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Abstract

Multivariate time series forecasting is of great importance to many scientific

disciplines and industrial sectors. The evolution of a multivariate time series

depends on the dynamics of its variables and the connectivity network of causal

interrelationships among them. Most of the existing time series models do not

account for the causal effects among the system’s variables and even if they do

they rely just on determining the between-variables causality network. Know-

ing the structure of such a complex network and even more specifically knowing

the exact lagged variables that contribute to the underlying process is crucial

for the task of multivariate time series forecasting. The latter is a rather unex-

plored source of information to leverage. In this direction, here a novel neural

network-based architecture is proposed, termed LAgged VAriable Representa-

tion NETwork (LAVARNET), which intrinsically estimates the importance of

lagged variables and combines high dimensional latent representations of them

to predict future values of time series. Our model is compared with other base-

line and state of the art neural network architectures on one simulated data

set and four real data sets from meteorology, music, solar activity, and finance

areas. The proposed architecture outperforms the competitive architectures in
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most of the experiments.

Keywords: multivariate time series forecasting, machine learning, neural

networks, connectivity network

1. Introduction

Time series forecasting is a research topic that attracts great interest in

many areas such as meteorology [1], finance [2, 3], seismology [4], energy con-

sumption [5, 6], and traffic [7]. Adequately modeling the evolution patterns

of time series and thus making accurate estimations of their future values can

provide us with crucial information such as warnings about an upcoming storm,

earthquake, stock price increase, or traffic jam. Besides, not only the time de-

pendence between past and future values is vital for a system’s evolution but

also the causal interrelationships among its coupled variables, which might oc-

cur in a non-uniform manner [8, 9, 10]. Other studies have also pinpointed the

importance of non-uniform embeddings of multivariate time series in forecasting

[11].

One of the most well known and widely adopted time series forecasting mod-

els, ARIMA [12], captures linear correlations between past and future values.

Also, many other machine learning methodologies have been employed to serve

the same purpose, such as k nearest neighbors [13], Gaussian processes [14],

random forests [15], multi-layer perceptrons [16] and deep belief networks [17].

However today state of the art results in sequence modeling have been produced

by recurrent neural network (RNN) architectures [18], which are known to cap-

ture the non-linear time dependence between the predicted future value and the

preceding values. The standard form of a recurrent neural network is proposed

by Elman in [19] as in Equation 1:

ht = σh(Whxt + Uhht−1 + bh) (1a)

yt = σy(Wyht + by) (1b)

where xt is the input time series at time t, ht is the hidden state of the network
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at time t, yt is the networks output at time t and Wh, Uh, bh, Wy, by are

trainable variables. Also, σh and σy are non-linear activation functions.

More complex and effective architectures, both in natural language process-

ing and in time series forecasting1, have been proposed since then. Cho et

al. [20] proposed the encoder-decoder architecture in which an RNN is used

to encode the input sequence and a second RNN is then used to decode the

encoder’s output and make the final prediction. In [21] the latter idea is en-

hanced by an attention mechanism between the encoder and the decoder, which

forces the decoder to focus on the most relevant time steps of the input sequence.

Some alternative attention mechanisms have also been proposed during the past

few years [22, 23, 24]. Other network architectures based on RNNs and Long

Short-Term Memory networks (LSTM) [25] have been deployed considering both

time directions on the input data [26, 27], skip connections between layers [28],

autoregressive components [29, 30], multi-level attention mechanisms [31] and

missing values handling [32, 23]. Also, convolutional neural network (CNN)

architectures [33, 34] and architectures that combine CNNs with other models

[35, 36] have been proposed for regression and forecasting of time series.

However, while all of these architectures capitalize on the estimation of time

dependence and global information extraction, none of them accounts for the

causal interdependence among the coupled variables of the underlying multi-

variate mechanism. Recent studies though paved the way towards this direction

by employing dual-stage attention mechanisms [37, 38], which apply attention

weights on the input variables during the encoding phase and then apply at-

tention weights on the time steps during the decoding phase. We consider the

dual-stage attention-based recurrent neural network (DARNN) [37] as a state

of the art model in our comparative study presented in the results section.

To the best of our knowledge, although the literature numbers loads of fore-

casting methodologies none of them takes into account the importance of certain

1These two disciplines are subdivisions of the more general term sequence modeling and

many related methodologies can be applied to both.
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lagged variables in the system’s evolution mechanism. Notwithstanding, it is

reasonable to consider that extracting more fine-grained information can lead

to better forecasting accuracy. For instance, if one variable affects the target

after τ time steps and another variable after τ + h time steps, knowing only

that these two variables affect the target (or even not knowing it) is probably

less helpful than being aware of the lags as well.

