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Abstract. The problem of Near-Duplicate Video Retrieval (NDVR) has
attracted increasing interest due to the huge growth of video content on
the Web, which is characterized by high degree of near duplicity. This
calls for efficient NDVR approaches. Motivated by the outstanding per-
formance of Convolutional Neural Networks (CNNs) over a wide variety
of computer vision problems, we leverage intermediate CNN features in
a novel global video representation by means of a layer-based feature
aggregation scheme. We perform extensive experiments on the widely
used CC_WEB_VIDEOQO dataset, evaluating three popular deep architec-
tures (AlexNet, VGGNet, GoogLeNet) and demonstrating that the pro-
posed approach exhibits superior performance over the state-of-the-art,
achieving a mean Average Precision (mAP) score of 0.976.
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1 Introduction

Near-duplicate video retrieval (NDVR) is a research topic of increasing interest
in recent years. It is considered essential in a variety of applications that involve
video retrieval, indexing and management, video recommendation and search,
copy detection and copyright protection. The exponential growth of the Web is
accompanied by a proportional increase of video content, typically posted and
shared through social media platforms. At the moment, YouTube reports more
than one billion users and approximately 500 h of video content is uploaded every
minute!. This fact renders the NDVR problem extremely important.

NDVR is defined in various ways among the multimedia research community
as pointed in [12]. Here, we adopt the definition of Wu et al. [21]: near-duplicate
videos are considered to be identical or close to exact duplicate of each
other, but different in terms of file format, encoding parameters, photometric
variations (color, lighting changes), editing operations (caption, logo and border
insertion), different lengths, and other modifications.

! https://www.youtube.com/yt /press/statistics.html (accessed on August 2016).
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Motivated by the excellent performance of Convolutional Neural Networks
(CNNs) on many computer vision problems, such as image classification, retrieval
and object detection, in this paper we propose using intermediate convolu-
tional layers to construct features for NDVR. Although CNN features have been
recently used for video retrieval [14,22], it is the first time that intermediate
CNN layers are exploited for NDVR. A first use of these layers was recently
presented on the problem of image retrieval [13,23].

To make use of intermediate convolutional layers for NDVR, we extract
layer-level feature descriptors by applying max pooling to the activations of
each convolutional layer. In addition, we propose two layer aggregation
techniques, a first by concatenating the layer vectors in a single vector, and
a second by computing layer-specific codebooks and aggregating the resulting
bag-of-words representations. Furthermore, we evaluate three popular deep
architectures [10,16,19] in combination with both layer aggregation schemes
by means of a thorough experimental study on an established NDVR dataset
(CC_-WEB_VIDEO [21]), and we demonstrate the superior performance of
the proposed approach over five state-of-the-art methods. In particular,
the best configuration of the proposed approach achieves a mean Average Preci-
sion (mAP) score of 0.976, i.e. a clear improvement over the already high mAP of
0.958 achieved by the Multiple Feature Hashing and Pattern-based approaches
of Song et al. [18] and Chou et al. [3], respectively.

2 Related Work

NDVR is a very challenging task, which has attracted increasing research inter-
est in recent years. Liu et al. [12] provide a survey with detailed overviews of
the NDVR research problem and a number of recent approaches. These are
typically classified based on the level of matching performed to determine the
near-duplicate videos: video-level, frame-level and hybrid-level matching.

Video-Level Matching: Here, videos are represented with a global signature
such as an aggregate feature vector, a fingerprint or a hash code. Huang et al.
[6] proposed a video representation model called Bounded Coordinate System
(BCS) which extends Principal Component Analysis (PCA). In [18], Song et al.
present an approach for Multiple Feature Hashing (MFH) based on a supervised
method that uses multiple image features and learns a group of hash functions
that map the video keyframes into the Hamming space. The video signatures are
generated by the combination of the keyframe hash codes and they constitute
the video representation in the dataset.

Frame-Level Matching: Near-duplicate videos are determined by the compar-
ison between individual frames or sequences of the candidate videos. Douze et al.
[4] detect local points of interest, extract the SIFT [11] and CS-LBP [5] descrip-
tors, and create a visual codebook for hamming embedding. Using post-filtering,
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they verify retrieved matches with spatiotemporal constrains. In [15], Shang
et al. introduce compact spatio-temporal features to represent videos and con-
struct a modified inverted file index. The spatio-temporal features are extracted
using a feature selection and w-shingling scheme. Cai et al. [2] presented a large-
scale approach by applying a scalable K-means clustering technique to learn a
visual vocabulary on the color correlograms of a training set of images and using
inverted file indexing for fast retrieval of candidate videos.

