at global
scale. We use the geodesic distance as the function to calculate the
distance between images. DBSCAN requires setting an Y threshold,
which corresponds to themaximum distance between two samples
for the first to be considered in the neighborhood of the second.We
empirically set Y equal to 1km, as we found it to yield marginally
better results. Also, DBSCAN may receive as argument the mini-
mum number of samples in a neighborhood for a point to form a
cluster. Since we do not want to force the merging of isolated im-
ages in the clusters during the final location estimation, we set this
parameter to 1. In the end, the largest cluster (or the first one in
rare cases of equal size) is selected. The final location estimation
derives from the mean of the locations of the cluster’s images.

4 EVALUATION SETUP

4.1 Datasets

MediaEval Placing Task 2016 (MP16) [8] is used for training
and evaluation of our approach as provided by the original au-
thors. It consists of approximately 5.8 million geotagged images
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randomly selected from the YFCC100m [38] collection, without
performing any filtering based on the image metadata. The dataset
is split into two parts: (i) the training set, composed of 4.5 million
images, which we use to train our models, and (ii) the test set, in-
cluding the remaining 1.3 million images, which is used for evalu-
ation.

Im2GPS [12] is used for comparison against existing methods
as provided by the original authors. It consists of 237 images from
the original Im2GPS dataset, manually selected by the authors of
[12] from a set of 400 images based on their localizability.

Im2GPS3k [42] is also used for comparison against existing
methods as provided by the original authors. It consists of 3,000
images from the original Im2GPS dataset. The images were not
manually filtered; hence, it is a more challenging test compared to
the previous one.

YFCC4k [42] is used for comparison against existing methods
as provided by the original authors. It consists of 4,000 images from
the YFCC100m [38] dataset without applying any filtering. Since
it derives from a general purpose dataset, its image distribution is
different from Im2GPS, making it more challenging.

4.2 Implementation details

For the proposed approach, we train an EfficientNet-B4 model [37],
initialized with pre-trained weights on ImageNet [9]. For the train-
ing of the backbone CNN, we employ the simple cross-entropy
scheme using 32K cells, whichwe consider as our re-implementation
of PlaNet. The model is trained for 25 epochs with the entire train-
ing dataset after removing all the images of the users that appeared
in the evaluation sets, according to [29, 42]. We train the network
with Stochastic Gradient Descent (SGD) and step decay, with 0.01
initial learning rate, 0.5 decay factor with step 5 epochs, momen-
tum 0.9, batch size 64, and weight decay 10−4. During training, we
apply data augmentation by randomly cropping image areas that
cover at least 70% of the original images with an aspect ratio in
the range from 3/4 to 4/3. The input images are randomly flipped
and resized to 300×300 pixels. During inference, we simply resize
the images so that the largest side is 300 pixels. For validation, we
use the same YFCC100m [38] subset as in [29]. After this training
session, the weights of the CNN remain fixed and are not updated
during the training of the rest of the modules.

For the development of the other two classification schemes, i.e.,
HC and MVMF, we use similar training processes with the one de-
scribed above. For HC, we follow the earth partitioning proposed
in the original approach [29]. For the MvMF, we use the same num-
ber of cells as in the previous setup. Also, we initialize the weights
of the mixture layer with the ones from the classification layer. We
train both methods for 5 epochs with the AdamW [27] optimizer
for faster convergence, with 10−5 initial learning rate, and a cosine
annealing learning rate [26] scheduler. We use the same batch size,
weight decay, and augmentation process as above.

For the training of the retrieval scheme, we only use image fea-
tures extracted from the CNN as described in Section 3.3.1. The
network is trained for 200 epochs with an AdamW [27] optimizer,
with 10−5 initial learning rate, and a cosine annealing learning rate
scheduler. Also, we use a batch size of 64 image pairs and weight
decay 10−4. The value of g is set to 0.05, the size of the bank is

4096, and the hidden size of the network �ℎ is 4096. Finally, after
filtering the images wrongly placed by the classification network
and the images of users that appear in the evaluation sets, the back-
ground collection amounts to 700K images. For the SwC scheme,
we use the top 10 most similar images for the location estimation.

The training time on 4 Nvidia RTX 2080Ti was one week for
the backbone CNN, approximately 8 hours for each classification
scheme, and 2 hours for the retrieval scheme. The inference time
of our system is 40ms per image.