In our approach, hidden states are generated by the model as high dimen-

sional latent representations of the multivariate time series lagged variables, for

each pair of variable and time step and not just for each time step. Then, train-

able weights are applied to the representations which ideally will tend to foster

the correct lagged variables and enable the model to mine this very wanted

knowledge of coupling structure. To this end, we changed Elmans equations by

introducing also the variable information in the model in addition to the time

step information. Three model versions are proposed here, one that does not

consider previous hidden states and consequently being non-recurrent, termed

LAgged VAriable Representation NETwork (LAVARNET), one that consid-

ers the previous hidden state of the corresponding variable, termed Recurrent

LAgged VAriable Representation NETwork (R-LAVARNET) and one that con-

siders the previous hidden states of all variables, termed Fully Recurrent LAgged

VAriable Representation NETwork (FR-LAVARNET).

We conducted a series of experiments using one simulated data set from the

well-known difference equations system coupled Hénon maps [39, 40] and four

real data sets from meteorology, music, solar activity, and finance areas. The

results show that the proposed architecture is capable of making multivariate

and univariate forecasts based on multivariate input signals with great accu-

racy. Additionally, it outperforms other baseline and state of the art neural

network architectures in most of the experiments. Also, a second simulation

study reveals the interpretable nature of our model, in which it is shown that

the lagged variables that contribute to the system’s evolution are fostered by

the corresponding trainable weights. Finally, the authors consider as the main

contributions of this paper the following:
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• A novel neural network-based architecture is proposed for multivariate

time series modeling and forecasting. It considers multivariate input and

either multivariate or univariate output depending on the under study

problem

• The main advantage of this method is that estimates the underlying cou-

pling structure among the measured variables of the system and exploits

the information gained by the most important lagged variables. Thus, its

behavior is interpretable providing extra information regarding the under-

lying mechanism as the weights of lagged variables estimated at training

phase reveal the causal relationships among the measured variables

• Until now most forecasting methods do not account for the causality pat-

terns among the measured variables and if they do they estimate patterns

at variable granularity level. Our method estimates even more fine-grained

causality patterns at lagged variable granularity level for the first time

• This architecture is found to exhibit superior forecasting behavior, com-

pared to other baseline and state of the art models, on one simulated data

set and on three out of four real data sets considered in this study

The rest of the paper is structured as follows. In Section 2 the problem

formulation and the proposed architecture are presented, in Section 3 the data

sets are described, in Section 4 the experiments are elaborated and in Section 5

conclusions are given.

2. Methodology

2.1. Problem formulation

The problem of multivariate time series forecasting is formulated as follows.

Consider a series of measured signals, X=[x1,:, x2,: . . . , xT,:] with xi,: ∈ RK

i = 1, 2, . . . , T , where K is the number of variables and T is the number of time

steps. The goal is to predict xT+1,: if all variables are of interest or xT+1,k if

only variable k is of interest, given X.
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In our approach, the estimation of the importance of lagged variables in

predicting the future is vital so we would like to clarify the meaning of this

notion. Considering a process x(t) at time t ∈ N, its lagged variables are

defined as x(t − τ), where τ ∈ N is the, so called, lag. In the multivariate

case for instance, if xT+1,k is caused by xT,k and xT−1,k−1, then variable k

at lag τ=1 (namely xk(t − 1) ≡ xT,k) and variable k − 1 at lag τ=2 (namely

xk−1(t − 2) ≡ xT−1,k−1) are the responsible lagged variables for the evolution

of variable k.

2.2. LAVARNET: Lagged Variable Representation Network

Here, a time series forecasting model is proposed that is based on Elman’s

equations for the recurrent neural network (Equation 1). The drawback of

recurrent neural network architectures that we alleviate here is that they do not

account for interrelationships among the time series’ variables and hence lack

knowledge regarding the underlying causality network of the system. The causal

relationships among variables of a coupled multivariate system determine its

evolution (along with other factors such as self-dependencies of each variable),

making this information crucial for the task of forecasting. To address this

problem we add to Elman’s equations a term that holds the variable information

in addition to the term that holds the time step information when the hidden

states are generated. This procedure produces a larger number of hidden states

T ·K (where T is the number of time steps and K is the number of variables)

than all classic recurrent neural networks, that produce T hidden states. On

one hand, this requires more memory but on the other hand, additional useful

information is leveraged.

As we have already mentioned three model versions are proposed, one that

does not consider previous hidden states and consequently can be considered

as non-recurrent, termed LAgged VAriable Representation NETwork (LAVAR-

NET), one that considers the previous hidden state of the corresponding vari-

able, termed Recurrent LAgged VAriable Representation NETwork (R-LAVARNET)

and one that considers the previous hidden states of all variables, termed Fully
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Recurrent LAgged VAriable Representation NETwork (FR-LAVARNET).

