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Abstract

In this paper we introduce ViSiL, a Video Similarity

Learning architecture that considers fine-grained Spatio-

Temporal relations between pairs of videos – such relations

are typically lost in previous video retrieval approaches that

embed the whole frame or even the whole video into a vec-

tor descriptor before the similarity estimation. By contrast,

our Convolutional Neural Network (CNN)-based approach

is trained to calculate video-to-video similarity from refined

frame-to-frame similarity matrices, so as to consider both

intra- and inter-frame relations. In the proposed method,

pairwise frame similarity is estimated by applying Tensor

Dot (TD) followed by Chamfer Similarity (CS) on regional

CNN frame features - this avoids feature aggregation before

the similarity calculation between frames. Subsequently,

the similarity matrix between all video frames is fed to a

four-layer CNN, and then summarized using Chamfer Sim-

ilarity (CS) into a video-to-video similarity score – this

avoids feature aggregation before the similarity calculation

between videos and captures the temporal similarity pat-

terns between matching frame sequences. We train the pro-

posed network using a triplet loss scheme and evaluate it on

five public benchmark datasets on four different video re-

trieval problems where we demonstrate large improvements

in comparison to the state of the art. The implementation of

ViSiL is publicly available1.

1. Introduction

Due to the popularity of Internet-based video sharing ser-

vices, the volume of video content on the Web has reached

unprecedented scales. For instance, YouTube reports al-

most two billion users and more than one billion hours of

video viewed per day2. As a result, content-based video

retrieval, which is an essential component in applications

such as video filtering, recommendation, copyright protec-

1https://github.com/MKLab-ITI/visil
2https://www.youtube.com/yt/about/press/, accessed 21 March 2019

Figure 1. Depiction of the frame-to-frame similarity matrix and the

CNN output of the ViSiL approach for two video pair examples:

relevant videos that contain footage from the same incident (top),

unrelated videos with spurious visual similarities (bottom).

tion and verification, becomes increasingly challenging.

In this paper, we address the problem of similarity esti-

mation between pairs of videos, an issue that is central to

several video retrieval systems. A straightforward approach

to this is to aggregate/pool frame-level features into a sin-

gle video-level representation on which subsequently one

can calculate a similarity measure. Such video-level rep-

resentations include global vectors [35, 11, 21], hash codes

[30, 23, 31] and Bag-of-Words (BoW) [5, 20, 22]. However,

this disregards the spatial and the temporal structure of the

visual similarity, as aggregation of features is influenced by

clutter and irrelevant content. Other approaches attempt to

take into account the temporal sequence of frames in the

similarity computation, e.g., by using Dynamic Program-

ming [7, 24], Temporal Networks [32, 17] and Temporal

Hough Voting [8, 16]. Another line of research considers

spatio-temporal video representation and matching based

on Recurrent Neural Networks (RNN) [10, 14] or in the

Fourier domain [28, 26, 2]. Such approaches may achieve

high performance in certain tasks such as video alignment

or copy detection, but not in more general retrieval tasks.

A promising direction is exploiting better the spatial and
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temporal structure of videos in the similarity calculation

[8, 16, 17]. However, recent approaches either focused

on the spatial processing of frames and completely disre-

garded temporal information [11, 21], or considered global

frame representations (essentially discarding spatial infor-

mation) and then considered the temporal alignment among

such frame representations [7, 2]. In this paper, we pro-

pose ViSiL, a video similarity learning network that consid-

ers both the spatial (intra-frame) and temporal (inter-frame)

structure of the visual similarity. We first introduce a frame-

to-frame similarity that employs Tensor Dot (TD) product

and Chamfer Similarity (CS) on region-level frame Convo-

lutional Neural Network (CNN) features weighted with an

attention mechanism. This leads to a frame-to-frame simi-

larity function that takes into consideration region-to-region

pairwise similarities, instead of calculating the similarity of

frame-level embeddings where the regional details are lost.

Then, we calculate the matrix with the similarity scores be-

tween each pair of frames between the two videos and use

it as input to a four-layer CNN, that is followed by a Cham-

fer Similarity (i.e., a mean-max filter) at its final layer. By

doing so, we learn the temporal structure of the frame-level

similarity of relevant videos, such as the presence of diag-

onal structures in Figure 1, and suppress spurious pairwise

frame similarities that might occur.

