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ABSTRACT

The paper builds upon recent advances in feature represen-

tation and dimensionality reduction to propose a semi-super-

vised image annotation framework that achieves state-of-the-

art accuracy at substantial gains in computation cost. More

specifically, the framework combines the VLAD feature ag-

gregation method with spatial pyramids and PCA for image

representation, and proposes the use of Approximate Lapla-

cian Eigenmaps (ALEs) for learning concepts in time linear

to the number of images (labeled and unlabeled) available

at training. A set of thorough experiments on MIR-Flickr

and ImageCLEF 2012 ground truth annotations explore the

impact of PCA and pyramids on the attained accuracy, and

demonstrate that the proposed framework achieves virtually

the same accuracy with a state-of-the-art manifold learning

approach, while at the same time offering substantial speedup

(in the order of ×80), making possible the completion of a

training/testing run for a set of 25k images in less than 3 min-

utes in a commodity workstation.

1. INTRODUCTION

Despite continuous research efforts in recent years, image

annotation remains a challenging problem that is tackled by

a variety of computer vision approaches. In particular, the

increasing availability of online content has given rise to a

host of approaches based on semi-supervised learning that can

benefit from the inclusion of unlabeled samples in the train-

ing process. More specifically, manifold learning approaches

rely on the assumption that there is an underlying image man-

ifold, wherein semantically similar images are placed close to

each other and semantically dissimilar images are positioned

far from each other. Typically, manifold learning is imple-

mented by means of constructing a similarity graph between

labeled and unlabeled images and leveraging the graph to es-

timate the labels of the unlabeled images by considering the

labels of neighboring labeled images.

In such settings, a sparse similarity graph is built to en-

code the visual similarities between images and the graph

Laplacian is computed to extract a new learning representa-

tion. However, the methods using this technique, have the

drawback of being highly dependent on the choice of the neigh-

borhood size in the graph and on the manipulation of a n ×

n Laplacian matrix; the manipulation of such large matri-

ces is computationally costly, which is impractical for large

datasets. A solution to this problem, proposed by [1], incor-

porates the aggregation of the eigenvectors and the reduction

of the associated complexity, by taking the limit as the num-

ber of points go to infinity. We will refer to this technique

as Approximate Laplacian Eigenmaps (ALE). In this paper,

we construct features, which are easy to manipulate espe-

cially in large scale problems, by combining the ALE with

the VLAD feature aggregation, PCA and spatial pyramids.

As a result, we built a competitive approach both in efficiency

and time complexity. We also present a thorough experimen-

tal study, for validating our approach. Through extensive ex-

periments, we explore the trade-off between feature size and

accuracy; a high competitive accuracy is achieved, even with

a low feature size. The evaluation of the proposed methodol-

ogy demonstrates an exceptional gain in speed and scalability,

while the performance decreases only marginally.

2. RELATED WORK

In this section we present the state-of-the art in the area of

encoding methods, spatial histograms and manifold learning,

which are the main approaches this paper is based on.

Vector of Locally Aggregating Descriptors: In [2], the

authors propose a simplified non-probabilistic version of the

Fisher Vector for feature aggregation, the so-called Vector

of Locally Aggregated Descriptors (VLAD). VLAD uses a

codebook µK computed using k-means. By applying near-

est neighbor (NN) search, each local descriptor xt is associ-

ated with its nearest centroid. Then, the differences between

the descriptors xt and the centroid µi are accumulated to ui.

Finally, the d-dimensional vector of each feature is concate-

nated with ui to construct the Kd dimensional VLAD vector.

Spatial Binning: Spatial pyramids were first introduced

by Lazebnik et. al to take into account the weak geometry of

the Bag-of-Words (BoW) representation by utilizing spatial

histograms [3]. An image is repeatedly partitioned and his-

tograms of local features are computed by pooling descriptor-

level statistics. The pooling step aggregates the mapped de-

scriptors into a single signature. There are two proposed pool-

ing methods: Sum and Max pooling, with Sum pooling being

the most commonly used strategy [4]. In [4], the combina-
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tion of Gausian Mixture Model (GMM) coding and Fisher

Vector (FV) encoding with Sum pooling give satisfactory re-

sults. Recent experiments show that Max pooling combined

with sparse coding, an alternative approach of computing the

coding vector, is a very competitive combination [5].

Manifold Learning: The main idea of manifold learning

is to treat the class label of unlabeled images as a missing

variable that is derived based on an assumed manifold be-

tween labeled and unlabeled images. Specifically, a sparse

similarity graph is built in order to identify the most similar

images and to compute the graph Laplacian [6]. Laplacian

Eigenmaps (LE) is a recent non-linear dimensionality reduc-

tion technique that aims to preserve the local structure of the

data, thus accurately encoding the underlying graph manifold.