For the definition of the proposed model, we begin by determining the equa-

tions for the hidden states’ generation. The LAVARNET’s equations are:

ht,k = σh(WT · xt,: +WV · x:,k + bh) (2a)

yt,k = σy(Wy · ht,k + by) (2b)

The R-LAVARNET’s equations are:

ht,k = σh(WT · xt,: +WV · x:,k + Uh · ht−1,k + bh) (3a)

yt,k = σy(Wy · ht,k + by) (3b)

Finally, the FR-LAVARNETs equations are:

ht,k = σh(WT · xt,: +WV · x:,k + Ũh · ht−1,: + bh) (4a)

yt,k = σy(Wy · ht,k + by) (4b)

where xt,: ∈ RK is the multi-variate input at time t, x:,k ∈ RT is the multi-time-

step input of variable k, ht,k ∈ Rn is the hidden state for variable k at time t

with n being the number of neurons, yt,k ∈ Rn is the output vector for variable

k at time t, ht−1,: ∈ Rn·K is the concatenation of all hidden states (all variables)

of the previous time step and WT (n×K), WV (n×T ), Uh (n×n), Ũh (n×n·K),

bh (n×1), Wy (n×n), by (n×1) are trainable variables. Also, σh and σy are non-

linear activation functions. More specifically here the sigmoid activation is used

for both σh and σy. Then, a matrix of trainable weights A = {at,k} is defined,

with t = 1, . . . , T and k = 1, . . . ,K and each scalar at,k is multiplied with

the corresponding output vector yt,k. The weights corresponding to important

lagged variables should take non-zero values (either positive or negative) and

the weights corresponding to non-important lagged variables should take zero

(or as close as possible to zero) values after the training procedure. Finally, all

output vectors are concatenated in one vector and passed through dense layers

for the prediction of future values of the time series. In the case of predicting

just one variables future values, there is only one fully connected layer in the
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Figure 1: Architecture of LAVARNET. Each lagged variable xt,k is represented by a hidden

state ht,k which is then transformed to the output vector yt,k. Consequently, trainable weights

are applied on all output vectors and finally dense layers are employed for the forecasts.

networks output and only one trainable matrix of weights A, while in the case

of predicting many or all of the systems variables multiple independent fully

connected layers are employed as output layers. Additionally, in the latter

case, multiple trainable matrices of weights A1, . . . , AK (with Ai = {ait,k} and

i = 1, . . . ,K) are considered, one for each target i. The previous step is of

utmost importance as each target might be driven by different lagged variables

which should be fostered accordingly.

In Figure 1, a graphical representation of our model is illustrated for better

comprehension. Each lagged variable xt,k is transformed into the hidden state

ht,k through the Equations 2a (LAVARNET), 3a (R-LAVARNET) or 4a (FR-

LAVARNET) and then the hidden state ht,k is transformed into the output

vector yt,k through the Equations 2b (LAVARNET), 3b (R-LAVARNET) or 4b

(FR-LAVARNET). For the prediction of the first variable (k = 1) each of the

T ·K output vectors yt,k is multiplied by the corresponding element a1t,k of the
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trainable matrix A1 and consequently, all these new vectors are concatenated in

one vector of T ·K ·n elements, where n is the user-defined number of neurons.

The prediction for xT+1,1 is then calculated by a fully connected layer. The

predictions xT+1,k for the rest variables k = 2, . . . ,K are performed accordingly

using a different matrix Ak and different fully connected layer (network’s output)

for each variable k.

As one may notice, although before the fully connected layers the model

exploits all time steps up to time step T , the networks output concerns time

step T + 1, hence there is no information leakage from future to past. The

main reason that the proposed architecture performs that well in forecasting is

that it is able to capture the connectivity structure of the underlying complex

mechanism that generates the measurements. Moreover, it is able to estimate

accurately not only the subsystems that contribute to the evolution of each

system variable but also the exact lagged variables. This fact makes the results

(and consequently the proposed model’s behavior) interpretable which is a major

advantage and in Section 4.5 a simulation study is presented to showcase this.

Finally, we selected as starting point the simple RNNs equations, because any

other ideally preferable choice such as Gated Recurrent Unit (GRU) [20] or

LSTM [25] would dramatically increase the number of estimated parameters

and thus make the training of the architecture infeasible.

3. Data

3.1. Simulated data

The simulated data for the forecasting task are generated by the well-known

Hénon map system [39] and more precisely the coupled Hénon maps system

as defined in [40] with the chain connectivity pattern among its variables.