We evaluate ViSiL on several video retrieval problems,

namely Near-Duplicate Video Retrieval (NDVR), Fine-

grained Incident and Event-based Video Retrieval (FIVR,

EVR), and Action Video Retrieval (AVR) using public

benchmark datasets, where in all cases, often by a large

margin, it outperforms the state-of-the-art.

2. Related Work

Video retrieval approaches can be roughly classified into

three categories [25], namely, methods that calculate simi-

larity using global video representations, methods that ac-

count for similarities between individual video frames and

methods that employ spatio-temporal video representations.

Methods in the first category extract a global video vec-

tor and use dot product or Euclidean distance to compute

similarity between videos. Goa et al. [11] extracted a video

imprint for the entire video based on a feature alignment

procedure that exploits the temporal correlations and re-

moves feature redundancies across frames. Kordopatis et al.

created visual codebooks for features extracted from inter-

mediate CNN layers [20] and employed Deep Metric Learn-

ing (DML) to train a network using a triplet loss scheme to

learn an embedding that minimizes the distance between re-

lated videos and maximizes it between irrelevant ones [21].

A popular direction is the generation of a hash code for the

entire video combined with Hamming distance. Liong et al.

[23] employed a CNN architecture to learn binary codes for

the entire video and trained it end-to-end based on the pair-

wise distance of the generated codes and video class labels.

Song et al. [31] built a self-supervised video hashing sys-

tem, able to capture the temporal relation between frames

using an encoder-decoder scheme. These methods are typi-

cally outperformed by the ones of the other two categories.

Methods in the second category typically extract frame-

level features to apply frame-to-frame similarity calcula-

tion and then aggregate them into video-level similarities.

Tan et al. [32] proposed a graph-based Temporal Network

(TN) structure generated through keypoint frame matching,

which is used for the detection of the longest shared path

between two compared videos. Several recent works have

employed modifications of this approach for the problem of

partial-copy detection, combining it with global CNN fea-

tures [17] and a CNN+RNN architecture [14]. Additionally,

other approaches employ Temporal Hough Voting [8, 16]

to align matched frames by means of a temporal Hough

transform. These are often outperformed by TN in sev-

eral related problems. Another popular solution is based

on Dynamic Programming (DP) [7, 24]. Such works calcu-

late the similarity matrix between all frame pairs, and then

extract the diagonal blocks with the largest similarity. To

increase flexibility, they also allow limited horizontal and

vertical movements. Chou et al. [7] and Liu et al. [24]

combined DP with BoW matching to measure frame sim-

ilarities. However, the proposed solutions are not capable

of capturing a large variety of temporal similarity patterns

due to their rigid aggregation approach. By contrast, ViSiL,

which belongs to this category of methods, learns the simi-

larity patterns in the CNN subnet that operates on the simi-

larity matrix between the frame pairs.

Methods in the third category extract spatio-temporal

representations based on frame-level features and use them

to calculate video similarity. A popular direction is to use

the Fourier transform in a way that accounts for the tem-

poral structure of video similarity. Revaud et al. [28]

proposed the Circulant Temporal Encoding (CTE) that en-

codes the frame features in a spatio-temporal representa-

tion with Fourier transform and thus compares videos in

the frequency domain. Poullot et al. [26] introduced the

Temporal Matching Kernel (TMK) that encodes sequences

of frames with periodic kernels that take into account the

frame descriptor and timestamp. Baraldi et al. [2] built

a deep learning layer component based on TMK and set

up a training process to learn the feature transform coef-

ficients using a triplet loss that takes into account both the

video similarity score and the temporal alignment. How-

ever, the previous methods rely on global frame representa-

tions, which disregard the spatial structure of similarity. Fi-

nally, Feng et al. [10] developed an approach based on cross

gated bilinear matching for video re-localization. They em-

ployed C3D features [34] and built a multi-layer recurrent

architecture that matches videos through attention weight-
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Figure 2. Overview of the training scheme of the proposed architecture. A triplet of an anchor, positive and negative videos is provided to

a CNN to extract regional features that are PCA whitened and weighted based on an attention mechanism. Then the Tensor Dot product is

calculated for the anchor-positive and anchor-negative pairs followed by Chamfer Similarity to generate frame-to-frame similarity matrices.

The output matrices are passed to a CNN to capture temporal relations between videos and calculate video-to-video similarity by applying

Chamfer Similarity on the output. The network is trained with the triplet loss function. The double arrows indicate shared weights.

ing and factorized bilinear matching to locate related video

parts. However, even though this approach performs well

on video matching problems, it was found to be inapplica-

ble for video retrieval tasks as will be shown in Section 6.