Hybrid-Level Matching: A typical such approach is [21], where Wu et al.
apply a hierarchical filter-and-refine scheme to cluster and filter out near-
duplicate videos. When a video cannot be clearly classified as novel or near-
duplicate, they apply an expensive local feature-based NDVR scheme. In a more
recent approach [3], Chou et al. filter the non near-duplicate videos with a
pattern-based indexing tree and rank candidate videos with m-pattern-based
dynamic programming and time-shift m-pattern similarity.

The well-known TRECVID copy detection task [9] is also a specific case
of NDVR. However, in the TRECVID copy detection task, the duplicates are
artificially generated by applying standard transformations, whereas in case of
NDVR duplicates correspond to real content.

3 Approach Overview

The proposed NDVR approach leverages features produced by the intermediate
CNN layers of deep architectures (Subsect.3.1) and introduces a layer-based
aggregation scheme for deriving a bag-of-word representation for each video
(Subsect. 3.2). The bag-of-words representations of videos are stored in an effi-
cient inverted file index, while video retrieval is carried out based on cosine sim-
ilarity between t¢f-idf weighted versions of the extracted vectors (Subsect. 3.3).

3.1 CNN Based Feature Extraction

In some recent research works [13,23], pre-trained CNN models are adopted to
extract visual features from intermediate convolutional layers. These features are
computed through the forward propagation of an image over the CNN network
and the use of an aggregation function (e.g., VLAD encoding [7], max/average
pooling) on every convolutional layer.

We experiment with three deep network architectures: AlexNet [10], VGGNet
[16] and GoogLeNet [19]. All three architectures receive images of size 224 x 224
as input. For all experiments, input images are resized to fit these dimensions.

To extract frame descriptors, we are following the process of [23]. A pre-
trained CNN network C is employed, with a total number of L convolutional
layers, denoted as L', £?, ..., LY. Forward propagating an image I through C
generates a total of L feature maps, denoted as M! € R7axnaxc (l=1,.,L),
where n!, x n!, is the dimension of every channel for convolutional layer £! (which
depends on the size of the input image) and ¢ is the total number of channels.
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To extract a single descriptor vector from every layer, an aggregation function is
applied on the above feature maps. In particular, we apply max pooling on every
channel of feature map M! to extract a single value. The extraction process is
formulated in Eq. 1.

v!(i) = max M'(-, i), i={1,2,..,c} (1)

where layer vector v' is a c!-dimensional vector that is derived from max pooling
on every channel of feature map M'. The layer vectors are L2-normalized to
unit length after their extraction.

Table 1. Total number of CNN channels per layer used by the proposed approach for
the three selected deep architectures.

(a) AlexNet (b) VGGNet (c) GoogLeNet
Layer £! ¢!-dim Layer £! c-dim Layer £ cl-dim
convl 96 conv2_1 128 Inception 3a 256
conv2 256 conv2_2 128 Inception 3b 480
conv3 384 conv3_1 256 Inception 4a 512
conv4 384 conv3_2 256 Inception 4b 512
convb 256 conv3_3 256 Inception 4c 512
Gotal 1376 convd 1 512 Inception 4d 528

convé4_2 512 Inception 4e 832
convé_3 512 Inception 5a 832
convb5_1 512 Inception 5b 1024
conv.2 512 total 5488
convb_3 512
total 4096

Table 1 depicts the employed CNN architectures and the number of channels
in the respective convolutional layers. We extract image descriptors only from
the activations in intermediate layers, since we aim to construct a visual repre-
sentation that preserves local structure in different scales. The fully-connected
layer activations are not used. A positive side-effect of this decision is that the
resulting descriptor is compact, reducing the total processing time and storage
requirements. For the VGGNet and GoogLeNet architectures, we do not use the
initial layer activations as features, since those layers are expected to capture
very primitive image features (e.g. edges, corners, etc.) that could lead to false
matches. For the extraction of the above descriptors, we use the Caffe framework
[8], which provides pre-trained models on ImageNet for all three CNN networks?.