4.3 Evaluation metrics

Following [12, 15, 42], we evaluate geolocation performance based
on the percentage of images that are placed within a predefined
granularity range. An image is considered correctly placed when
the geodesic distance of the estimated location to the ground truth
is lower than the granularity range. The geodesic distance is calcu-
lated as theGreat Circle Distance (GCD) between the two locations.
We consider two sets of granularity ranges: (i) the baseline gran-
ularity ranges, including 1km, 25km, 200km, 750km, and 2500km,
corresponding roughly to street, city, region, country, and conti-
nent granularity level, and (ii) the fine-grained granularity ranges,
including 100m, 1km, 5km, and 10km, that evaluate the methods’
performance in fine granularities, which are more representative
of the actual performance of a useful location estimation system.

5 EXPERIMENTS

In this section, we report the results of several runs following the
proposed methodology. We compare the different versions of the
implemented method against several state-of-the-art approaches
(Section 5.1). Also, we provide an ablation study to evaluate the
proposed approach under different configurations (Section 5.2).

5.1 Comparison against the state-of-the-art

Table 1 illustrates the performance of the proposed and state-of-
the-art approaches on the four evaluation datasets. The perfor-
mance is measured in all eight granularity ranges. The proposed
approach is compared with several classification approaches, i.e.,
Hierarchical Classification (HC) and Individual Scene Networks
(ISN) from [29],Mixture of vonMises-Fisher (MvMF) [16], the CPlaNet
and Planet [47] re-implementation from [15], the retrieval approaches,
i.e., RevIm2GPS [42], VGG-PCA [20], and the Feature Fusion ap-
proach by [30]. Moreover, we report the performance of our re-
implementations for Planet [47], HC [29], and MvMF [16] trained
based on our setup described in Section 4.2. Finally, the perfor-
mance of our proposedResidual Retrieval Module (RRM)with near-
est neighbour search is demonstrated, and it is combined with our
re-implemented classification modules with our SwC scheme.

According to the results, our approach achieves superior per-
formance, especially in fine granularity ranges. Comparing our re-
implemented classification run with the original ones, it is clear
that the use of the EfficientNet-B4 model significantly boosts per-
formance in almost all granularity ranges, even though we did not
train the backbone with HC, which could lead to even better per-
formance according to [29]. Additionally, our SwC scheme consid-
erably improves geolocation accuracy in fine ranges (i.e., <10km)
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Method Type
Acc@ Im2GPS Acc@ Im2GPS3k

100m 1km 5km 10km 25km 200km 750km 2500km 100m 1km 5km 10km 25km 200km 750km 2500km

HC [29] C - 15.2 - - 40.9 51.5 65.4 78.5 - 9.7 - - 27.0 35.6 49.2 66.0
ISN [29] C - 16.9 - - 43.0 51.9 66.7 80.2 - 10.5 - - 28.0 36.6 47.7 66.0
MvMF [16] C - 8.4 - - 32.6 39.4 57.2 80.2 - - - - - - - -
PlaNet† [47] C - 11.0 23.6 26.6 31.2 37.6 64.6 81.9 - 8.5 18.1 21.4 24.8 34.3 48.8 64.6
CPlaNet [15] C - 16.5 29.1 33.8 37.1 46.4 62.0 78.5 - 10.2 20.8 23.7 26.5 34.6 48.6 64.6
PlaNet‡ [47] C 4.2 17.3 33.8 38.0 41.8 53.2 67.9 82.3 2.8 11.8 22.1 25.3 28.8 37.4 51.0 67.4
HC‡ [29] C 1.7 13.5 28.7 32.9 39.7 54.0 68.8 82.7 1.8 10.1 20.1 23.9 28.4 37.9 52.0 68.1

MvMF‡ [16] C 4.6 19.8 34.2 40.1 44.7 55.7 67.5 81.9 3.0 13.1 23.5 26.7 29.8 38.0 52.3 67.6
RevIm2GPS [42] R - 14.4 - - 33.3 47.7 61.6 73.4 - 7.2 - - 19.4 26.9 38.9 55.9
RRM R 5.1 19.4 35.0 37.1 40.5 51.1 60.4 78.1 3.6 12.4 20.4 23.5 26.0 34.0 46.9 63.6
PlaNet‡ + RRM SwC 5.5 19.8 36.3 38.0 41.8 52.7 67.9 82.3 4.3 13.9 23.4 26.1 29.3 37.4 51.0 67.4
HC‡ + RRM SwC 5.5 18.6 34.6 36.7 41.8 55.3 69.2 82.7 3.8 13.2 22.5 25.5 29.1 37.8 52.0 68.1

