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Abstract. The problem of content geotagging, i.e. estimating the geo-
graphic position of a piece of content (text message, tagged image, etc.)
when this is not explicitly available, has attracted increasing interest as
the large volumes of user-generated content posted through social media
platforms such as Twitter and Instagram form nowadays a key element
in the coverage of news stories and events. In particular, in large-scale
incidents, where location is an important factor, such as natural disas-
ters and terrorist attacks, a large number of people around the globe
post comments and content to social media. Yet, the large majority of
content lacks proper geographic information (in the form of latitude and
longitude coordinates) and hence cannot be utilized to the full extent
(e.g., by viewing citizens reports on a map). To this end, we present a
new geotagging approach that can estimate the location of a post based
on its text using refined language models that are learned from massive
corpora of social media content. Using a large benchmark collection, we
demonstrate the improvements in geotagging accuracy as a result of the
proposed refinements.

Keywords: Geotagging · Social media · Language models · Similarity
search · Spatial entropy · Location detection

1 Introduction

The pervasive use of mobile media capturing equipment (smartphones, cameras)
and the increased adoption of online social networking and media sharing services
have disrupted the way news stories and real-world events are captured and
disseminated. Shortly after the occurrence of an event, such as a natural disaster
or a riot, social media platforms such as Twitter, Facebook and Instagram are
flooded with data about the event, much of which comes directly from bystanders
and witnesses. More often than not, information and media content from people
directly involved or attending an event would be highly valuable to decision
makers (e.g., reporters, emergency response teams), for assessing the situation
and planning the next steps. Yet, it is often extremely challenging to find and
make use of such content due to the inherent properties of social media content,
namely the large volume of content, the lack of structured information and the
reduced trust on the quality and veracity of posted information.
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An important element of user-generated content is the geographic location,
where a post refers to, and where it was generated. In a few cases, precise location
information is made available from the media sharing platform (e.g., geotagged
tweets carry the latitude and longitude of the location where the respective tweet
was composed). This is extremely helpful, since it is possible for an analyst to
view the content on a map (and thus better understand the location context of
an event) and to establish its reliability (e.g. when a user posts far away from
an event, their posts cannot be considered equally reliable to the ones of direct
witnesses). Yet, the vast majority of content in social media is not accompanied
by explicit geographic information (for instance, in the case of Twitter less than
1% of content is geotagged). To this end, a number of geotagging approaches
have been recently proposed that analyse the posted content, typically the text of
the post or the title/description and tags of a posted image, in order to estimate
the location where the content refers to.

In this paper, we present a number of refinements over a popular language
model-based approach [16], which has been recently demonstrated to have highly
competitive performance [14]. With the help of a thorough experimental study
on a widely used benchmark dataset (MediaEval 2014 Placing Task), we demon-
strate that the proposed refinements result in significant improvements regarding
the geotagging accuracy and the reliability of the geotagging output. Further-
more, we present an in-depth exploration of the performance of the proposed
approach, including the contribution of each of the different proposed refine-
ments, and the role of increasing the size of the training dataset. To further
drive research in the area, we also make publicly available the implementation
of the proposed approach as an open-source project1.

2 Related Work

Geotagging is a very challenging task, which has attracted increasing research
interest in recent years. Luo et al. [12] and Zheng et al. [20] provide surveys with
detailed overviews of the geotagging research problem and a number of recent
approaches. In the following paragraphs, we are briefly presenting a number of
representative approaches: in particular gazetteer-based methods, language mod-
els and multimodal methods. Moreover, we present the MediaEval 2014 Placing
Task, an international benchmarking activity, where the proposed approach was
submitted and compared with a number of competing approaches.

2.1 Gazetteer-Based Methods

Gazetteers are essentially large dictionaries or directories that contain compre-
hensive lists of geographic places. These places are described by various features,
such as geographic location, toponyms and alternate names (when available).
The gazetteer databases typically contain high quality and precise information

1 https://github.com/socialsensor/multimedia-geotagging
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for the contained places. However, many gazetteers have limited world cover-
age, which makes them impractical as the sole basis for a global geotagging
solution. The most well-known gazetteer databases are Geonames2 and Yahoo!
GeoPlanet3, with the former being a free public resource with over 10 million
geographical names and over 9 million unique features, of which 2.8 million pop-
ulated places and 5.5 million alternate names.