A recent approach based on LEs is the Graph Structure Fea-

tures (GSF) [7], which is used as a state-of-the art competitor

in the experimental section.

Unfortunately, the LE-based methods have to construct

similarity matrices and subsequently the graph Laplacians,

which are quadratic to the size of labeled and unlabeled data.

Thus, as the size of data increases, the use of manifold learn-

ing becomes prohibitively expensive. Many methods have

been proposed to efficiently calculate the graph Laplacian.

Most of them are based on building a smaller graph by ran-

domly subsampling a subset of the points [8]. The draw-

back of these methods is that their output can change dra-

matically according to the sampling points. Recently, the

ALE approach was presented that reduces complexity by us-

ing the convergence of the eigenvectors of the normalized

graph Laplacian to eigenfunctions [1]. Our proposed frame-

work builds upon this approach.

3. PROPOSED FRAMEWORK

SMaL is a Scalable Manifold Learning framework on top

of ALE, which is linear to the number of images, making

possible to use the graph Laplacian in large-scale problems.

SMaL makes use of VLAD vectors of different descriptors,

and reduces their dimensionality by PCA. Furthermore, the

framework computes the spatial pyramids of each image to

increase the performance while making features amenable to

dimensionality reduction. An overview of the framework is

illustrated in Figure 1, including different variants using both

global and local descriptors, and imposing different order in

the application of PCA, pyramids and Sum pooling.

As mentioned in [7] in order to construct the LE we need

to build a n× n similarity matrix between labeled and unla-

beled images. A matrix like this is very costly to compute in

large collections. In SMaL, we tackle this problem based on

an approximate computation of LEs by estimating a smaller

covariance matrix, as suggested in [1], where it is hypoth-

esized that the data xi ∈ ℜd are samples from a distribu-

tion p(x). Rotating the data to be as independent as possible,

s = Rx, can result in a B×B histogram of bins that approx-

Fig. 1. Overview of SMaL framework. The dashed lines de-

note optional processing steps.

imates the density p(s) of the rotated data. Then, instead of

computing the eigenvectors of the similarity matrix between

the original data (n×n), one can define eigenfunctions g cor-

responding to the eigenvalues of the rotated data s (B × B),

which can be seen as approximations of the LEs of the orig-

inal data when n → ∞. This is considerably faster, since

typically B ≪ n. These are recovered by solving the follow-

ing equation:
(

D̃ − PW̃P
)

g = σPD̂g (1)

where W̃ is the affinity between the B discrete points, P is

a diagonal matrix whose diagonal elements give the density

at the discrete points, D̃ is a diagonal matrix whose diagonal

elements are the sum of the columns of PW̃P , and D̂ is a

diagonal matrix whose diagonal elements are the sum of the

columns of PW̃ . An interpolation step follows to the target

dimension CD (described in [1]) and in the end, the n × CD

approximate LE vectors are derived.

In the final step, a linear classifier is trained using the ap-

proximate vectors of the labeled items as input. In our imple-

mentation, we opted for the use of linear SVM.

4. EVALUATION

In this section, we evaluate and compare SMaL and GSF as

described in Section 3 and in [7] respectively. The GSF is

based on the construction of a similarity graph between the

images, which is used to obtain the first eigenvectors and

manage them as features. We analyze how approximation af-

fects accuracy compared to the execution time.

GSF approximately optimizes the values from the top-k

[100, 200, 500, 1000, 1500, 2000] NN values, computing the

corresponding LE vectors for six different dimensions CD=

[10, 50, 100, 200, 400, 500] repeatedly for every feature and

concept, seeking the best parameter set (top-k, CD). In SMaL,

no variable needs optimization, since it was observed that dif-

ferent values of B and CD did not affect accuracy. Thus, we

choose to set B = 50 and CD = 500.

The MIR-Flickr (MIRF) [9] image collection was chosen

for benchmarking, using two different ground truth annota-
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tions. The first one has a set of 24 concepts [9] and the second

is the ImageCLEF 2012 (ICLEF12) annotation [10] that has

94 concepts. Both contain annotations for all 25K images of

MIRF. For accuracy the mean Interpolated Average Precision

(MiAP)1 measure is used. We have used GIST [11] as global

descriptor and SIFT, HUE-SIFT, OpponentSIFT and RGB-

SIFT as local descriptors [12]. We use a dense regular grid

with spacing of 6 pixels and we perform k-means clustering

with typical vocabulary size to 64 centroids as proposed in

[2] for better performance. The dataset was divided in three

parts: train, validation and test. We set the SVM parameter

c =5 in all experiments.