MvMF‡ + RRM SwC 6.3 21.9 38.0 40.5 44.3 55.3 67.5 81.9 4.1 15.0 24.3 27.0 30.0 38.0 52.3 67.6

Method Type
Acc@ YFCC4k Acc@ MP16-test

100m 1km 5km 10km 25km 200km 750km 2500km 100m 1km 5km 10km 25km 200km 750km 2500km

PlaNet† [47] C - 5.6 10.1 12.2 14.3 22.2 36.4 55.8 - - - - - - - -
CPlaNet [15] C - 7.9 12.1 13.5 14.8 21.9 36.4 55.5 - - - - - - - -
PlaNet‡ [47] C 1.8 6.1 9.7 11.3 13.0 21.0 36.4 56.2 2.0 7.3 11.7 13.5 15.3 22.4 36.9 56.1
HC‡ [29] C 1.1 5.7 9.0 10.9 13.1 21.6 36.6 55.4 1.3 6.3 10.7 12.6 14.8 22.5 37.2 56.3

MvMF‡ [16] C 1.9 6.8 10.9 12.6 14.4 21.9 37.5 56.4 2.0 7.8 12.5 14.3 16.1 23.1 37.4 56.3

FeatFusion [30] R - - - - - - - - 0.9 2.4 4.0 4.6 5.2 7.3 17.2 35.4
VGG-PCA [20] R - - - - - - - - 1.8 5.6 7.5 8.2 8.8 12.1 22.4 40.8
RevIm2GPS [42] R - 2.3 - - 5.7 11.0 23.5 42.0 - - - - - - - -
RRM R 2.3 6.0 9.0 10.2 11.3 16.8 30.5 49.4 2.9 7.5 10.2 12.1 13.4 19.0 32.3 51.6

PlaNet‡ + RRM SwC 2.7 7.2 10.3 11.8 13.0 20.9 36.4 56.2 2.8 8.5 12.4 13.8 15.4 22.4 36.9 56.1
HC‡ + RRM SwC 2.5 7.2 10.3 11.7 13.3 21.6 36.5 55.4 2.5 8.0 11.9 13.3 15.0 22.5 37.1 56.3

MvMF‡ + RRM SwC 2.7 7.9 11.3 12.9 14.3 21.9 37.4 56.5 2.9 8.9 13.1 14.5 16.1 23.1 37.4 56.3

Table 1: Accuracy (%) on all eight granularity ranges of the proposed and state-of-the-art approaches on four public datasets.

The second column indicates the type of the method, C stands for classification, R for retrieval, and SwC for search within

cell. The best performances are highlighted in bold, and the second-best are underlined. † indicates the results of the re-

implemented methods by [15]. ‡ indicates the results of our re-implemented methods.

in all evaluation datasets compared to the individual runs, achiev-
ing as high as 2% absolute performance gain at the 1km range. This
highlights that the proposed scheme can operate well with various
combinations of classification-retrieval systems. Also, SwC hurts
the performance of the classification systems only in very rare oc-
casions and in coarse granularity ranges (i.e., >25km). The HC sees
the greatest improvement with the application of the SwC since it
uses a coarser grid compared with PlaNet and MvMF, leaving more
room for improvement. Finally, our RRMmethod achieves the best
results among the retrieval runs utilizing 700K images as the back-
ground collection, which is only a small fraction in comparison
to other approaches; RevIm2GPS uses 6 million images, and VGG-
PCA and Feature Fusion the entire MP16 training set.

In the Im2GPS, the best performing approach in fine granularity
ranges is our SwC scheme implemented with MvMF as the classi-
fication module and our RRM. More precisely, it achieves 21.9% at
1km granularity range, which is a relative improvement of almost
30% of the previous state-of-the-art achieved by the ISN with 16.9%.
It only leads to a marginal drop at the 25km and 200km ranges.
Furthermore, our SwC scheme implemented with HC and RRM
achieves the best results in the coarser granularity ranges. It also
marginally improves the performance of the classification module
at 750km. It is noteworthy that our retrieval module outperforms

almost all of the classification methods by a significant margin in
fine granularity ranges, i.e., <10km.

In the Im2GPS3k, our SwC scheme with MvMF and RRM out-
performs all other approaches by a considerable margin in almost
all ranges. It outperforms the previous state-of-the-art ISNmethod
at the 1km range by an absolute difference of 4.5%. The SwC boosts
the performance of the classification module in all fine granularity
ranges. Our RRM module demonstrates competitive performance,
in particular, at 100m and 1km ranges where it has the best, and
second-best performance among the individual runs (i.e., classifi-
cation and retrieval).