Many simulation scenarios are considered involving different number of vari-

ables K=5,10,15, number of time steps T=3,5,10,15 and time series lengths

L=200, 500, 1000, 2000, 3000, 4000, 5000, 6000, 7000, 8000, 9000 and 10000.
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For each simulation scenario (e.g. K=5, T=10 and L=1000) 5 Monte-Carlo

simulations are generated in order to obtain average model performance.

For the interpretability simulation study presented in Section 4.5 we use

the linear stochastic process of vector autoregressive model (VAR) [41] with a

random network of connections [42] among its variables for the generation of

multivariate time series. The time series length is set to L=5000 and different

simulation scenarios in terms of number of variables K=2,3,15 and model or-

der P=1,2,3 are considered. Also, 10 Monte-Carlo simulations per simulation

scenario are generated for the estimation of average model performance.

3.2. Real data

For the real data analysis four data sets from different research domains are

considered, one data set related to weather (SML2010)2, a set of data related

to musical genre popularity (GenrePopularity) that is generated as part of the

FuturePulse project3, a data set related to solar activity (Solar-Energy)4 and a

data set related to finance (Currency)5.

The SML2010 data set contains indoor temperature time series and other

relevant quantities like Carbon dioxide in ppm and sunlight in the south facade.

This data set is collected from a monitor system mounted on a domestic house.

Our target variable is the room temperature and 16 other relevant driving series

are used as input to our models as well. The data were sampled every minute

and was smoothed with 15-minute means. In this study, we use the first 3200

data points as the training set, the following 400 data points as the validation

set, and the last 537 data points as the test set.

The GenrePopularity data set contains time series data from 2000-01-01

until 2019-10-31 related to the popularity level of 60 musical genres (presented

in Table 1) in four countries: Great Britain, United States of America, Sweden

2https://archive.ics.uci.edu/ml/datasets/SML2010
3http://www.futurepulse.eu/
4https://www.nrel.gov/grid/solar-power-data.html
5https://www.kaggle.com/thebasss/currency-exchange-rates
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African Alternative Ambient Americana Bass

Blues Breakbeat Children’s Music Christian Christmas

Classical Country Dance/EDM Reggaeton Death Metal

Disco Doom Metal Downbeat Drum&Bass Dubstep

Electronic Electronica Experimental Folk Funk

Garage Hardcore Hard Rock Heavy Metal Hiphop

House Techno Indie Industrial Inspirational

Instrumental Jazz Karaoke Latin Lounge

Mariachi Metal Musical Opera Pop

R&B Reggae Rock Rockabilly Salsa

Samba Singer-Songwriter Soul Soundtrack Spoken Word

Surf Tango Tech House Thrash Metal TripHop

Table 1: Musical genres considered in the GenrePopularity data set.

and Canada. Each time series point concerns the percentage of entries, in charts

of a certain country, related to a specific musical genre for a sliding time window

of 4 weeks with a step of one week. We have collected data from 60 charts in

Great Britain, 116 charts in the United States of America, 26 charts in Sweden,

and 18 charts in Canada. Then by aggregating the entries, 4 multi-variate time

series are generated with 60 variables and 1031 time points each. Also, a moving

average filter of order 4 is applied for noise reduction. Training, validation, and

test sets are generated by splitting the time series into 618, 206, and 207 time

points respectively. Most of the time series variables are sparse, thus for the

forecasting task all genre time series with more than 100 zeros are discarded

from the models input. As target variables, we selected three non-sparse musical

genres namely Pop, Rock, and Hip-hop.

The Solar-Energy data set contains time series data about the solar power

production records in the year of 2006, which is sampled every 10 minutes from

137 photovoltaic plants in Alabama State. The total number of time points is

52,560 and we split it into training, validation, and test sets with 31,536, 10,512

and 10,512 time points respectively. As target variables, we use the first 10

variables, after sorting the file names.
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The Currency data set contains the daily currency exchange rates as reported

to the International Monetary Fund by the issuing central bank. Included are

51 currencies over the period from 01-01-1995 to 11-04-2018. The format is

known as currency units per U.S. Dollar. Explained by example, each rate in

the Euro column says how much U.S. Dollar you had to pay at a certain date

to buy 1 Euro. Hence, the rates in the column U.S. Dollar are always 1. We

use data from 30-10-1998 which is the date Euro was released, currencies with

more than 1500 missing values and currencies with constant exchange rate are

discarded and the rest are linearly interpolated. So finally, the data set contains

41 currencies and 4,986 time points which are split into 2991 training samples,

997 validation samples, and 998 test samples. As target variables we use the

first ten6 currencies being Australian Dollar (1), Botswana Pula (2), Brazilian

Real (3), Brunei Dollar (4), Canadian Dollar (5), Chilean Peso (6), Chinese

Yuan (7), Colombian Peso (8), Czech Koruna (9), Danish Krone (10).