3. Preliminaries

Tensor Dot (TD): Having two tensors A ∈ R
N1×N2×K

and B ∈ R
K×M1×M2 , their TD (also known as tensor con-

traction) is given by summing the two tensors over specific

axes. Following the notation in [36], TD of two tensors is

C = A • (i,j)B (1)

where C ∈ R
N1×N2×M1×M2 is the TD of the tensors, and i

and j indicate the axes over which the tensors are summed.

In the given example i and j can only be 3 and 1 respec-

tively, since they are the only ones of the same size (K).

Chamfer Similarity (CS): This is the similarity counter-

part of Chamfer Distance [3]. Considering two sets of items

x and y with total number of N and M items respectively

and their similarity matrix S ∈ R
N×M , CS is calculated as

the average similarity of the most similar item in set y for

each item in set x. This is formulated in Equation 2.

CS(x, y) =
1

N

N∑

i=1

max
j∈[1,M ]

S(i, j) (2)

Note that CS is not symmetric, i.e. CS(x, y) 6= CS(y, x),
however, that a symmetric variant SCS can be defined as,

SCS(x, y) = (CS(x, y) + CS(y, x))/2.

4. ViSiL description

Figure 2 illustrates the proposed approach. We first ex-

tract features from the intermediate convolution layers of a

CNN architecture by applying region pooling on the fea-

ture maps. These are further PCA-whitened and weighted

based on an attention mechanism (section 4.1). Addition-

ally, a similarity function based on TD and CS is devised

to accurately compute the similarity between frames (sec-

tion 4.2). A similarity matrix comprising all pairwise frame

similarities is then fed to a CNN to train a video-level simi-

larity model (section 4.3). This is trained with a triplet loss

scheme (section 4.4) based on selected and automatically

generated triplets from a training dataset (section 4.5).

4.1. Feature extraction

Given an input video frame, we apply Regional Maxi-

mum Activation of Convolution (R-MAC) [33] on the acti-

vations of the intermediate convolutional layers [20] given

a specific granularity level LN , N ∈ {1, 2, 3, ...}. Given

a CNN architecture with a total number of K convolu-

tional layers, this process generates K feature maps Mk ∈
R

N×N×Ck(k = 1, ...,K), where Ck is the number of chan-

nels of the kth convolution layer. All extracted feature

maps have the same resolution (N × N ) and are concate-

nated into a frame representation M ∈ R
N×N×C , where

C = C1 + ... + CK . We also apply ℓ2-normalization on

the channel axis of the feature maps, before and after con-

catenation. This feature extraction process is denoted as

LN -iMAC. The extracted frame features retain the spatial

information of frames at different granularities. We then
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Figure 3. Illustration of frame-level similarity calculation between

two video frames. In this example, the frames are near duplicates.

employ PCA on the extracted frame descriptors to perform

whitening and/or dimensionality reduction as in [15].

ℓ2-normalization on the extracted frame descriptors re-

sult in all region vectors being equally considered in the

similarity calculation. For instance, this would mean that

a completely dark region would have the same impact on

similarity with a region depicting a subject of interest. To

avoid this issue, we weight the frame regions based on their

saliency via a visual attention mechanism over region vec-

tors inspired by methods from different research fields, i.e.

document classification [37]. To successfully adapt it to the

needs of video retrieval, we build the following attention

mechanism: given a frame representation M with region

vector rij : M(i, j, ·) ∈ R
C , where i ∈ [1, N ], j ∈ [1, N ],

we introduce a visual context unit vector u and use it to

measure the importance of each region vector. To this end,

we calculate the dot product between every rij region vec-

tor, with the internal context vector u to derive the weight

scores αij . Since all vectors are unit norm, αij will be in

the range [−1, 1]. To retain region vectors’ direction and

change their norm, we divide the weight scores αij by 2 and

add 0.5 in order to be in range [0, 1]. Equation 3 formulates

the weighting process.

αij = u⊤rij , s.t. ‖u‖ = 1

r′ij = (αij/2 + 0.5)rij
(3)

All functions in the weighting process are differentiable;

therefore u is learned through the training process. Unlike

the common practice in the literature, we do not apply any

normalization function on the calculated weights (e.g. soft-

max or division by sum) because we want to weight each

vector independently. Also, we empirically found that, un-

like other works, using a hidden layer in the attention mod-

ule has negative effect on the system’s performance.

4.2. Frame­to­frame similarity

Given two video frames d, b, we apply CS on their re-

gion feature maps to calculate their similarity (Figure 3).

