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Abstract

This work addresses the problem of Near-Duplicate

Video Retrieval (NDVR). We propose an effective video-

level NDVR scheme based on deep metric learning that

leverages Convolutional Neural Network (CNN) features

from intermediate layers to generate discriminative global

video representations in tandem with a Deep Metric Learn-

ing (DML) framework with two fusion variations, trained

to approximate an embedding function for accurate dis-

tance calculation between two near-duplicate videos. In

contrast to most state-of-the-art methods, which exploit

information deriving from the same source of data for

both development and evaluation (which usually results to

dataset-specific solutions), the proposed model is fed dur-

ing training with sampled triplets generated from an inde-

pendent dataset and is thoroughly tested on the widely used

CC WEB VIDEO dataset, using two popular deep CNN

architectures (AlexNet, GoogleNet). We demonstrate that

the proposed approach achieves outstanding performance

against the state-of-the-art, either with or without access to

the evaluation dataset.

1. Introduction

Near-duplicate video retrieval (NDVR) is a research

topic of increasing interest in recent years, due to the expo-

nential growth of social media applications and video shar-

ing websites, which typically feature vast amounts of near-

duplicate content. The problem is exacerbated in the case

of video due to its considerably larger volume (compared to

text and images), which make it a great challenge for every

web-based video platform as well as for systems that ana-

lyze and index large amounts of web video content. As a re-

sult, efficient retrieval of near-duplicate videos is nowadays

an indispensable component in numerous applications in-

cluding video search, management, recommendation, copy

detection and copyright protection.

The definition of near-duplicate videos (NDVs) is a con-

troversial topic in the multimedia research community, with

several definitions proposed that differ with respect to the

required level of similarity between NDVs [17]. In this

work, we adopt the definition from Wu et al. [31], where

NDVs are defined as videos that are close to duplicate of

each other, but different in terms of photometric variations

(color, lighting changes), editing operations (caption, logo

and border insertion), encoding parameters, file format, dif-

ferent lengths, and other modifications. A number of NDV

examples are illustrated in Figure 1.

Considerable effort has been invested by the research

community on the problem of NDVR. However, many state-

of-the-art methods adopt a dataset-bound approach and use

the same dataset for both development and evaluation. This

leads to specialized solutions that typically exhibit poor per-

formance when used (without tuning) on different video

corpora. For instance, some methods learn codebooks

[24, 1, 4, 14] or hashing functions [25, 26, 7] based on sam-

ple frames from the evaluation dataset, and as a result their

reported retrieval performance is often exaggerated.

Motivated by the excellent performance of deep learning

in a wide variety of multimedia problems, we are proposing

a video-level NDVR approach that incorporates deep learn-

ing in two steps. First, we use CNN features from inter-

mediate convolution layers based on a well-known scheme

called Maximum Activation of Convolutions [22, 34, 21],

which was recently used for NDVR and led to improved

results [14]. Second, we leverage a Deep Metric Learn-

ing (DML) framework based on a triplet-wise scheme,

which has been shown to be effective in a variety of cases

[2, 30, 29]. To our knowledge, it is the first time that deep

metric learning is exploited for NDVR. In particular, we

train a Deep Neural Network (DNN) to learn an embed-

ding function that maps videos to a feature space where

NDVs have smaller distances between each other compared

to other videos. Moreover, two different fusion variations

are proposed for the generation of video representation. The
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Query Video Near-Duplicate Videos

Figure 1. Examples of queries and near-duplicate videos from CC WEB VIDEO dataset.

generated video representation is compact in order to facil-

itate the development of scalable NDVR systems.

We also propose a triplet generation method for training

the DML framework with video samples from the VCDB

[11] dataset. The proposed approach is evaluated on the

widely used CC WEB VIDEO dataset [31], with CNN fea-

tures from two popular architectures [16, 27]. To compare

with the state of the art, we are also evaluating our approach

using training data from the target video corpus, simulating

the evaluation setting of competing approaches. Our system

outperforms these approaches, with more than 0.007 mAP

in all experimental setups.

2. Related Work

A thorough study on the NDVR problem and several re-

cent approaches is provided by Liu et al. [17]. According to

it, existing NDVR methods are classified based on the gran-

ularity of the matching between NDVs into video-, frame-

and hybrid-level matching.