As a pre-processing step z-score normalization is applied to SML2010, Solar-

Energy and Currency, while no normalization is applied to GenrePopularity

which contains values between 0 and 1 by default.

4. Experiments

4.1. Competitive models

In order to perform a comparative study we consider three baseline and two

state of the art time series models as competitive models. The three baselines

are (1) the k nearest neighbors regression model (KNN), (2) the single layered

recurrent neural network (RNN) [19] and (3) the single layered long short-term

memory network (LSTM) [25] each followed by a dense output layer. The two

state of the art models are (1) the dual-stage attention-based recurrent neural

network (DARNN) [37], which considers an encoder with attention on the input

6We skip the second currency Bahrain Dinar as it exhibits constant exchange rate in the

test set.
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variables and a decoder with attention on the time steps, and (2) the WaveNet

[43] as proposed in [44] for time series forecasting, which is mainly a stack of

dilated convolutional layers with residual and skip connections.

For KNN, 5 neighbors are used and for RNN and LSTM, 128 neurons are

considered in all real data experiments as baseline selections. For DARNN, the

optimal number of neurons is determined after grid search among 32, 64, 128

neurons and for LAVARNET grid search among 5, 10, 207 is also employed.

Finally, for WaveNet 64 filters and filter width 2 are considered for each of 6

stacked dilated convolutional layers with dilation rates 1, 2, 4, 1, 2, 4 respec-

tively.

4.2. Training

For the training of all neural network-based models we used Adam optimizer

and mean squared error loss function provided by TensorFlow 1.8.0. Also, three

GPU devices (two GeForce GTX 1080 and one GeForce GTX 1070) are em-

ployed for the experiments. Additionally, for the KNN training the scikit-learn

Python package implementation is employed.

In the experiments, the data sets were split into training (60%), validation

(20%) and test (20%) sets (except for the SML2010 data set in which we opted

for the same splitting as in [37] for comparison purposes). So, the models’

training is performed on the training set, all models are checkpointed based on

their performance on the unseen data of the validation set and their performance

is evaluated on the test set.

Also, for DARNN we opt for the proposed in [37] learning rate strategy,

starting with 0.001 and reducing by 10% every 10,000 iterations. For RNN,

LSTM, and WaveNet we opt for a constant learning rate equal to 0.001 and for

LAVARNET cosine annealing [45] is used, where at epoch i the learning rate

7Except for the Currency data set in which 32, 64 and 128 neurons are selected for the

grid search because higher values produced better results in this data set.
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η(i) is set to:

η(i) = ηmin +
1

2
(ηmax − ηmin)

(
1 + cos

( i · π
E

))
(5)

where ηmax=0.01, ηmin=0.0001 and E is the number of epochs.

4.3. Evaluation

For the evaluation of all models on the forecasting task we use the error

function mean absolute error (MAE) as in Equation 6:

MAEk =
1

N

N∑
t=1

| xt,k − x̂t,k | (6)

where k is the target variable, N is the number of samples in the test set, xt,k

is the actual measurement and x̂t,k is the prediction. In the case of multivariate

prediction the average MAEk across all k is considered.

For the interpretation of the results in terms of correct weighting of lagged

variables (Section 4.5), we use the percentage of true driving lagged variables

that were among the ones with the highest absolute weights assigned by LAVAR-

NET. More precisely, in the simulations the exact lagged variables that drive

each target variable is known. Let us say Lk is the set of lagged variables that

drive target variable k. Then, for that target variable we determine the set

of lagged variables L̃k that are associated with the C(Lk) (where C(S) is the

cardinality of set S) highest absolute values of matrix Ak. Finally, using Equa-

tion 7, we compute the success percentage of true driving lagged variables of

the whole system that were categorized by LAVARNET as such and use this

score as evaluation index:

RL =

∑
k C(Lk ∩ L̃k)∑

k C(Lk)
(7)

where k is the target variable.

Also, we consider another less strict score namely the percentage of true

driving variables that were categorized by LAVARNET as such. It is denoted

by RV and computed as in Equation 8:

RV =

∑
k C(Vk ∩ Ṽk)∑

k C(Vk)
(8)
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model MAE

LAVARNET 0.0430

R-LAVARNET 0.0442

FR- LAVARNET 0.0460

LSTM 0.0534

RNN 0.0561

KNN 0.1473

Table 2: Average performance of models on the simulation data set, across all scenarios and

Monte-Carlo simulations.

where k is the target variable, Vk is the set of variables that drive target variable

k and Ṽk is the set of variables that are associated with the C(Lk) highest

absolute values of matrix Ak.