3.2 Feature Aggregation

We then follow two alternative feature aggregation schemes (i.e. ways of aggre-
gating features from layers into a single descriptor for the whole frame): (a)

2 https://github.com/BVLC/caffe /wiki/Model-Zoo.
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vector aggregation and (b) layer aggregation. The outcome of both schemes is
a frame-level histogram Hy that is considered as the representation of a frame.
Finally, a video-level histogram H,, is derived from the respective keyframe rep-
resentations by plain summing. Figure 1 gives an overview of the two schemes.
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(a) Vector Aggregation (b) Layer Aggregation

Fig. 1. The two aggregation schemes and the final video representation.

Vector Aggregation. A bag-of-words scheme is applied on the vector v¢ result-
ing from the concatenation of individual layer features to generate a codebook
of K visual words, denoted as Cx = {t1, 2, ..., tx }. The selection of K has crit-
ical impact on the performance of the approach and it is considered a system
parameter, which is further explored in Sect. 5. Having generated the visual code-
book, every video keyframe is assigned to the nearest visual word. Accordingly,
every frame f with feature descriptor v} is aggregated to the nearest visual word
ty = NN(v$), hence its Hy contains only a single visual word.

Layer Aggregation. To preserve the structural information of intermediate
CNN layers L, we generate L layer-specific codebooks of K words (denoted as

= {t\,th, ..., th},1 = 1,..., L), which we then use to extract separate bag-
of-words representations (one per layer). The layer vectors vﬁc of frame f are
mapped to the nearest layer words tlf = NN(véc), (1=1,2,...,L). In contrast to
the previous scheme, every frame f is represented by a frame-level histogram H
that results from the concatenation of the individual layer-specific histograms,
therefore comprising L words instead of a single one.

In both schemes, the visual codebooks are generated using scalable K-
Means++ [1] on a sample of 100 K randomly selected video frames. The Apache
Spark® implementation of the algorithm is used for efficiency and scalability.

3 http://spark.apache.org (accessed on August 2016).
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Keyframe to Video Aggregation. The final video representation is gener-
ated using the bag-of-words histograms of its keyframes. Given a video d with |F|
keyframes, F' = {f1, fa, ..., fr}, its video-level histogram H, is derived by sum-
ming the histogram vectors corresponding to its keyframes, i.e. H, =Y ek Hy,.
Note that for the two aggregation schemes, histograms of different sizes are gen-
erated. In the first case, the total number of visual words is K, whereas in the
second case it is K - L.

3.3 Video Indexing and Querying

We use tf-idf weighting to calculate the similarity between two video histograms.
The tf-idf weights are computed for every visual word in every video in collection
Dy, based on wig = niq - log |Dy|/ne, where weq is the weight of word ¢ in video
d, nig and n; are the number of occurrences of word ¢ in video d and the entire
collection respectively, while |Dy| is the number of videos in the collection. The
former factor of the equation is called term frequency (tf) and the latter inverted
document frequency (idf). The calculation of weights take place in the offline part
of the method, i.e. they are not recalculated for every new query.

The feature extraction and aggregation steps for a query video g are the same
as the ones described above. Once the final histogram HY is extracted from g,
an inverted file indexing structure [17] is used for fast retrieval of videos that
have at least a common visual word with the query video. Then, all these videos
are ranked in descending order based on their cosine similarity with the query
video, computed using the corresponding tf-idf representations.

4 Evaluation

4.1 Dataset

Experiments were performed on the CC_.WEB_VIDEO dataset [21], which is
available by the research groups of City University of Hong Kong and Carnegie
Mellon University. The collection consists of a sample of videos retrieved by sub-
mitting 24 popular text queries to popular video sharing websites (i.e. YouTube,
Google Video, and Yahoo! Video). For every query, a set of video clips was
collected and the most popular video was considered to be the query video. Sub-
sequently, all videos in the video set retrieved by the query were manually anno-
tated based on their near-duplicate relation to the query video. Table 2 depicts
the types of near-duplicate types and their annotation. In the present work, all
videos annotated with any symbol but X are considered near-duplicates. The
dataset contains a total of 13,129 videos consisting of 397,965 keyframes.

All experiments were carried out on a system with Intel(R) Core(TM) i7-
4770K CPU at 3.50 GHz, 16 GB RAM, NVIDIA GTX 980 GPU and 64-bit
Ubuntu 14.04 operating system.
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Table 2. Type of transformation.