Video-level matching: These approaches aim at solving

the NDVR problem at massive scale. Videos are usually

represented with a global signature such as an aggregate

feature vector [31, 18, 9] or a hash code [25, 7, 26] and the

video matching is based on the computation of the pairwise

similarity between the corresponding video representations.

Frame-level matching: NDVs are determined in this

case by comparing between individual frames or frame

sequences of the candidate videos. Existing approaches

[5, 1, 14] calculate frame-by-frame similarity based on Bag-

of-Words (BoW) schemes or employ sequence alignment

algorithms. Other works have explored spatio-temporal rep-

resentations [24, 33] for improving retrieval performance

and accelerating the similarity computation.

Hybrid-level matching: Such approaches attempt to

combine the advantages of video- and frame-level meth-

ods. Typical such approaches are, for instance, presented in

[31, 4], both of which first employ a filter-and-refine scheme

to cluster and filter out near-duplicate videos, and then use

frame-to-frame similarity on the reduced set of videos.

Moreover, the NDVR problem is related to the well-

known TRECVID copy detection task [15]. The main dif-

ference in the TRECVID copy detection task is that video

copies are artificially generated by applying standard trans-

formations to a corpus of videos, whereas in case of NDVR

duplicates correspond to actual user submitted videos.

Another field of related work is metric learning, on

which a detailed survey is provided by Yang and Jin [32].

Metric learning is conducted using pairwise [6, 35, 19, 21]

or triplet-wise constraints [2, 30, 29, 23, 3]. Its main pur-

pose is to learn an optimal projection for mapping input fea-

tures to another feature space. In the case of NDVR, we aim

at an embedding function that maps NDVs closer to each

other than to the rest of videos.

Pairwise methods usually employ contrastive loss that

tries to minimize the distance between pairs of exam-

ples with same-class label, while penalizing examples with

different-class labels that are closer than a margin γ [6, 21].

Triplet-wise embedding is trained on triplets of data with an

anchor point, a positive that belongs to the same class, and a

negative that belongs to a different class [29, 23, 3]. Triplet-

wise methods use a loss over triplets to push the anchor and

positive close, and penalize triplets where the distance be-
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tween anchor and negative is less than the one between an-

chor and positive plus a margin γ. Deep metric learning has

been successfully applied to a variety of problems including

image retrieval [30, 29, 21], face recognition/retrieval [23],

person re-identification [3, 20], etc.

3. Approach Overview

The proposed NDVR approach leverages features pro-

duced by the intermediate convolution layers of deep CNN

architectures (section 3.1) to generate compact global video

representations. Additionally, to accurately compute the

similarity between two candidate videos, a DNN is trained

to approximate an embedding function for the distance cal-

culation (section 3.2). The model is built on batches of gen-

erated triplets from a development dataset (section 3.3).

3.1. Feature Extraction

We adopt a compact representation to extract frame

descriptors that is derived from activations of convolu-

tion layers of a pre-trained CNN. This image representa-

tion is called Maximum Activation of Convolutions (MAC)

[22, 34, 21, 14]. To this end, a pre-trained CNN network

is employed, with a total number of L convolution layers,

denoted as L1,L2, ...,LL. Forward propagating an image

through the network generates a total of L feature maps,

denoted as Ml ∈ R
nl

d
×nl

d
×cl(l = 1, ..., L), where nl

d × nl
d

is the dimension of every channel for convolution layer Ll

(which depends on the size of the input image) and cl is

the total number of channels. To extract a single descriptor

from every layer, we apply max pooling on every channel

of feature map Ml to extract a single value. The extraction

process is formulated in Equation 1.

vl(i) = max Ml(·, ·, i), i = {1, 2, ..., cl} (1)

where layer vector vl is a cl-dimensional vector that is de-

rived from max pooling on every channel of feature map

Ml. After extraction, all layer vectors are concatenated to a

single descriptor. Finally, the frame descriptors are normal-

ized by applying zero-mean and ℓ2-normalization.

We experiment with two deep network architectures:

AlexNet [16] and GoogleNet [27]. For the former, all con-

volution layers are used for the extraction of the frame de-

scriptors, whereas, for the latter, all inception layers. The

generated vectors have 1,376 and 5,488 dimensions respec-

tively. Both architectures receive images of size 224× 224
as input (input frames are resized to these dimensions).