4.4. Results

First, we present results for the simulation study in which our model is com-

pared with the baseline models KNN, single layered RNN and single layered

LSTM. In the simulation study we evaluate forecasting models in multivariate

prediction, thus DARNN and WaveNet are discarded as not applicable8. Also,

100 neurons are considered for all neural network-based models’ hidden state

vectors in the simulation study. As described in Section 3.1 many simulation

scenarios in terms of number of variables, number of time steps and time series

length are considered as well as multiple Monte-Carlo simulations of each sce-

nario. In Table 2, the average models performance across all different scenarios

and Monte-Carlo simulations is presented and the model exhibiting the best

performance is highlighted with bold letters, being LAVARNET.

For more details Figure 2 is also provided. In this figure the average perfor-

mance of the models is illustrated excluding the parameter (a) time steps, (b)

8DARNN model is designed to make univariate forecasts given multivariate signals as input

and WaveNet is disigned to model univariate signals.
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(a) (b)

(c)

Figure 2: The performance of LAVARNET, R-LAVARNET, FR-LAVARNET, LSTM, RNN

and KNN in terms of mean absolute error (MAE) on multivariate prediction task for the

simulated coupled Hénon maps system. (a) Average performance across number of variables,

time-series length and Monte-Carlo simulations, (b) average performance across number of

time steps, time-series length and Monte-Carlo simulations and (c) average performance across

number of time steps, number of variables and Monte-Carlo simulations.
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model MAE

LAVARNET 0.0674±0.012

R-LAVARNET 0.0389±0.012

FR-LAVARNET 0.0804±0.013

LSTM 0.0849±0.007

RNN 0.0967±0.010

DARNN 0.0533±0.004

WaveNet 0.0866±0.0.0253

KNN 0.4983

Table 3: Evaluation of models on SML2010 data set using mean absolute error (MAE).

The average value of the error function is presented along with the corresponding standard

deviation. The model exhibiting the best performance is highlighted with bold letters.

number of variables and (c) time series length, respectively. It is observed that

all models performance decreases as the number of time steps and number of

variables increases and that all models performance increases as the time series

length increases, as expected. The proposed models perform better than the

baselines in all scenarios but LAVARNET and R-LAVARNET exhibit a more

consistent behavior, especially when the number of variables is high. This is

actually expected given that FR-LAVARNETs number of parameters is rapidly

increasing with the number of variables. Additionally, R-LAVARNET produces

the smallest errors when the time series length is small, while FR-LAVARNET

and LAVARNET perform best when the time series length is of intermediate

and large size respectively.

In Table 3, the results for the comparative study on the real data set

SML2010, are presented. Apparently, R-LAVARNET produces the smallest

errors and although overlapping, the intersection of uncertainty intervals with

the second one, being DARNN, is very small. The WaveNet’s performance is

comparable to the performances of RNN, LSTM and FR-LAVARNET in this

experiment and KNN produces the greatest errors.

17



In Table 4, the performance of forecasting models on the task of predicting

musical genres popularity is presented. We consider 12 different settings each

of them related to a different country and a different target variable (musical

genre). Also, the presented results are the average and standard deviation of

MAE across 10 repetitions of each training/testing procedure. It is observed that

in 7 settings LAVARNET performs best, in 2 settings R-LAVARNET performs

best, in one setting the simple RNN model performs best and only in 2 settings

DARNN outperforms all the other models. WaveNet and KNN yield the least

accurate forecasts in most of the settings of this data set, with KNN producing

the largest errors.

For the Solar-Energy data set that contains time ordered measurements from

137 variables, 10 comparative experiments are conducted forecasting future val-

ues of each of the first 10 variables, after sorting the file names. A multivariate

prediction experiment would leave DARNN out of the comparative study and

also would be infeasible in terms of GPU memory consumption. Additionally,

conducting 137 separate experiments is computationally very costly, thus we

opted for the first 10 variables. In Table 5 the corresponding results are illus-

trated, in which R-LAVARNET performs best in all 10 experiments. LAVAR-

NET and LSTM produce comparable to R-LAVARNET’s errors and all the rest

models exhibit worse performance in the Solar-Energy data set.
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GB US SE CA