MIRF

No PCA Early PCA Late PCA

Descriptor K D # D 80 40 1024 512

GIST - 480
SMaL 31.8 35.8 34.0 - -

GSF 34.7 34.4 33.7 - -

SIFT 64 128
SMaL 41.5 41.7 41.5 45.8 45.7

GSF 41.2 41.3 41.8 45.3 45.2

HUE-SIFT 64 165
SMaL 30.4 36.3 38.7 47.3 47.2

GSF 46.0 44.0 43.8 46.2 46.1

OPP-SIFT 64 384
SMaL 39.3 43.1 44.2 48.0 48.0

GSF 47.5 47.5 47.2 47.7 47.6

RGB-SIFT 64 384
SMaL 40.0 44.0 44.0 48.5 48.4

GSF 48.3 48.4 47.5 47.8 48.0

ICLEF12

No PCA Early PCA Late PCA

Descriptor K D # D 80 40 1024 512

GIST 1 480
SMaL 16.6 18.0 17.0 - -

GSF 21.0 20.1 20.6 - -

SIFT 64 128
SMaL 20.0 21.6 21.3 24.0 24.1

GSF 22.4 22.2 22.3 25.0 25.0

HUE-SIFT 64 165
SMaL 15.0 17.7 19.0 25.6 25.6

GSF 25.0 24.0 23.7 25.3 25.2

OPP-SIFT 64 384
SMaL 20.0 22.5 23.2 25.6 26.0

GSF 26.0 26.4 26.2 26.0 26.0

RGB-SIFT 64 384
SMaL 19.5 23.2 23.2 26.3 26.2

GSF 26.3 26.7 26.3 26.5 26.4

Table 1. Performance of SMaL and GSF in relation to the

position of PCA and to the reduced feature size.

4.1. Dimensionality Reduction in SMaL

Our objective in this experiment was to analyze the impact of

dimensionality reduction through Principal Component Anal-

ysis (PCA) in two different steps of the processing pipeline.

• the local descriptors are reduced from D to D′ = 80

and 40 components (Early PCA, A)2.

• the final VLAD vectors are reduced from D = Kd to

D′=1024 and 512 components (Late PCA, B/C)2.

Table 1 shows the performance comparison between SMaL

and GSF. The main observation is that while GSF remains

1Also known as 11-points interpolated average precision. Computed with

the vl pr() method of the VLFeat library, www.vlfeat.org/mdoc/vl pr.html
2A, B & C refer to the three different variants of SMaL in Fig. 1

largely unaffected by PCA, SMaL reaps significant benefits

by moving from No PCA to Early PCA and even further to

Late PCA. Moreover, the choice of D (512, 1024) only margi-

nally affects accuracy; thus, for efficiency reasons, it is rec-

ommended to use the more compact features.

4.2. SMaL vs GSF including Spatial Pyramids

Another set of experiments is performed when combining the

VLAD vector and spatial pyramids (B2). In the case of spatial

pyramids, VLAD vectors are extracted for each bin. We use

Sum pooling and extract 8 VLAD vectors per image: one for

the whole image, three for the top, middle and bottom bins

and four for each of the four quadrants. We first L2 normalize

each of the 8 VLAD vectors independently and after the con-

catenation we perform the power and L2 normalization. The

final VLAD vector after the concatenation of spatial pyramids

is reduced from D = 8Kd to D′= 1024 and 512 components

using PCA and is L2-normalized before the SVM to make it

suitable for use on the linear SVM.

As expected, spatial pyramids with PCA have a positive

impact on the accuracy of both approaches. The improvement

is about 1-2% for each feature. Table 2 summarizes the per-

formance of two methods in MIRF and ICLEF12. The best

performance is on RGB-SIFT when combining spatial pyra-

mids with PCA. For instance, in ICLEF12, the best MiAP for

SMaL is 28.1% with PCA at 512, while the best GSF MiAP is

28.6% with PCA at 1024. Also, spatial binning does not help

accuracy when HUE-SIFT is used; instead, in some cases the

performance decreases by little: for example in SMaL the

MiAP with PCA at 512 is 25.6% and with pyramids is 25.1%.

We also have to report that we conducted experiments ap-

plying PCA on local descriptors (A2) or at each bin separately

(C2), but with less improvement compared to the ones of Ta-

ble 2 (B2). For example, using the A2 configuration with PCA

to 80-d at SIFT the MiAP was 21.3% compared to 27.4%. In

addition, the order of PCA ans Sum pooling (B2 vs C2), was

found to significantly affect the framework accuracy (27.4%

for B vs 20.8% for C).

4.3. Accuracy vs Time Trade-Off

This subsection discusses the issue of balancing between ac-

curacy and time. Table 3 presents the measured execution

times for GSF and SMaL versus the attained accuracy. For

completing the image annotation, SMaL needs only some min-

utes, in a commodity workstation with four cores and 12 GB

RAM; GSF provides marginally better results in classifica-

tion, but needs hours for the annotation. A typical execution

time for SMaL is 10 mins (60 msec per test image), whereas

GSF needs about 200. Thus, SMaL is a very fast approach,

practical in large-scale datasets and real-time applications.