To generate global video descriptors, uniform sampling

is initially applied to select n frames per second for every

video (in our setup we use n = 1) and extract the respective

features for each of them. Global video descriptors are then

derived by averaging and normalizing (zero-mean and ℓ2-

normalization) these frame descriptors. Keep in mind that

feature extraction is not part of the training (deep metric

learning) process, i.e. the training of the network is not end-

to-end, because the weights of the pre-trained network that

is used for feature extraction are not updated.

3.2. Metric Learning

3.2.1 Problem setting

We address the problem of learning a pairwise similar-

ity function for NDVR from the relative information of

pair/triplet-wise video relations. For a given query video

and a set of candidate videos, the goal is to compute the sim-

ilarity between the query and every candidate video and use

it for ranking the entire set of candidates in the hope that the

NDVs are retrieved at the top ranks. To formulate this pro-

cess, we define the similarity between two arbitrary videos

q and p as the squared Euclidean distance in the video em-

bedding space (Equation 2).

D(fθ(q), fθ(p)) = ‖fθ(q)− fθ(p)‖
2
2 (2)

where fθ(·) is the embedding function that maps a video to

a point in an Euclidean space, θ are the system parameters

and D(·, ·) is the squared Euclidean distance in this space.

Additionally, we define a pairwise indicator function I(·, ·),
which specifies whether a pair of videos are near-duplicate.

I(q, p) =

{

1 if q, p are NDVs

0 otherwise
(3)

Our objective is to learn an embedding function fθ(·)
that assigns smaller distances to NDV pairs compared to

non-NDV ones. Given a video with feature vector v, a

NDV with v+ and a dissimilar video with v−, the embed-

ding function fθ(·) should map video representations to a

common space R
d, where d is the dimension of the feature

embedding, in which the distance between query v and pos-

itive v+ is always smaller than the distance between query

v and negative v− (Equation 4).

D(fθ(v), fθ(v
+)) < D(fθ(v), fθ(v

−)),

∀v, v+, v− such that I(v, v+) = 1, I(v, v−) = 0
(4)

3.2.2 Triplet loss

To implement the learning process, we create a collection

of N training instances organized in the forms of triplets

T = {(vi, v
+
i , v

−

i ), i = 1, ..., N}, where vi, v
+
i , v

−

i are the

feature vectors of the query, positive (NDV), and negative

(dissimilar) videos. A triplet expresses a relative similarity

order among three videos, i.e., vi is more similar to v+i in

contrast to v−i . We define the following hinge loss function
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(a) DML architecture (b) DNN

Figure 2. Illustration of (a) the DML architecture, and (b) the composition of the DNN.

for a given triplet called ‘triplet loss’ (Equation 5).

Lθ(vi, v
+
i , v

−

i ) =

max{0,D(fθ(vi), fθ(v
+
i ))− D(fθ(vi), fθ(v

−

i )) + γ}
(5)

where γ is a margin parameter to ensure a sufficiently

large difference between the positive-query distance and

negative-query distance. If the video distances are calcu-

lated correctly within margin γ, then this triplet will not be

penalised. Otherwise the loss is a convex approximation of

the loss that measures the degree of violation of the desired

distance between the video pairs specified by the triplet. To

this end, we use batch gradient descent to optimize the ob-

jective function described in Equation 6.

min
θ

m
∑

i=1

Lθ(vi, v
+
i , v

−

i ) + λ ‖θ‖22 (6)

where λ is a regularization parameter to prevent overfitting

of the model, and m is the total size of a triplet mini-batch.

Minimising this loss will narrow the query-positive distance

while widening the query-negative distance, and thus lead

to a representation satisfying the desirable ranking order.

With an appropriate triplet generation strategy in place, the

model will eventually learn a video representation that im-

proves the effectiveness of the NDVR solution.

3.2.3 DML architecture

For training the DML model, a triplet-based network archi-

tecture is proposed (Figure 2(a)) that optimizes the triplet

loss function of Equation 5. The network is provided with

a set of triplets T created by the triplet generation pro-

cess of section 3.3. Each triplet contains a query, a posi-

tive and a negative video with vi, v
+
i and v−i feature vec-

tors, respectively, which are fed independently into three

siamese DNNs with identical architecture and parameters.