P
o
p

LAVARNET 0.0049±0.0003 0.0100±0.0021 0.0087±0.0016 0.0110±0.0019

R-LAVARNET 0.0060±0.0003 0.0160±0.0022 0.0075±0.0005 0.0100±0.0023

FR-LAVARNET 0.0087±0.0007 0.0280±0.0049 0.0083±0.0008 0.0114±0.0022

LSTM* 0.0114±0.0038 0.0180±0.007 0.0108±0.004 0.0096±0.004

RNN* 0.0116±0.0033 0.0312±0.010 0.0124±0.006 0.0089±0.003

DARNN 0.0092±0.0005 0.0077±0.0005 0.0086±0.0001 0.0114±0.0008

WaveNet 0.0174±0.0127 0.0509±0.0237 0.0228±0.0053 0.0175±0.0076

KNN 0.0649 0.0761 0.0536 0.0175

R
o
ck

LAVARNET 0.0068±0.0004 0.0029±0.0001 0.0017±0.0003 0.0030±0.0005

R-LAVARNET 0.0076±0.0006 0.0034±0.0004 0.0022±0.0003 0.0028±0.0005

FR-LAVARNET 0.0103±0.0007 0.0044±0.0007 0.0026±0.0005 0.0048±0.0020

LSTM 0.0114±0.003 0.0150±0.005 0.0050±0.001 0.0050±0.002

RNN 0.0106±0.002 0.0137±0.007 0.0074±0.003 0.0055±0.002

DARNN 0.0062±0.0004 0.0043±0.0002 0.0026±0.00009 0.0041±0.0003

WaveNet 0.0209±0.0115 0.0096±0.0057 0.0197±0.0331 0.0088±0.0043

KNN 0.0276 0.0133 0.0384 0.0116

H
ip

-h
o
p

LAVARNET 0.0031±0.0007 0.0039±0.0003 0.0023±0.0004 0.0048±0.0014

R-LAVARNET 0.0040±0.0004 0.0042±0.0005 0.0029±0.0004 0.0065±0.0011

FR-LAVARNET 0.0054±0.0011 0.0065±0.0012 0.0049±0.0004 0.0102±0.0014

LSTM 0.0108±0.0022 0.0131±0.0042 0.0067±0.0031 0.0112±0.0037

RNN 0.0151±0.0044 0.0145±0.007 0.0063±0.0028 0.0132±0.004

DARNN 0.0059±0.0006 0.0064±0.0020 0.0053±0.00009 0.0088±0.0013

WaveNet 0.0102±0.0047 0.0159±0.0080 0.0089±0.0027 0.0134±0.0078

KNN 0.0142 0.0134 0.0146 0.0331

Table 4: Evaluation of models on musical genre popularity forecasting task for three different

musical genres (Pop, Rock, Hip-hop) as target in four different countries (Great Britain; GB,

United States; US, Sweden; SE, Canada; CA). The evaluation index is MAE (the standard

deviation is also presented) and the model exhibiting best performance at each setting is

highlighted with bold letters.
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In Table 6, the results for the Currency data set are presented. For the

same reasons as in the previous real data analysis we present results for the

first 10 variables. In the results it is observed that our architectures exhibit the

best performance only in 5 out of 10 experiments, while DARNN outperforms

the other models in the rest 5 experiments. The baseline models KNN, RNN

and LSTM do not outperform the other models in any experiment as expected.

Also, the WaveNet outperforms LAVARNET in 3 out of 10 experiments, but in

none of them exhibits the best performance across all models.
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HHH
HHHτ

k
1 2 3 4 5 6

1 -0.172 0.007 -0.039 -0.005 -0.007 -0.142

2 -0.083 0.102 -0.007 0.001 0.137 -0.010

3 0.014 0.078 -0.012 0.006 -0.125 -0.095

Table 7: Weights of lagged variables for the prediction of the first target variable of VAR(P=3)

model with 6 variables assigned by LAVARNET (T=3) after training. With bold we denote

the 12 highest weights in absolute value, k denotes the variable index and τ the lag.

Finally, the fact that FR-LAVARNET does not frequently perform better

than LAVARNET and R-LAVARNET has a twofold explanation. The first

reason is that FR-LAVARNET involves a much higher number of trainable pa-

rameters especially in cases of many coupled variables. Specifically, the matrix

Ũh of Equation 4 has size n×n ·K, while R-LAVARNETs corresponding matrix

Uh has size n × n and LAVARNET does not even involve such a matrix. Sec-

ond, FR-LAVARNET is likely to incorporate excessive or irrelevant information

through the hidden states of the other variables at time step t− 1.

4.5. Interpretability simulation study

Here, we use the VAR model for the generation of multivariate time series

of different dimensions and model orders. The causal relationships among the

variables of the system are selected at random using the Erdös-Rényi random

network scheme with 40% network density and for each driving variable, all lags

up to the model order are considered.