Regarding YFCC4k, the SwC run with MvMF+RRM leads to the
best results in the finer and coarser ranges, i.e., ≤1km and ≥200km,
and the second-best in the ranges from 5km to 25kmbehind CPlaNet.
However, we empirically found that using images of the users in
the evaluation set for training of the classification modules con-
siderably improves performance, i.e., more than an absolute 2%
in any granularity. Nevertheless, it is not clear in [15] whether
such images were used during training of the CPlaNet and PlaNet
re-implementation. Also, it is worth noting that the performance
of all runs is considerably lower, indicating that YFCC4k is much
more challenging than Im2GPS. This is expected since it consists
of random images from the YFCC100m without any filtering. Such
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loss 1km 25km 200km 750km 2500km

baseline 11.9 24.7 31.6 43.4 59.4
triplet 11.6 24.4 32.0 45.0 62.2
infoNCE 12.4 26.0 34.0 46.9 63.6

Table 2: Accuracy (%) on the baseline granularity ranges of

the baseline and the proposed retrievalmodule trainedwith

infoNCE and triplet loss on Im2GPS3k.

Network 1km 25km 200km 750km 2500km

w/o residual 11.2 24.8 32.6 45.5 62.0
w/ residual 12.4 26.0 34.0 46.9 63.6

Table 3: Accuracy (%) on the baseline granularity ranges of

the proposed retrievalmodulewith andwithout the residual

connection on Im2GPS3k.

images may not be appropriate for the evaluation of the geoloca-
tion problem. Yet, this dataset simulates an unconstrained scenario
where any arbitrary image has to be geolocated.

Finally, the performance on theMP16-test is similar to the YFCC4k
since both datasets derive from the same distribution, i.e., they are
random samples from the YFCC100m. The SwC runwithMvMF+RRM
outperforms all others in all granularity ranges. The results of the
two retrieval runs were provided by the organizers of the Medi-
aEval Placing Task 2016. Our RRM achieves significantly better
results than the previous retrieval approaches, highlighting the
progress in the field over the last years.

5.2 Ablation study

This section provides an ablation study on the Im2GPS3k dataset
for our proposed RRM module and SwC scheme. We benchmark
their geolocation performance to better understand their behavior
under different configuration settings.

First, we compare the performance of the proposed retrieval
module trained with different loss functions and against a base-
line run. For the baseline, the features extracted from the CNN are
directly used for retrieval without the application of the retrieval
module or any further training. Also, for the training of the RRM,
we compare the infoNCE loss against the triplet loss employed in
[42]. We use a margin of 0.01, and semi-hard mining [35], which
yielded the best performance. Table 2 depicts the results in the
baseline granularity ranges. The proposed scheme with infoNCE
achieves the best performance in all ranges. It outperforms the
baseline by a significant margin. The run with the triplet loss does
not lead to competitive results even in comparison to the baseline,
in accordance with the observations in [42].

Additionally, in Table 3 we evaluate the impact of the residual
connection on the geolocation performance of the RRMmodule. It
is evident that the application of the residual connection consider-
ably improves performance, highlighting its importance to the pro-
posed system. Comparing these runs with the baseline one from
Table 2, it appears that the residual connection leads to a clear ac-
curacy increase across all ranges.

Table 4 depicts the performance of the RRM using the proposed
background collection (700K images) and the entire training set

background col. 1km 25km 200km 750km 2500km

proposed 12.4 26.0 34.0 46.9 63.6

all train set 10.5 26.8 34.9 47.2 63.5

Table 4: Accuracy (%) on the baseline granularity ranges of

the proposed retrieval module with different background

collection on Im2GPS3k.

 100m 1km 5km 10km

1 3.6 14.4 24.1 26.8
5 4.0 14.7 24.3 27.1

10 4.1 15.0 24.3 27.0
15 3.9 14.9 24.1 27.0
20 3.8 14.7 24.1 26.8

Table 5: Accuracy (%) on the fine-grained granularity ranges

of the proposed SwC scheme with MvMF and RRMmodules

for different values of  on Im2GPS3k.