The DNNs compute the embeddings of v : fθ(v) ∈ R
d. The

architecture of the deployed DNNs is based on three dense

fully-connected layers and a normalization layer at the end

leading to vectors that lie on a d-dimensional unit length

hypersphere, i.e. ‖fθ(v)‖2 = 1 (Figure 2(b)). The size of

each hidden layer (number of neurons) and the d-dimension

of the output vector fθ(v) depends on the dimensionality

of input vectors, which is in turn dictated by the employed

CNN architecture. The video embeddings computed from

a batch of triplets are then given to a triplet loss layer to

calculate the accumulated cost based on Equation 5.

3.2.4 Video-level similarity computation

The learned embedding function fθ(·) is used for comput-

ing similarities between videos in a target video corpus.

Two variants are proposed for fusing similarity computation

across video frames: early and late fusion (Figure 3).

Early fusion: Frame descriptors are averaged and nor-

malized into a global video descriptor, before they are for-

ward propagated to the network. The global video signature

is the output of the embedding function fθ(·).
Late fusion: Every extracted frame descriptor of an in-

put video is fed forward to the network, and the set of their

embedding transformations is averaged and normalized.

There are several pros and cons for each scheme. The

former is computationally lighter and more intuitive; how-

ever, it is slightly less effective. Late fusion leads to better

performance and is amenable to possible extensions of the

base approach (i.e. frame-level approaches). Nonetheless, it

is slower since the features extracted from all selected video

frames are fed to the DNN.

Finally, the similarity between two videos derives from

the distance of their representations. For a given query q

and a set of M candidate videos {pi}
M
i=1 ∈ P , the similarity

within each candidate pair is determined by Equation 7.

S(q, p) = 1−
D(fθ(q), fθ(p))

max
pi∈P

(D(fθ(q), fθ(pi)))
(7)

where S(·, ·) is the similarity between two videos and

max(·) is the maximum function.
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(a) Early fusion

(b) Late fusion

Figure 3. Illustration of early and late fusion schemes.

3.3. Triplet Generation

A critical component of the proposed approach is the

generation of the video triplets. It is important to provide

a considerable amount of videos for constructing a repre-

sentative triplet training set. However, the total number of

triplets that can be generated equals to the total number of

3-combinations over the size N of the video corpus, i.e.
(

N

3

)

= N ·(N−1)·(N−2)
6 . We have empirically determined

that only a tiny portion of videos in a video corpus could be

considered as near-duplicates for a given video query. Thus,

it would be inefficient to randomly select video triplets from

this vast set (for instance, for N = 1000, the total number

of triplets would exceed 160M). Instead, a sampling strat-

egy is employed as a key element of the triplet generation

process, which is focused on selecting hard candidates to

create triplets.

The proposed sampling strategy is applied on a devel-

opment dataset. Such a dataset needs to contain two sets of

videos: P , a set of near duplicate video pairs that are used as

query-positive pairs, and N , a set of dissimilar videos that

are used as negatives. We aim at generating hard triplets,

i.e. negative videos (hard negatives) with distance to the

query that is smaller than the distance between the query

and positive videos (hard positives). The aforementioned

condition is expressed in Equation 8.

T = {(q, p, n)|(q, p) ∈ P, n ∈ N ,D(q, p) > D(q, n)}
(8)

where T is the resulting set of triplets. The global video

features are first extracted following the process of section

(a) Before training (b) After training

Figure 4. Examples of video representations in feature space be-

fore and after training. Colours: (white) query video (blue) NDV

(red) distractor videos.

3.1. Then, the distance between every query in P and every

dissimilar video in N is calculated. If the query-positive

distance is greater than a query-negative distance, then a

hard triplet is formed composed by the three videos. The

distance is calculated based on the Euclidean distance of

the initial global video descriptors.

Figure 4 visualizes the training and triplet generation

process. Figure 4(a) depicts the videos in feature space be-

fore training. The white and blue colour circles represent

the query and near-duplicate videos, respectively, whereas

the dissimilar videos are painted in red colour. In particular,

va is the query and vb is a NDV. However, before training, it

is clear that their distance Dab is greater than distances Dac

and Dad; therefore, vc and vd (deep red) are hard negatives

and two triplets will be created {va, vb, vc} and {va, vb,

vd}. The video ve (light red) does not generate any triplet

because its distance from the two NDVs is greater than the

distance between them. After training, the distance between

the query and the NDV must be smaller than their distance

to any other dissimilar video, as illustrated in Figure 4(b).

4. Evaluation

4.1. Experimental setup

Development dataset: We leverage the VCDB dataset [11]

to generate triplets for training our DML-based system.