In Table 7 an example case of weights assigned by LAVARNET to the lagged

variables9 for brevity. of a multivariate time series is presented. More precisely,

LAVARNET is trained on forecasting future values of a multivariate time series

(generated by the VAR(P=3) model and having K = 6 variables) based on past

values of all system variables and we present the weights of lagged variables that

9Actually, the weights are assigned to the model’s output vectors yt,k that correspond to

certain lagged variables as stated in the model’s description, but this is omitted here
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HHH
HHHτ

k
1 2 3 4 5 6

1 1 1 0 0 1 1

2 1 1 0 0 1 1

3 1 1 0 0 1 1

Table 8: Lagged variables of VAR(P=3) model with 6 variables, where the lagged variables

that drive the first target variable are indicated by 1, the rest lagged variables are indicated

by 0, k denotes the variable index and τ the lag.

correspond to the first target variable. In Table 8 the true lagged variables that

contribute to the evolution of the first target variable of the system, are shown.

As one can see, 10 out of 12 important lagged variables are assigned as such

by LAVARNET and also it produces 2 mismatches, giving RL=83.33% success

percentage. Also, all 4 driving variables are correctly assigned as such, giving

RV =100%.

Aggregated results for all simulation scenarios and Monte-Carlo simulations

are presented in Figure 3. In the simulation scenarios, it is observed that

LAVARNET’s average success percentage in identifying the correct lagged vari-

ables is close to 70%. While in the task of correctly identifying the driving

variables it reaches values greater than 90% and even 100% in some cases. As

expected, it is harder for LAVARNET to choose the correct lagged variables as

the number of time steps T increases. Additionally, the latter is easier as the

VAR order P increases, because the same variables contribute more intensely

(with more lags). Interestingly, the number of variables K does not seem to

adversely affect the correct identification of important lagged variables as it in-

creases. On the contrary, less variability in success percentages with respect to

different time steps T is exhibited as K increases.

4.6. Computational cost

Except for the forecasting accuracy, another aspect of a model’s performance

is computational cost. In Table 9, the average time required for model initializa-

tion and training on SML2010 data set, is illustrated for all neural network-based
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(a) (b)

Figure 3: The average success percentage for (a) lagged variables (RL) and (b) variables (RV ),

across 10 Monte-Carlo simulations using LAVARNET for different VAR order P , number of

time steps T and number of variables K.
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model time

LAVARNET 31.120 sec

R-LAVARNET 40.290 sec

FR-LAVARNET 33.796 sec

LSTM 30.562 sec

RNN 17.085 sec

DARNN 41.166 sec

WaveNet 101.865 sec

Table 9: The average time in seconds that it takes to form the graph and conduct the training

on SML2010 data set per model.

models of our study and for the same number of epochs (70). Ten realizations

are considered in order to present average performance. Also, one GPU device

(GeForce GTX 1080) is employed for the computations.

The differences in execution time are not substantial among the competi-

tive models, except RNN which is considerably faster and WaveNet which is

considerably slower. However, RNN being fast comes as compensation for its

poor forecasting accuracy. Among the models that perform well in forecasting

LAVARNET is the fastest while FR-LAVARNET and R-LAVARNET follow

right after leaving DARNN be the slowest.

5. Conclusions

In this work, we propose a novel neural network architecture that leverages

intrinsically estimated high dimensional latent representations of lagged vari-

ables, to make multivariate time series forecasts. This model is evaluated on

one simulated data set and four real data sets from meteorology, music, solar

activity, and finance areas and it is found to outperform other baseline and

state of the art neural network architectures and machine learning models in

most of the experiments. Moreover, its behavior is interpretable by the train-

able weights’ values it assigns to lagged variables as it is shown by a separate

simulation study.
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However, our architecture did not exhibit superior performance across half

of the experiments on the data set from finance, on which it performed up

to the mark though. The state of the art neural network DARNN exhibits

great performance in the rest experiments conducted on this data set and also

WaveNet produces accurate forecasts but not the best among this ensemble of

models. In the cases that DARNN outperforms LAVARNET, information from

the multivariate signals is better exploited by DARNN in terms of connectivity

estimation, in terms of temporal modeling or both. A plausible explanation to

this might be that LAVARNET considers a stable over time causality network

of the underlying mechanism that generates the measurements and in finance

slight relative variability (or noise) might occur. On one hand, this might seem

like a limitation, on the other hand knowing it is useful twofold (a) the user

considers using it on suitable data sets or/and (b) an expert splits the data set

into relatively stable (in terms of who is driving who) periods and the model

is applied separately. In conclusion, this should not be a problem to the vast

majority of data sets as all coupled systems preserve their coupling structure,

either for long or for short periods, and at every phase transition the model can

be re-trained.

Finally, the conducted experiments indicate that recurrent neural networks

(even the baselines) are more powerful in temporal modeling and especially

time series forecasting than convolutional based architectures (WaveNet) which

still produce accurate predictions though. A combination of convolutional layers

and LAVARNET seems like a promising extension of the current model that the

authors will consider as future work. Future work will also focus on improving

the proposed architecture in the direction of reducing memory consumption and

computational cost.
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