Annotation | Transformation

Exactly duplicate

Similar video

Different version

Major change

Long version

w2l <nle

Dissimilar video

4.2 Evaluation Metrics

To measure detection accuracy, we employ the interpolated precision-recall (PR)
curve. Precision is determined as the fraction of retrieved videos that are relevant
to the query, while recall is the fraction of the total relevant videos that are
retrieved. We further use mean average precision (mAP) as defined in [21] and
in Eq. 2, where n is the number of relevant videos to the query video, and r; is
the rank of the i-th retrieved relevant video.

1 g
AP_E;E (2)

4.3 Competing Approaches

In Sect.5.4, we compare the proposed approach with five widely used content-
based NDVR approaches.

Color Histograms (CH) - Wu et al. [21] generated a global video representa-
tion based on the color histograms of keyframes. The color histogram is a con-
catenation of 18 bins for Hue, 3 bins for Saturation, and 3 bins for Value, resulting
in a 24-dimensional vector representation for every keyframe. The global video
signature is the normalized color histogram over all keyframes in the video.

Auto Color Correlograms (ACC) - Cai et al. [2] used uniform sampling to
extract one frame per second for the input video. The auto-color correlograms of
each frame are computed and aggregated based on a visual codebook generated
from a training set of video frames. The retrieval of near-duplicate videos is
performed using tf-idf weighted cosine similarity over the visual word histograms
of a query and a dataset video.

Local Structure (LS) - Wu et al. [21] combined global signatures and local
features in a hierarchical method. Color signatures are employed to detect near-
duplicate videos with high confidence and to filter out very dissimilar videos. For
the rest of videos, a local feature based method was developed, which compares
the keyframes in a sliding window using their local features (PCA-SIFT).
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Multiple Feature Hashing (MFH) - Song et al. [18] exploited multiple image
features to learn a group of hash functions that project the video keyframes into
the Hamming space. The combination of the keyframe hash codes generates a
video signature which constitutes the video representation in the dataset. Ham-
ming distance is employed to determine similarity between candidate videos.

Pattern-based approach (PPT) - Chou et al. [3] built a pattern-based index-
ing tree (PI-tree) based on a sequence of symbols encoded from keyframes, which
facilitates the efficient retrieval of candidate videos. They used m-pattern-based
dynamic programming (mPDP) and time-shift m-pattern similarity (TPS) to
determine video similarity.

5 Experiments

5.1 Impact of CNN Architecture and Vocabulary Size

In this section, we study the performance of the proposed approach in the
CC_WEBL_VIDEO dataset in relation to the underlying CNN architecture and
the size of the visual vocabulary.

Regarding the first aspect, three CNN architectures are tested: AlexNet,
VGGNet and GoogLeNet, with both aggregation schemes implemented using
K = 1000 words. Figure 2 illustrates the PR curves of the different CNN archi-
tectures with the two aggregation schemes. Layer-based aggregation runs out-
perform vector-based ones for every architecture. GoogLeNet achieves the best
results for the vector-based aggregation experiments with a precision close to
100% up to a 70% recall. For recall values in the range 80%-100%, all three
architectures have similar results. For the layer-based aggregation scheme, all
three architectures exhibit near perfect performance up to 75% recall.
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Fig. 2. Precision-recall curve of the proposed approach based on three CNN architec-
tures and for the two aggregation schemes.

Similar conclusions are obtained from the analysis of mAP achieved using
different CNN architectures, as depicted in Table 3. For the vector-based aggre-
gation experiments, GoogLeNet achieved the best performance with a mAP of
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0.958, and VGGNet the worst (mAP =0.937). On the other hand, when using
the layer-based aggregation scheme, the best mAP score (0.976) was based on
VGG-Net. The lowest, yet competitive results in the case of layer-based aggre-
gation, are obtained for AlexNet (mAP =0.969).

Table 3. mAP per CNN architecture and aggregation scheme.