Several geotaggingapproaches are based on gazetteers.Kessler et al. [7] combine
the existing standards to realize a gazetteer infrastructure allowing for bottom-up
contribution as well as information exchange between different gazetteers. They
ensure the quality of user-contributed information and improve querying and nav-
igation using a semantics-based information retrieval approach. Smart et al. [17]
present a framework that accesses multiple gazetteers and digital maps in a medi-
ation architecture for a meta-gazetteer service using similarity matching methods
to conflate the multiple sources of place data in real-time. Lieberman et al. [11] in-
troduce a heuristic method to recognize toponyms and merging list of toponyms,
referring to them as comma groups. Toponyms in comma groups share a common
geographic attribute and determine the correct interpretation of the place name.

2.2 Language Models and Multimodal Methods

In recent years, several researchers have developed data-driven techniques in or-
der to connect the textual metadata of user-generated geotagged images to spe-
cific locations or areas with the goal of building large-scale geographical language
models. In a typical language model-based approach, there is a large collection
of geotagged textual content, composing a training set, which is clustered in
discrete areas or assigned in regular cells on a virtual grid covering the surface
of the earth. This process gives the opportunity to calculate useful keyword/tag
statistics for each cluster or cell across the globe. One of the earliest works is [16],
where Serdyukov et al. used a predefined grid of cells and calculated the prior
probabilities for image tags based on the neighbourhood of the cells that they
appeared. More recently, Hauff et al. [6] attempted to overcome the limitation of
the fixed grid introducing disjoint dynamically sized cells. O’Hare and Murdock
[13] proposed a statistical grid-based language modelling approach, which makes
use of the Word-Document model, and they investigated several ways to esti-
mate the models, based on the term frequency and the user frequency. Another
approach that uses language models was described in [19], where Van Laere et
al. cluster the training set images and then use the χ2 feature selection criterion
to create a vocabulary for every cluster. They also introduced a more aggressive
technique, in which they calculate the most similar images, for a query image,
using Jaccard similarity (on the respective sets of tags).

Other researchers have proposed multimodal methods that use visual features
of images in addition to the text metadata. For instance, Crandall et al. [4]
combine image content and textual metadata at two levels of granularity, at a city

2 http://www.geonames.org/
3 https://developer.yahoo.com/geo/geoplanet/
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level (approximately 100km) and at individual landmark level (approximately
100m). They train classifiers in a relatively small set of landmarks and for a fixed
set of cities. Trevisiol et al. [18] process the textual data in order to determine
their geo-relevance and find the frequent matching items. Also, they build a user
model using the user’s upload history, social network data and user’s hometown.
When there is lack of such information, they use visual features for the prediction
of the location. Kelm et al. [8] present a hierarchical approach, making use
of external resources to identify toponyms in the metadata, and of visual and
textual features to identify similar content.

2.3 The MediaEval 2014 Placing Task

Task and Dataset Description. MediaEval is an international benchmarking
initiative that includes a number of tasks in the area of multimedia analysis and
retrieval. The Placing Task is dedicated to the geo-localization of images [2]. Par-
ticipants are challenged to determine an estimated location (in terms of latitude
and longitude) of the images that are contained in a test set using another set of
images for training. In MediaEval 2014, the training dataset included more than
5M images, and test datasets of different sizes, between 5K and 510K images,
were distributed, with the smaller sets being subsets of the larger ones. All the
datasets were subsets of the recently released Yahoo! 100M Flickr CC dataset4

(YFCC100M).
The task participants where asked to submit up to five runs, among which one

(run1) had to be purely text-based, meaning that only textual information was
eligible, and a second (run2) had to be purely visual-based, i.e. using only the
pixel content of images. For the other three runs, participants were allowed to
utilize gazetteers, external data or any additional information, but not crawl the
test images. In terms of evaluation, the submitted runs where benchmarked based
on their accuracy in different ranges. The estimated location for a test (query)
image was compared to its correct location; if it was located inside the circle
with a radius equal to some predefined range (the used circular ranges were 10m,
100m, 1km, 10km, 100km, and 1000km) from the centre of the correct location,
the estimate was considered correct for the respective range, hence resulting
in the computation of Precision at range X (e.g., P@1km). Additionally, the
median error was calculated, i.e. the median of the estimation errors across all
test images in terms of the Haversine distance between the predicted and the
actual location across all the images in the test set.

Overview of Competing Approaches. Six teams participated in the Me-
diaEval 2014 Placing Task, including one based on the proposed approach [9].
Popescu et al. [15] used a grid-based language modelling approach, in which
they divided the earth surface in a rectangular grid, and constructed a proba-
bilistic location model based on the users that use a tag in each cell of the grid.