This dataset is composed of videos derived from popu-

lar video platforms (YouTube and Metacafe) and has been

compiled and annotated as a benchmark for the partial copy

detection problem, which is highly related to the NDVR

problem. VCDB contains two subsets, the core Cc and the

distractor subset Cd. Subset Cc contains discrete sets of

videos composed by 528 query videos and over 9,000 pairs

of partial copies. Each video set has been annotated and

the video chunks of the video copies have been extracted.

Subset Cd is a corpus of approximately 100,000 distractor

videos that is used to make the video copy detection prob-

lem more challenging.
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For the triplet generation, we retrieve all video pairs that

have been annotated as partial copies. We define an over-

lap criterion that determines whether a pair is going to be

used for the triplet generation: if the duration of the overlap

content is greater than a certain threshold t compared to the

total duration of each video, then the pair is retained; other-

wise, it is discarded. Each video of a given pair can be used

once as query and once as positive video. Therefore, the set

of query-positive pairs P is generated based on Equation 9.

P = {(q, p) ∪ (p, q)|q, p ∈ Cc, o(q, p) > t} (9)

where o(·, ·) determines the video overlap. We found empir-

ically that the selection of the threshold t has considerable

impact on the quality of the resulting DML model. Sub-

set Cd is used as the set N of negatives. To generate hard

triplets, the negative videos are selected from Cd based on

Equation 8.

Evaluation dataset: Experiments were performed on the

CC WEB VIDEO dataset [31]. The collection consists of

a set of videos retrieved by submitting 24 frequent text

queries to popular video sharing websites, i.e. YouTube,

Google Video, and Yahoo! Video. The dataset contains a

total of 13,129 videos with 397,965 keyframes. In addi-

tion to the provided keyframes, we extracted one frame per

second for every video in the dataset resulting in a total of

approximately 2M video frames. Some of the approaches

of section 4.2 rely on the dataset keyframes, while others

on the extracted frames.

Evaluation metrics: To measure detection accuracy, we

employ the interpolated precision-recall (PR) curve. We

further use mean average precision (mAP) as defined in

[31] and in Equation 10, where n is the number of rele-

vant videos to the query video, and ri is the rank of the i-th

retrieved relevant video.

AP =
1

n

n
∑

i=0

i

ri
(10)

Implementation details: For feature extraction, we use the

Caffe framework [10], which provides pre-trained models

on ImageNet for both employed CNN networks1. The im-

plementation of the deep model is based on Theano [28].

For the three hidden layers [fc 0, fc 1, fc 2], we use

[800, 400, 250] and [2500, 1000, 500] neurons for AlexNet

and GoogleNet respectively. Thus, the dimensionality of

the output embeddings is 250 and 500 dimensions for the

two architectures respectively. Adam optimization [13] is

employed with learning rate l = 10−5 and mini-batches of

size m = 1000 triplets. For the triplet generation, we set

t = 0.8, which generates approximately 2k pairs in P and

7M and 5M triplets in T , for AlexNet and GoogleNet, re-

spectively. Other parameters are set to γ = 1 and λ = 10−5.

1https://github.com/BVLC/caffe/wiki/Model-Zoo

4.2. Competing approaches

The proposed approach is compared against six ap-

proaches from the literature. Four of those were developed

having access to the evaluation set. The remaining two do

not require a development dataset. The first four approaches

include the following:

Auto Color Correlograms (ACC): Cai et al. [1] use uni-

form sampling to extract one frame per second for the input

video. The auto-color correlograms [8] of each frame are

computed and aggregated based on a visual codebook gen-

erated from a training set of video frames. The retrieval of

near-duplicate videos is performed using tf-idf weighted co-

sine similarity over the visual word histograms of a query

and a dataset video.

Pattern-based approach (PPT): Chou et al. [4] build a

pattern-based indexing tree (PI-tree) based on a sequence

of symbols encoded from keyframes, which facilitates the

efficient retrieval of candidate videos. They use m-pattern-

based dynamic programming (mPDP) and time-shift m-

pattern similarity (TPS) to determine video similarity.

Layer-wise Convolutional Neural Networks (CNN-L):

Kordopatis-Zilos et al. [14] extract the frame descrip-

tors based on the same process as in Section 3.1 using

GoogleNet. A video-level histogram representation derives

from the aggregation of the layer vectors to visual words.