Method K AlexNet | VGGNet | GoogLeNet
Vector aggregation | 1000 | 0.951 0.937 0.958
10,000 | 0.879 0.886 0.857
Layer aggregation 1000 | 0.969 0.976 0.974
10,000 | 0.948 0.959 0.958

To study the impact of vocabulary size, we compare the two schemes when
used with K = 1000 and K = 10,000 (Table 3). Results reveal that the perfor-
mance of vector-based aggregation for K = 10,000 is significantly lower com-
pared to the case when K = 1000 words are used. It appears that the vector-
based aggregation suffers considerably more from the increase of K compared to
the layer-based aggregation, which appears to be less sensitive to this parameter.
Due to this fact, we did not consider to use the same amount of visual words
for the vector-based and the layer-based aggregation, since the performance gap
between the two types of aggregation with the same number of visual words
would be much more pronounced.

5.2 Performance Using Individual Layers

We also assessed the retrieval capability of every layer for the three tested CNN
architectures. Figure 3 depicts the mAP of the approach using only a selected
layer vector. In the AlexNet and VGGNet architectures, the mAP of the first lay-
ers are quite low and as we are moving to deeper layers, the retrieval performance
improves. In both cases, there are several layers that exceed the performance of
the vector-based aggregation scheme. This indicates that it is better to extract
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Fig. 3. mAP of every layer for the three architectures.
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the feature descriptors only from one layer than concatenating all layers in a
single vector. However, no single layer overpasses the performance of the layer-
based aggregation scheme, displayed with a dashed line. In GoogLeNet, the first
layer (Inception 3a) is already deep enough to achieve competitive performance.
In this case, the performance for all layers fluctuates between 0.935 and 0.960.

5.3 Performance per Query

Here, we analyze the performance of the best vector-based aggregation instance
(GoogLeNet) with the best layer-based aggregation instance (VGGNet) on dif-
ferent queries. Figure 4 displays their Average Precision per query. Layer aggre-
gation outperforms vector aggregation for every single query. However, both
approaches fail in the difficult queries of the dataset, namely query 18 (Bus
uncle) and query 22 (Numa Gary). The major factor leading to errors is that
both videos have relatively low resolution/quality and the candidate videos are
heavily edited, which leads to a significant number of relevant videos not to be
retrieved at all (i.e. many false negatives). Nevertheless, CNN-L leads to consid-
erably better results in both queries in comparison to CNN-V (Fig. 4).
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Fig. 4. Average precision/query for GoogLeNet (CNN-V) and VGGNet (CNN-L).

Table 4. Comparison between our approach and existing approaches.

Method |CH | ACC |LS MFH | PPT || CNN-V | CNN-L
mAP 0.89210.944 | 0.952 | 0.958 | 0.958 || 0.958 | 0.976

5.4 Comparison Against Existing NDVR Approaches

For comparing the performance of our approach with the five NDVR approaches
from the literature, we select the same runs as in the previous section. The
numeric data for the interpolated PR curves of the CH, LS and PPT methods
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Fig. 5. Precision-recall curve comparison of two versions of the proposed approach with
four state-of-the-art methods.

on the CC_ZWEB_VIDEO dataset were provided by the authors of [3,21], respec-
tively. For the ACC method, we developed our own implementation, which was
fine-tuned on the dataset.

Figure5 illustrates the PR curves of the compared approaches. CNN-L out-
performs all other methods up to 90% of recall, at which point the LS and PPT
methods start outperforming it. Additionally, CNN-V is at the same level with
CNN-L up to 70%, after which it starts performing worse. It is noteworthy that
the approaches based on the bag-of-word scheme have low precision at high val-
ues of recall (>90%). In terms of mAP, both versions of the proposed approach
are competitive in comparison to the state-of-the-art, as attested by Table4.
CNN-L achieves the best score (mAP =0.976), followed by CNN-V, MFH and
PPT (mAP =0.958).

6 Conclusions and Future Work

We presented a new video-level representation for Near-Duplicate Video
Retrieval, which leverages the effectiveness of CNN features and a newly intro-
duced layer-based aggregation scheme that exhibited considerably improved per-
formance over five popular approaches on the CC_ZWEB_VIDEO dataset in terms
of Precision-Recall and mAP.

In the future, we plan to apply the necessary modifications to our method
to exploit the use of generic C3D features [20]. Furthermore, we are going to
conduct more comprehensive evaluations of the method using more challenging
datasets, and we will also assess the applicability of the approach on the problem
of Partial Duplicate Video Retrieval (PDVR).

Acknowledgement. This work is supported by the InVID project, partially funded
by the European Commission under contract numbers 687786.
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