First, the regional feature maps Md,Mb ∈ R
N×N×C are

Type
Kernel size

Output size Activ.
/ stride

Conv 3×3 / 1 X × Y× 32 ReLU

M-Pool 2×2 / 2 X/2 ×Y /2 × 32 —

Conv 3×3 / 1 X/2 ×Y /2 × 64 ReLU

M-Pool 2×2 / 2 X/4 ×Y /4 × 64 —

Conv 3×3 / 1 X/4 ×Y /4 × 128 ReLU

Conv 1×1 / 1 X/4 ×Y /4 × 1 —

Table 1. Architecture of the proposed network for video similarity

learning. For the calculation of the output size, we assume that

two videos with total number of X and Y frames are provided.

decomposed into their region vectors dij , bkl ∈ R
C . Then,

the dot product between every pair of region vectors is cal-

culated, creating the similarity matrix of the two frames,

and CS is applied on the similarity matrix to compute the

frame-to-frame similarity.

CSf (d, b) =
1

N2

N∑

i,j=1

max
k,l∈[1,N ]

d⊤
ijbkl (4)

This process leverages the geometric information captured

by region vectors and provides some degree of spatial in-

variance. More specifically, the CNN extracts features that

correspond to mid-level visual structures, such as object

parts, and combined with CS, that by design disregards the

global structure of the region-to-region matrix, constitutes

a robust similarity calculation process against spatial trans-

formations, e.g. spatial shift. This presents a trade-off be-

tween the preservation of the frame structure and invariance

to spatial transformations.

4.3. Video­to­video similarity

To apply frame-to-frame similarity on two videos q, p
with X and Y frames respectively, we apply TD combined

with CS on the corresponding video tensors Q and P and

derive the frame-to-frame similarity matrix Sqp
f ∈ R

X×Y .

This is formulated in Equation 5.

Sqp
f =

1

N2

N2∑

i=1

max
j∈[1,N2]

Q • (3,1)P
⊤(·, i, j, ·) (5)

where the TD axes indicate the channel dimension of the

corresponding video tensors. In that way, we apply Equa-

tion 4 on every frame pair.

To calculate the similarity between two videos, the gen-

erated similarity matrix Sqp
f derived from the previous pro-

cess is provided to a CNN network. The network is capa-

ble of learning robust patterns of within-video similarities

at segment level. Table 1 displays the architecture of the

CNN architecture of the proposed ViSiL framework.

To calculate the final video similarity, we apply the hard

tanh activation function on the values of the network output,
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which clips values within range [−1, 1]. Then, we apply CS

to derive a single value as in Equation 6.

CSv(q, p) =
1

X ′

X′∑

i=1

max
j∈[1,Y ′]

Htanh(Sqp
v (i, j)) (6)

where Sqp
v ∈ R

X′
×Y ′

is the output of the CNN network,

and Htanh indicates the element-wise hard tanh function.

The output of the network has to be bounded in order to

accordingly set the margin in Equation 7.

Similar to the frame-to-frame similarity calculation, this

process is a trade-off between respecting video-level struc-

ture and being invariant to some temporal differences. As a

result, different temporal similarity structures in the frame-

to-frame similarity matrix can be captured, e.g. strong di-

agonals or diagonal parts (i.e. contained sequences).

4.4. Loss function

The target video similarity score CSv(q, p) should be

higher for relevant videos and lower for irrelevant ones. To

train our network we organize our video collection in video

triplets (v, v+, v−), where v, v+, v− stand for an anchor, a

positive (i.e. relevant), and a negative (i.e. irrelevant) video

respectively. To force the network to assign higher similar-

ity scores to positive video pairs and lower to negative ones,

we use the ‘triplet loss’, that is

Ltr = max{0,CSv(v, v
−)− CSv(v, v

+) + γ} (7)

where γ is a margin parameter.

In addition, we define a similarity regularization func-

tion that penalizes high values in the input of hard tanh that

would lead to saturated outputs. This is an effective mech-

anism to drive the network to generate output matrices Sv

with values in the range [−1, 1], which is the clipping range

of hard tanh. To calculate the regularization loss, we sim-

ply sum all values in the output similarity matrices that fall

outside the clipping range (Equation 8).

Lreg =
X′∑

i=1

Y ′∑

j=1

|max{0,Sqp
v (i, j)− 1}|+

+|min{0,Sqp
v (i, j) + 1}|

(8)

Finally, the total loss function is given in Equation 9.