4 http://webscope.sandbox.yahoo.com/catalog.php?datatype=i&did=67
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They also built a Flickr-specific machine tag model, which recognizes the ma-
chine tags that contain the geographic location of the associated image. Based
on users’ information, they also built a user model. In [1], Cao et al. employ
the Ripley’s K-statistic algorithm in order to weight the tags included in the
training set. They built a language model framework, utilizing the tag weights
and Bayesian Smoothing with Dirichlet priors. Ferrés et al. [5], built two basic
systems. The first is the Geographical Knowledge Base (GeoKB), which uses
Geoname’s gazetteer and an English Dictionary, refining the results through
logical assumptions. The second one is Hiemstra’s Language Model (HLM) with
re-ranking, which combined the Terrier5 Information Retrieval (IR) engine with
the HLM weighting model. In [10], Li et al. applied a combination of textual,
visual and audio analysis in order to geocode the given image/videos. Further,
they re-ranked items using the RL-Sim algorithm and predicted the location of
the images by clustering the top-rated results. Finally, Coi et al. [3] developed a
spatial variance approach targeted to recognize the toponyms that are contained
in the images and a graphical model-based approach. For the visual analysis they
developed the Geo-Visual Ranking (GVR) approach, which processes the most
similar training images to the query image to make an estimate based on their
locations. The results of the aforementioned approaches serve as a benchmark
to the results we present in Section 4 using the same experimental setting.

3 Approach Overview

The objective of the proposed system is to calculate the geographical location of
social media items using text analysis on their content (e.g. tweets, image tags,
etc.). Based on a pre-calculated probabilistic language model, which is derived
from processing a massive amount of filtered data, an actual location is derived
for a query item, in terms of latitude and longitude coordinates. To simplify the
presentation of the approach, one should bear in mind that two sets of items
are involved. The first, typically a massive corpus of geotagged textual items, is
used for creating (training) the language model, and the second for testing the
geotagging accuracy of the constructed model. The two sets will be denoted as
Dtr and Dts, respectively. In the case of Flickr images (which are used as an
experimental test bed in this work), the image metadata that are used are the
tags, title, user id, image id and description. In particular, the metadata of images
from Dtr are analysed to create a probabilistic language model that is then used
for predicting the location of the images (based on their metadata) from set Dts.
The language model is built based on the tags and titles of the images in Dtr.
Afterwards, the model tags are processed in order to select and weight those
that have the greater contribution to the location prediction problem. Finally,
the approach employs some additional techniques to further refine the location
predictions for the images of Dts. A high-level view of the proposed geotagging
approach is illustrated in Figure 1.

5 http://terrier.org/

http://terrier.org/
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Fig. 1. Overview of proposed geotagging approach

3.1 Language Model

The construction of the language model relies on an offline processing step, in
which a complex geographical-tag model is built from the tags, titles and lo-
cations of the images contained in Dtr. For estimating the location of a query
image, the description of the images is also used in case no geographic informa-
tion can be gleaned from its tags and title. A pre-processing step is first applied:
all punctuation and symbols are removed (except from the add symbol “+”, be-
cause in the particular dataset, it is used to link the keywords of multi-keyword
toponyms, e.g., new+york. Also, all characters are transformed to lowercase and
all tags composed of numerics are removed. Finally, phrases that contain the add
symbol are split into single tags (e.g., the single tags in new+york are new and
york). After the pre-processing, several images in Dtr are left with no tags and
title and are hence disregarded from the remaining steps. Note that the same
pre-processing is applied on the test images before the actual location estimation
process. For ease of reference, we will refer to the keywords of an arbitrary social
media item as tags and denote their set as T .

In order to generate discrete geographical areas, the earth surface is divided
in rectangular cells with a side length of 0.01◦ for both latitude and longitude
(corresponding to a distance of approximately 1km near the equator). Therefore,
a grid C of cells is created, which is used to build the language model using the
approach described in [14]. More specifically, for a query image, an estimation of
the most probable cell c ∈ C takes place based on the respective tag probabilities.
A tag probability in a particular cell is calculated as the total number of different
Flickr users that used the tag inside the cell, divided with the total count of
different users over the whole grid C. More specifically, the tag-cell probability
p(t|c) is calculated for every tag t ∈ T according to Equation 1.

p(t|c) = Nu

Nt
(1)
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where Nu is the number of users in Dtr that used the tag t inside the borders of
cell c, and Nt is the total count of different users that used the tag t in all cells.
Note that a user can be counted in Nt more than once. If a user u is found in
multiple cells, every time he/she is found in a different cell, he/she is considered
as a new user and increases the total count of users.