The similarity between two videos is computed as the tf-idf

weighted cosine similarity over the video-level histograms.

Stochastic Multi-view Hashing (SMVH): Hao et al. [7]

combine multiple keyframe features to learn a group of

mapping functions that project video keyframes into the

Hamming space. The combination of keyframe hash codes

generates a video signature that constitutes the final video

representation. A composite Kullback-Leibler (KL) diver-

gence measure is used to compute similarity scores.

The remaining two approaches are based on the work of

Wu et al. [31]:

Color Histograms (CH): This is a global video represen-

tation based on the color histograms of keyframes. The

color histogram is a concatenation of 18 bins for Hue, 3

bins for Saturation, and 3 bins for Value, resulting in a 24-

dimensional vector representation for every keyframe. The

global video signature is the normalized color histogram

over all keyframes in the video.

Local Structure (LS): Global signatures and local features

are combined using a hierarchical approach. Color sig-

natures are employed to detect near-duplicate videos with

high confidence and to filter out very dissimilar videos. For

the reduced set of candidate videos, a local feature based

method was developed, which compares the keyframes in a

sliding window using their local features (PCA-SIFT [12]).
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Figure 5. Precision-Recall curve of the proposed approach based

on the two CNN architectures and for the three system setups.

5. Experiments

5.1. Experimental results

In this section, we study the performance of the pro-

posed approach in the CC WEB VIDEO dataset in relation

to the underlying CNN architecture and the different fusion

schemes. AlexNet and GoogleNet, two popular CNN archi-

tectures, are benchmarked. For each of them, three configu-

rations are tested: i) baseline: fuse all frame descriptors to

a single vector and use it for retrieval without any transfor-

mation, ii) early fusion: fuse all frame descriptors to a sin-

gle vector and then apply the learned embedding function

to generate the video descriptor for retrieval, iii) late fu-

sion: apply the learned embedding function to every frame

descriptor and fuse the embeddings to derive video repre-

sentations for retrieval.

Figure 5 and Table 1 illustrate the PR curves and the

mAP, respectively, of the two CNN architectures with the

three system setups. Late fusion runs outperform both

baseline and early fusion ones for both CNN architectures.

GoogleNet achieves better results for all three settings with

considerable margin, with precision more than 97% up to

80% recall and mAP scores of 0.968 and 0.969 for early

and late fusion respectively. Both fusion schemes clearly

improve the performance of the baseline approach for both

architectures. Both schemes achieve very similar results,

which indicates that the choice of the employed fusion

scheme is not crucial for the performance of the method.

Architecture baseline early fusion late fusion

AlexNet 0.948 0.964 0.964

GoogleNet 0.952 0.968 0.969

Table 1. mAP of both CNN architectures based on the baseline and

two DML fusion schemes.

5.2. Comparison of different features

To delve deeper into performance, we study the per-

formance of the DML framework with early fusion built

on features extracted based on three different methods.

The benchmarked methods are: i) proposed: apply max-

pooling to all convolution layers and concatenate the vec-
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Figure 6. Precision-Recall curve of the proposed approach and

state-of-the-art approaches, separated by the development dataset.

tors, ii) last conv: apply max-pooling to the activations of

the last convolution layer, iii) first fc: the activations of the

first fully-connected layer. We experiment with both CNN

architectures.

Table 2 depicts the mAP of the three feature extraction

methods for two CNN architectures. The proposed feature

extraction scheme outperforms the runs of the compared

feature extraction methods, for both architectures. In case

of AlexNet, the proposed method marginally outperforms

the first fc method. But, our approach reports clearly bet-

ter performance compared to the others when GoogleNet is

used. Hence, we may draw the conclusion that the feature

extraction using all convolution layers yields better results

for NDVR. Additionally, the triplet loss training scheme

clearly improves performance compared to the baseline of

section 5.1.

Architecture proposed last conv first fc

AlexNet 0.964 0.957 0.962

GoogleNet 0.968 0.960 0.961

Table 2. mAP of three feature extraction methods for the two CNN

architectures.