L = Ltr + r ∗ Lreg (9)

where r is a regularization hyperparameter that tunes the

contribution of the similarity regularization to the total loss.

4.5. Training ViSiL

Training the ViSiL architecture requires a training

dataset with ground truth annotations at segment level. Us-

ing such annotations, we extract video pairs with related

visual content to serve as anchor-positive pairs during train-

ing. Additionally, we artificially generate positive videos by

applying a number of transformations on arbitrary videos.

We consider three categories of transformation: (i) colour,

including conversion to grayscale, brightness, contrast, hue,

and saturation adjustment, (ii) geometric, including hori-

zontal or vertical flip, crop, rotation, resize and rescale, and

(iii) temporal, including slow motion, fast forward, frame

insertion, video pause or reversion. During training, one

transformation from each category is randomly selected and

applied on the selected video.

We construct two video pools that consist of positive

pairs. For each positive pair we then generate hard triplets,

i.e. construct negative videos (hard negatives) with similar-

ity to the anchor that is greater than the one between the

anchor and positive videos. In what follows, we use a BoW

approach [20] to calculate similarities between videos.

The first pool derives from the annotated videos in the

training dataset. Two videos with at least five second over-

lap constitute a positive pair. Let s be the similarity of

the corresponding video segments. Videos with similar-

ity (BoW-based [20]) larger than s with either of the seg-

ments in the positive pair, constitute hard negatives. The

second pool derives from arbitrary videos from the training

dataset that are used to artificially generate positive pairs.

Videos that are similar with the initial videos (similarity

> 0.1) are considered hard negatives. To avoid potential

near-duplicates, we exclude videos with similarity > 0.5
from the hard negative sets.

At each training epoch, we sample T triplets from each

video pool. Due to GPU memory limitations, we do not

feed the entire videos to the network. Instead, we select

a random video snippet with total size of W frames from

each video in the triplet, assuring that there are at least five

seconds overlap between the anchor and the positive videos.

5. Evaluation setup

The proposed approach is evaluated on four retrieval

tasks, namely Near-Duplicate Video Retrieval (NDVR),

Fine-grained Incident Video Retrieval (FIVR), Event Video

Retrieval (EVR), and Action Video Retrieval (AVR). In all

cases, we report the mean Average Precision (mAP).

5.1. Datasets

VCDB [16] is used as the training dataset to generate

triplets for training our models. It consists of 528 videos

with 9,000 pairs of copied segments in the core dataset, and

also a subset of 100,000 distractor videos.

CC WEB VIDEO [35] simulates the NDVR problem.

It consists of 24 query sets and 13,129 videos. We found

several quality issues with the annotations, e.g. numerous

positives mislabeled as negatives. Hence, we provide results

on a ‘cleaned’ version of the annotations. We also use two
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evaluation settings, one measuring performance only on the

query sets, and a second on the entire dataset.

FIVR-200K is used for the FIVR task [19]. It consists

of 225,960 videos and 100 queries. It includes three dif-

ferent retrieval tasks: a) the Duplicate Scene Video Re-

trieval (DSVR), b) the Complementary Scene Video Re-

trieval (CSVR), and c) the Incident Scene Video Retrieval

(ISVR). For quick comparison of the different variants, we

use FIVR-5K, a subset of FIVR-200K by selecting the 50

most difficult queries in the DSVR task (using [20] to mea-

sure difficulty), and for each one randomly picking the 30%

of annotated videos per label category.

EVVE [28] was designed for the EVR problem. It con-

sists of 2,375 videos, and 620 queries. However, we man-

aged to download and process only 1897 videos and 503

queries (≈80% of the initial dataset) due to the unavailabil-

ity of the remaining ones.

Finally, ActivityNet [4], reorganized based on [10], is

used for the AVR task. It consists of 3,791 training, 444 val-

idation and 494 test videos. The annotations contain the ex-

act video segments that correspond to specific actions. For

evaluation, we consider any pair of videos with at least one

common label as related.

5.2. Implementation details

We extract one frame per second for each video. For all

retrieval problems except for AVR, we are using the fea-

ture extraction scheme of Section 4.1 based on ResNet-50

[13], but for efficiency purposes only extract intermediate

features from the output maps of the four residual blocks.

Additionally, the PCA for the whitening layer is learned

from 1M region vectors sampled from videos in VCDB.