Discussion: According to Tables 1 and 2, GSF appears

to perform slightly better. In case we do not combine late
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MIRF

No Pyramids Pyramids

Descriptor K D # 1024 512 1024 512

SIFT 64 1024
SMaL 45.8 45.7 48.3 48.1

GSF 45.3 45.2 48.7 48.4

HUE-SIFT 64 1320
SMaL 47.3 47.2 46.4 46.5

GSF 46.2 46.1 46.7 46.0

OPP-SIFT 64 3072
SMaL 48.0 48.0 49.3 49.4

GSF 47.7 47.6 49.9 49.5

RGB-SIFT 64 3072
SMaL 48.5 48.4 50.3 50.3

GSF 47.8 48.0 50.8 50.4

ICLEF12

No Pyramids Pyramids

Descriptor K D # 1024 512 1024 512

SIFT 64 1024
SMaL 24.0 24.1 26.4 26.5

GSF 25.0 25.0 27.4 27.2

HUE-SIFT 64 1320
SMaL 25.6 25.6 25.3 25.1

GSF 25.3 25.2 25.7 25.1

OPP-SIFT 64 3072
SMaL 25.6 26.0 27.3 27.5

GSF 26.0 26.0 27.7 27.4

RGB-SIFT 64 3072
SMaL 26.3 26.2 27.9 28.1

GSF 26.5 26.4 28.6 28.4

Table 2. Performance of SMaL and GSF with and without

the use of pyramids at two different dimensions.

PCA with ALE, we cannot achieve very competitive results

against GSF. More specifically, in the raw features GSF per-

forms much better than SMaL: when using RGB-SIFT, SMaL

achieves 19.5%, while GSF 26.3%. However, when late PCA

is applied on VLAD, SMaL achieves competitive results to

GSF. Finally, the best performance in SMaL is achieved when

an RGB-SIFT VLAD vector is used in tandem with spatial

pyramids and PCA at 1024 (Table 2), offering a speedup of

×53.5 compared to GSF. SMaL also performs better in MIRF

(in a 50-50 train-test split) when directly compared with Mul-

tiple Kernel Learning (MKL) [13], in which 18 visual fea-

tures are used and the performance metric is the mean Aver-

age Precision (mAP). In MKL the mAP is 53%, while SMaL

with only one feature, OPP-SIFT in combination with Spatial

Pyramids and PCA at 1024 achieves 57.56% mAP.

5. CONCLUSIONS

In this paper, we proposed an approximate semi-supervised

learning approach, using VLAD vectors with spatial informa-

tion. Our representation significantly decreases the time com-

plexity, enabling the use in large-scale settings. Our extensive

experiments in MIRF and ICLEF12 show that the proposed

framework gives results similar to state-of-the art methods,

achieving large computational gains. In the future we plan

to investigate the performance on textual features and their

fusion with visual. The next challenge is to explore the per-

formance in larger datasets and to use incremental methods,

to render their application even easier in real-time scenarios.

Acknowledgements: This work was supported by the So-

cialSensor project, partially funded by the European Com-

mission, under contract number FP7-287975.

MiAP Times (min.)

Descriptor Dims SMaL GSF SMaL GSF Speedup

SIFT 64×128 20.0 22.4 16 154 9.6

SIFT 64×80 21.6 22.2 11 187 17.0

SIFT 64×40 21.3 22.3 7 181 25.9

SIFT 1024 24.0 25.0 7 124 31.0

SIFT 512 24.1 25.0 2.5 137 49.6

HUE-SIFT 64×165 15.0 25.0 19 181 9.5

HUE-SIFT 64×80 17.7 24.0 16 180 11.3

HUE-SIFT 64×40 19.0 23.7 5 152 30.4

HUE-SIFT 1024 25.6 25.3 5 153 30.6

HUE-SIFT 512 25.6 25.2 3 250 83.3

OPP-SIFT 64×365 20.0 26.0 56 360 6.4

OPP-SIFT 64×80 22.5 26.4 10 226 22.6

OPP-SIFT 64×40 23.2 26.2 6 192 32.0

OPP-SIFT 1024 26.0 26.0 4 191 47.8

OPP-SIFT 512 26.0 26.0 3 254 84.7

RGB-SIFT 64×365 19.5 26.3 89 373 4.2

RGB-SIFT 64×80 23.2 26.7 40 206 5.15

RGB-SIFT 64×40 23.2 26.3 7 191 27.3

RGB-SIFT 1024 26.3 26.5 4 214 53.5

RGB-SIFT 512 26.2 26.4 3 255 85.0

Table 3. Accuracy vs Time Trade-Off between SMaL & GSF.
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