5.3. Comparison against NDVR state­of­the­art

For comparing the performance of our approach with

the six NDVR approaches from the literature, we select the

setup using GoogleNet features and late fusion denoted as

DMLvcdb, since it achieved the best results. For the sake

of comparison and completeness, we further provide the re-

sults of our model trained on a triplet set derived from both

VCDB (similar to DMLvcdb) and also videos sampled from

CC WEB VIDEO, denoted as DMLcc. The latter simulates

the situation where the DML-based approach had access to

a portion of the evaluation corpus, similar to the setting used

by the competing approaches.

Table 3 presents the mAP scores of the competing meth-

ods. The methods are grouped based on the dataset used

during development. Our approach outperforms all meth-

ods in each group with a clear margin. The same result

derived from the comparison of the PR curves is illustrated

in Figure 6, with the light blue line (proposed approach)

353



Method

mAP

Evaluation Dataset

ACC PPT SMVH CNN-L DMLcc

0.944 0.958 0.971 0.974 0.981

No/Other Dataset

CH LS DMLvcdb

0.892 0.954 0.969

Table 3. mAP comparison between two variants of the proposed approach against six state-of-the-art methods. The approaches are divided

based on the dataset used for development.
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Figure 7. Precision-Recall curve comparison of the proposed ap-

proach with two variants of [14] on two dataset setups.

lying upon all others up to 90% recall in both cases. It

is noteworthy that our approach trained on VCDB dataset

outperforms four out of six methods, with two approaches

achieving marginally better results, but both developed on

the evaluation dataset.

5.4. Performance in the presence of distractors

In our last experiment, we implemented the second best

performing approach CNN-L [14] based on information

derived from the VCDB dataset, i.e. we built the layer

codebooks from a set of video frames sampled from the

aforementioned dataset. We then tested two variations,

the CNN-Lcc that was developed on the CC WEB VIDEO

dataset (same as Section 5.3) and the CNN-Lvcdb devel-

oped on the VCDB dataset. For each of the 24 queries of

CC WEB VIDEO, only the videos contained in its subset

(the dataset is organized in 24 subsets, one per query) are

considered as candidate and used for the calculation of re-

trieval performance. To emulate a more challenging set-

ting, we created CC WEB VIDEO* in the following way:

for every query in CC WEB VIDEO, the set of candidate

videos is the entire dataset instead of only the query sub-

set (the videos from the other subsets are considered to be

dissimilar).

Figure 7 depicts the PR curves of the four runs and the

two setups. There is a clear difference between the per-

formance of the two variants of the CNN-L approach, for

both dataset setups. The proposed approach outperforms

the CNN-L approach for all runs and setup at any recall

point by a large margin. Similar conclusions can be drawn

from the mAP scores of Table 4. The performance of CNN-

L drops by more than 0.02 and 0.062 when it is trained on

VCDB, for each setup respectively. Again, there is a con-

siderable drop in performance in CC WEB VIDEO* setup

for both approaches, with the proposed being more resilient

to the setup change. As a result, the proposed approach has

been demonstrated to be highly competitive and possible to

transfer to different datasets with comparatively lower per-

formance loss.

Run CC WEB VIDEO CC WEB VIDEO*

CNN-Lvcdb 0.954 0.898

DMLvcdb 0.969 0.934

CNN-Lcc 0.974 0.960

DMLcc 0.981 0.970

Table 4. mAP comparison of the proposed approach with two vari-

ants of the approach [14] on two different dataset setups.

6. Conclusions and Future Work

We presented a new video-level representation for Near-

Duplicate Video Retrieval, which leverages the effective-

ness of features extracted from intermediate convolution

layers and Deep Metric Learning. We proposed a DML

architecture based on video triplets and a novel triplet gen-

eration scheme that generates a compact video-level repre-

sentation for the NDVR problem. The proposed approach

was tested on two CNN architectures and exhibited highly

competitive performance when developed on an indepen-

dent dataset from the evaluation set. Furthermore, it out-

performed all compared approaches from the literature by

a clear margin. Finally, the performance of the proposed

approach was compared with the best method from state-

of-the-art in terms of Precision-Recall and mAP and in two

different setups of CC WEB VIDEO dataset.

In the future, we plan to look into further improvements

to the proposed approach, e.g. by considering more effec-

tive fusions schemes (compared to early and late fusion) and

by training the DML architecture end-to-end (instead of us-

ing features from pre-trained CNN architectures). More-

over, we are going to conduct more comprehensive eval-

uations using more challenging datasets, and we will also

assess the applicability of the approach on the problem of

Partial Duplicate Video Retrieval (PDVR).
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