For AVR, we extract features from the last 3D convolutional

layer of the I3D architecture [6] by max-pooling on the spa-

tial dimensions. We also tested I3D features for the other re-

trieval problems, but without any significant improvements.

For training, we feed the network with only one video

triplet at a time due to GPU memory limitations. We em-

ploy Adam optimization [18] with learning rate l = 10−5.

For each epoch, T=1000 triplets are selected per pool. The

model is trained for 100 epochs, i.e. 200K iterations, and

the best network is selected based on mean Average Preci-

sion (mAP) on a validation set. Other parameters are set to

γ = 0.5, r = 0.1 and W = 64. The weights of the feature

extraction CNN and whitening layer remain fixed.

6. Experiments

In this section, we first compare the proposed frame-to-

frame similarity calculation scheme with several global fea-

tures with dot product similarity (Section 6.1). We also pro-

vide an ablation study to evaluate the proposed approach un-

der different configurations (Section 6.2). Finally, we com-

pare the “full” proposed approach (denoted as ViSiLv) with

Features

MAC [33]

SPoC [1]

R-MAC [33]

GeM [12]

iMAC [20]

L2-iMAC

L2-iMAC

L3-iMAC

L3-iMAC

Dims.

2048

2048

2048

2048

3840

4x3840

4x512

9x3840

9x256

DSVR CSVR ISVR

0.747 0.730 0.684

0.735 0.722 0.669

0.777 0.764 0.707

0.776 0.768 0.711

0.755 0.749 0.689

0.814 0.810 0.738

0.804 0.802 0.727

0.838 0.832 0.739

0.823 0.818 0.738
Table 2. mAP comparison of proposed feature extraction and sim-

ilarity calculation against state-of-the-art feature descriptors with

dot product for similarity calculation on FIVR-5K. Video similar-

ity is computed based on CS on the derived similarity matrix.

the best performing methods in the state-of-the-art (to the

best of our knowledge) in each problem (Section 6.3). We

have re-implemented two popular approaches that employ

similarity calculation on frame-level representations, i.e.

DP [7] and TN [32]. However, both of them were originally

proposed in combination with hand-crafted features, which

is an outdated practice. Hence, we combine them with the

proposed feature extraction scheme and our frame-to-frame

similarity calculation. We also implemented a naive adapta-

tion of the publicly available Video re-localization (VReL)

method [10] to a retrieval setting, where we rank videos

based on the probability of the predicted segment (Equation

12 in the original paper).

6.1. Frame­to­frame similarity comparison

This section presents a comparison on FIVR-5K of the

proposed feature extraction scheme against several global

pooling schemes proposed in the literature. Dot product is

used for similarity calculation. Video-level similarity for

all runs is calculated with the application of the raw CS on

the generated similarity matrices. The benchmarked fea-

ture extraction methods include the Maximum Activations

of Convolutions (MAC) [33], Sum-Pooled Convolutional

features (SPoC) [1], Regional Maximum Activation of Con-

volutions (R-MAC) [33], Generalized Mean (GeM) pooling

[27] (with initial p = 3 (cf. Table 1 in [27]) and interme-

diate Maximum Activation of Convolutions (iMAC) [20],

which is equivalent to the proposed feature extraction for

N = 1. Additionally, we evaluate the proposed scheme

with region levels LN , N = 2, 3, and with two different

region vector sizes for each region level. We use PCA to

reduce region vectors’ size, without applying whitening.

Table 2 presents the results of the comparison on FIVR-

5K. The proposed scheme with N = 3 (L3-iMAC) achieves

the best results on all evaluation tasks by a large mar-

gin. Furthermore, it is noteworthy that the reduced features

achieve competitive performance especially compared with
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the global descriptors of similar dimensionality. Hence, in

settings where there is insufficient storage space, the re-

duced ViSiL features offer an excellent trade-off between

retrieval performance and storage cost. We also tried to

combine the proposed scheme with other pooling schemes,

e.g. GeM pooling, but this had no noteworthy impact on the

system’s performance. Next, we will consider the best per-

forming scheme (L3-iMAC without dimensionality reduc-

tion) as the base frame-to-frame similarity scheme ViSiLf .

6.2. Ablation study

We first evaluate the impact of each individual module

of the architecture on the retrieval performance of ViSiL.

Table 3 presents the results of four runs with different con-

figuration settings on FIVR-5K. The attention mechanism

in the third run is trained using the main training process.