Aggregation 100m 1km 5km 10km

Average 3.9 14.1 24.0 26.8
KDE [42] 3.8 14.5 24.1 26.8
Spatial clustering 4.2 15.0 24.3 27.0

Table 6: Accuracy (%) on the fine-grained granularity ranges

of the proposed SwC scheme with MvMF and RRMmodules

with different aggregations on Im2GPS3k.

(4M images). With the proposed background collection,we achieve
considerably better accuracy at the 1km range with almost 2% dif-
ference; whereas, for most of the other ranges, the use of the entire
training set provides marginally better performance. Considering
that the proposed collection is only a fraction (17.5%) of the train-
ing set, which translates to much faster retrieval and lower mem-
ory requirements, we find that it strikes an excellent trade-off be-
tween accuracy and speed.

We also investigate the impact of the selection of the tempera-
ture g hyperparameter. The best performance is achieved when g
equals 0.05, which drops for greater or lower values (e.g., for 0.1
and 0.01, Acc@1km is 11.8 and 12.1, respectively). We also tested
various sizes of the cross-batch memory bank, and conclude that
the larger the size, the better the performance. Due to GPU mem-
ory limitations, we experimented withmemory size up to 4096 vec-
tors.

Moreover, we assess the impact of the selection of  for the
SwC scheme. Table 5 presents the accuracy of the approach for
various values in the fine-grained granularity range. Our system
achieves the best results for  = 10 in finer ranges, i.e., 100m and
1km, and for  = 5 in coarser ranges. For values greater than 10,
the performance starts dropping.

Finally, we benchmark three aggregation schemes for the final
location estimation. We compare the proposed spatial clustering
with a simple averaging of the image coordinates and with Kernel
Density Estimation (KDE), as proposed in [42]. For all schemes, the
top-10 similar images are used for the location estimation. Table 6
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(a) correct classification - correct retrieval (b) wrong classification - correct retrieval

(c) correct classification - wrong retrieval (d) wrong classification - wrong retrieval

Figure 3: Top-5 images from the background collection retrieved by our RRM given the image in the left as query. Retrieved

images are coloured based on their distance to the ground truth location of the query: green indicates less than 1km, yellow

within 1km and 100km, and red more than 100km. The images are grouped based on the predictions of the RRM and the

MvMF classification modules: (a) both modules found the correct location, (b) correct predictions by the RMM and wrong by

the MvMF, (c) wrong predictions by the RMM and correct by the MvMF, (d) both modules wrong. (best viewed in color)

depicts the results in the fine-grained granularity range. It is evi-
dent that the proposed approach achieves the best performance by
a considerable margin in all granularity ranges.

5.3 Qualitative evaluation

In this section, we provide some visual examples of the retrieved
images based on our RRM module, given some queries. The top-
5 images are illustrated in colour based on their geodesic distance
from the queries’ ground truth location.Also, the images are grouped
according to the performance of the RRM and MvMF modules. Fig-
ure 3(a) displays the images thatwere placedwithin 1km from their
true location by both methods. It is evident that many visual cues
are present, mapping the images to their precise locations. Figure
3(b) presents the queries that were correctly placed by the RRM
but missed by the MvMF. There are visual cues in the queries map-
ping the images to their locations; thus, the retrieval module can
find several related images from the same location, highlighting
that there is room for improvement in our proposed SwC scheme.
Figure 3(c) shows some example queries that were wrongly placed
by the retrieval module but correctly placed by the classification
module. It is noteworthy that the retrieval module is distracted by
the same concepts that appear in both query and reference images,
i.e., the child in the first example, the donkeys in the second, and
the bus in the third. Such cases are correctly addressed with our

SwC scheme, as it confines the RRM to search for similar images
within the borders of the cell predicted by the MvMF. Finally, Fig-
ure 3(d) illustrates examples of queries that were wrongly placed
by both modules. These cases either lack visual cues to map them
to their location, i.e., in the first two examples, or cues are too am-
biguous mapping the images to multiple locations, i.e., in the third
example where many buildings with similar architectural style ex-
ist in different locations.

6 CONCLUSIONS

In this paper, we proposed a method for planet-scale location esti-
mation that combines a classification and a retrieval module to esti-
mate the location of a query image. We built three state-of-the-art
classification schemes using EfficientNet [37] as backbone and pro-
posed a retrieval module based on a residual architecture trained
with contrastive learning. Our method exhibits very competitive
performance on four datasets, significantly improving the state-of-
the-art in many granularity ranges. In the future, we plan to in-
vestigate leveraging text annotations of images during training in
order to build more robust classification and retrieval models.
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