The addition of each component offers additional boost to

the performance of the system. The biggest improvement

for the DSVR and CSVR tasks, 0.024 and 0.021 of mAP

respectively, is due to employing a CNN model for refined

video-level similarity calculation in ViSiLv . Also, consid-

erable gains on the ISVR task (0.018 mAP) are due to the

application of the attention mechanism. We also report re-

sults when the Symmetric Chamfer Distance (SCS) is used

for both frame-to-frame and video-to-video similarity cal-

culation (ViSiLsym). Apparently, the non symmetric ver-

sion of the CS works significantly better in this problem.

Task DSVR CSVR ISVR

ViSiLf 0.838 0.832 0.739

ViSiLf+W 0.844 0.837 0.750

ViSiLf+W+A 0.856 0.848 0.768

ViSiLsym 0.830 0.823 0.731

ViSiLv 0.880 0.869 0.777
Table 3. Ablation studies on FIVR-5K. W and A stand for whiten-

ing and attention mechanism respectively.

Additionally, we evaluate the impact of the similarity

regularization loss Lreg of Equation 8. This appears to have

notable impact on the retrieval performance of the system.

The mAP increases for all three tasks reaching an improve-

ment of more than 0.02 mAP on DSVR and ISVR tasks.

Lreg DSVR CSVR ISVR

✗ 0.859 0.842 0.756

X 0.880 0.869 0.777
Table 4. Impact of similarity regularization on the performance of

the proposed method on FIVR-5K.

In the supplementary material we assess the performance

of similarity functions other than CS, the impact of differ-

ent values of hyperparameters γ, W and r, and the compu-

tational complexity of the method.

6.3. Comparison against state­of­the­art

6.3.1 Near-duplicate video retrieval

We first compare the performance of ViSiL against state-of-

the-art approaches on several versions of CC WEB VIDEO

[35]. The proposed approach is compared with the pub-

licly available implementation of Deep Metric Learning

(DML) [21], the Circulant Temporal Encoding (CTE) [28]

(we report the results of the original paper) and our two re-

implementations based on Dynamic Programming (DP) [7]

and Temporal Networks (TN) [32]. The ViSiLv approach

achieves the best performance compared to all competing

systems in all cases except in the case where the origi-

nal annotations are used (where CTE performs best). In

that case, there were several erroneous annotations as ex-

plained above. When tested on the ‘cleaned’ version, ViSiL

achieves almost perfect results in both evaluation settings.

Moreover, it is noteworthy that our re-implementations of

the state-of-the-art methods lead to considerably better re-

sults than the ones reported in the original papers, meaning

that direct comparison with the originally reported results

would be much more favourable for ViSiL.

Method cc web cc web∗ cc webc cc web∗
c

DML [21] 0.971 0.941 0.979 0.959

CTE [28] 0.996 — — —

DP [7] 0.975 0.958 0.990 0.982

TN [32] 0.978 0.965 0.991 0.987

ViSiLf 0.984 0.969 0.993 0.987

ViSiLsym 0.982 0.969 0.991 0.988

ViSiLv 0.985 0.971 0.996 0.993
Table 5. mAP of three ViSiL setups and SoA methods on four

different versions of CC WEB VIDEO. (∗) denotes evaluation on

the entire dataset, and subscript c that the cleaned version of the

annotations was used.

6.3.2 Fine-grained incident video retrieval

Here, we evaluate the performance of ViSiL against the

state-of-the-art approaches on FIVR-200K [19]. We com-

pare with the best performing method reported in the orig-

inal paper, i.e. Layer Bag-of-Words (LBoW) [20] imple-

mented with iMAC features from VGG [29] and our two

re-implementations of DP [7] and TN [32]. Furthermore,

we tested our adaptation of VReL [10], but with no success

(neither when training on VCDB nor on ActivityNet). As

shown in Table 6, ViSiLv outperforms all competing sys-

tems, including DP and TN. Its performance is considerably

higher on the DSVR task achieving almost 0.9 mAP. When

conducting manual inspection of the erroneous results, we

came across some interesting cases (among the top ranked

irrelevant videos), which should actually be considered as

positive results but were not labelled as such (Figure 4).
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Method

LAMV[2]

LAMV+QE [2]

ViSiLf

ViSiLsym

ViSiLv

mAP

0.536

0.587

0.589

0.610

0.631

per event class

0.715 0.383 0.158 0.461 0.387 0.277 0.247 0.138 0.222 0.273 0.273 0.908 0.691

0.837 0.500 0.126 0.588 0.455 0.343 0.267 0.142 0.230 0.293 0.216 0.950 0.776

0.889 0.570 0.169 0.432 0.345 0.393 0.297 0.181 0.479 0.564 0.369 0.885 0.799

0.864 0.704 0.357 0.440 0.363 0.295 0.370 0.214 0.577 0.389 0.266 0.943 0.702

0.918 0.724 0.227 0.446 0.390 0.405 0.308 0.223 0.604 0.578 0.399 0.916 0.855

Table 7. mAP comparison of three ViSiL setups with the LAMV [2] on EVVE. The ordering of events is the same as in [28]. Our results

are reported on a subset of the videos (≈80% of the original dataset) due to unavailability of the full original dataset.

Figure 4. Examples of challenging cases of related videos that

were mistakenly not labelled as positives in FIVR-200K.

6.3.3 Event video retrieval

For EVR, we compare ViSiL with the state-of-the-art ap-

proach Learning to Align and Match Videos (LAMV) [2].

ViSiL performs well on the EVR problem, even with-

out applying any query expansion technique, i.e. Average

Query Expansion (AQE) [9]. As shown in Table 7, ViSiLv

achieves the best results on the majority of the events in the

dataset. However, due to the fact that some of the videos

are no longer available, we report results on the currently

available ones that account for ≈80% of the original EVVE

dataset.

6.3.4 Action video retrieval

We also assess the performance of the proposed approach

on ActivityNet [4] reorganized based on [10]. We com-

pare with the publicly available DML approach [21], our

re-implementations of DP [7] and TN [32], and the adapted

VReL [10]. For all runs, we extracted features from I3D

[6]. The proposed approach with the symmetric similarity

calculation ViSiLsym outperforms all other approaches by

a considerable margin (0.035 mAP) to the second best.

Run DSVR CSVR ISVR

LBoW [20] 0.710 0.675 0.572

DP [7] 0.775 0.740 0.632

TN [32] 0.724 0.699 0.589

ViSiLf 0.843 0.797 0.660

ViSiLsym 0.833 0.792 0.654

ViSiLv 0.892 0.841 0.702
Table 6. mAP comparison of three ViSiL setups and state-of-the-

art methods on the three tasks of FIVR-200K.

Method mAP

DML [21] 0.705

VReL [10] 0.209

DP [7] 0.621

TN [32] 0.648

Method mAP

ViSiLf 0.652

ViSiLsym 0.745

ViSiLv 0.710

Table 8. mAP comparison of three ViSiL setups and four publicly

available retrieval methods on ActivityNet based on the reorgani-

zation from [10].

7. Conclusions

In this paper, we proposed a network that learns to com-

pute similarity between pairs of videos. The key contri-

butions of ViSiL are a) a frame-to-frame similarity com-

putation scheme that captures similarities at regional level

and b) a supervised video-to-video similarity computation

scheme that analyzes the frame-to-frame similarity matrix

to robustly establish high similarities between video seg-

ments of the compared videos. Combined, they lead to a

video similarity computation method that is accounting for

both the fine-grained spatial and temporal aspects of video

similarity. The proposed method has been applied to a num-

ber of content-based video retrieval problems, where it im-

proved the state-of-art consistently and, in several cases,

by a large margin. For future work, we plan to investigate

ways of reducing the computational complexity and apply

the proposed scheme for the corresponding detection prob-

lems (e.g. video copy detection, re-localization).
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object retrieval with integral max-pooling of cnn activations.

arXiv preprint arXiv:1511.05879, 2015.

[34] Du Tran, Lubomir Bourdev, Rob Fergus, Lorenzo Torresani,

and Manohar Paluri. Learning spatiotemporal features with

3d convolutional networks. In Proceedings of the IEEE Inter-

national Conference on Computer Vision, pages 4489–4497,

2015.

[35] Xiao Wu, Alexander G Hauptmann, and Chong-Wah Ngo.

Practical elimination of near-duplicates from web video

search. In Proceedings of the 15th ACM international con-

ference on Multimedia, pages 218–227. ACM, 2007.

[36] Yongxin Yang and Timothy Hospedales. Deep multi-task

representation learning: A tensor factorisation approach.

In International Conference on Learning Representations,

2017.

[37] Zichao Yang, Diyi Yang, Chris Dyer, Xiaodong He, Alex

Smola, and Eduard Hovy. Hierarchical attention networks

for document classification. In Proceedings of the 2016 Con-

ference of the North American Chapter of the Association for

Computational Linguistics: Human Language Technologies,

pages 1480–1489, 2016.

6360