In order to assign a query text to a cell, the probability of each cell of C is first
calculated summing up the contributions of each individual tag in T . Then, the cell
with the highest probability is selected as the text cell according to Equation 2.

cj = argmax
i

N∑

k=1

p(tk|ci) (2)

where, cj is the most likely cell for item j ∈ Dts, N is the total number of tags of
in Tj and p(tk|ci) is the tag-cell probability for tag tk ∈ Tj in cell ci ∈ C. Based
on the base language model presented here, the location estimation for item j is
considered to be the centre of the cj . If during this process there is no outcome
(i.e. the probability for all cells is zero), then the description of the query image
(in case of Flickr images) is utilized. For the Dts images where there is no result
(e.g. complete lack of text), their location is set equal to the centre of the most
populated cell, in a coarse granularity grid (100km×100km), which is a kind of
maximum likelihood estimation.

3.2 Feature Selection

To increase the robustness of the model and reduce its size, we make use of a
feature selection technique. The features that need to be ranked are the language
model tags. For this reason, a technique is proposed based on a cross-validation
scheme using the training set only. The basic idea is to rank the tags based on
the accuracy they achieve for predicting the location of items in the withheld
fold. First, the set Dtr is partitioned into p folds. The number of partitions p
is empirically selected; in this implementation, it was set to 10. Subsequently,
one partition Dp

tr at a time is withheld, and the rest p − 1 partitions are used
to build the language model. Having built the language model, the location of
every item of the withheld partition is predicted using the method described in
subsection 3.1. In that way, it is straightforward to determine the contribution
of each tag to the prediction of the target location: a score is computed based
on the ratio of the number of correctly geotagged (in range r) items where the
tag appears over the total number of items where the particular tag appears.

tgeo(t) =
Nr

Nt
(3)

where, tgeo(t) is the score of each tag t of the language model (essentially its
geographicity), Nr is the total number of correctly geotagged items in Dp

tr where
t appears, and Nt is the total number of items in Dp

tr where it appears. The
feature selection step is carried out using a threshold, to be denoted as θtgeo,
and only those tags that surpass it are selected, provided they are used by a
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minimum number of unique users in the whole training set (this second threshold
is denoted as θu).

3.3 Feature Weighting Using Spatial Entropy

In order to adjust the original language model tag probabilities for each cell, we
build a Gaussian weight function based on the values of the spatial tag entropy.
First, for each tag in the model, its spatial entropy value is calculated. In order to
calculate the entropy values, the Shannon entropy formula is applied in the tag-
cell probabilities. This is a measure of the stochasticity of the tag’s appearance
in the cells of C and is expressed by Equation 4.

e(t) = −
M∑

i=1

p(t|ci) log p(t|ci) (4)

where e(t) is the spatial entropy value of tag t, p(t|ci) is the tag-cell probability
of t in cell ci ∈ C and M is the total number of cells.

Once the entropy values are computed, a Gaussian normalization is applied
because the tags with either too high or too low entropy values typically carry no
geographic information, and therefore their influence on the location estimation
process needs to be suppressed. Tags with too low entropy values tend to be
user-specific. A typical example is a tag that is only used by a single user in a
single cell. This will have a zero entropy value and it is not considered useful
in the location detection process. In the same way, very high entropy values
indicate tag appearance that is widely spread across the globe. As a result, such
a tag would carry no geographical interest (e.g., baby and fun are tags with
very high spatial entropy values). Due to this fact, a Gaussian normalization is
used for the re-weighting of the tag-cell probabilities. The Gaussian function is
specified in Equation 5.

N(e(t), μ, σ) =
1

σ
√
2π

e−(
e(t)−μ

2σ )
2

(5)

where N is the Gaussian function, and parameters μ, σ are the mean value and
the variance of the entropy distribution, respectively, and are estimated on Dtr.
Based on the Gaussian normalization, Equation 2 is adapted to Equation 6.

cj = argmax
i

N∑

k=1

p(tk|ci) ·N(e(tk), μ, σ) (6)

where N is the number of tags for image j, p(tk|ci) is the probability of tag
tk for cell ci and e(tk) is the spatial entropy of tag tk. Figure 2 illustrates the
histogram of entropy values on the training set and the respective weights.

3.4 Similarity Search

Having assigned a query item to a cell, a further location refinement is conducted
using the technique of [19]. First, the k most similar images in Dtr that fall inside
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Fig. 2. Histogram of entropy values and Gaussian weighting for each range

cell cj , are determined using Jaccard similarity on the corresponding sets of tags.
For images x and y, their Jaccard similarity is defined by Equation 7.

J(x, y) =
|Tx ∩ Ty|
|Tx ∪ Ty| (7)

The final estimation is the centre-of-gravity of the k most similar images, weighted
by the similarity values as the location estimate for the test image.

loc(x) =
1

k

k∑

i=1

J(x|yi)aloc(yi) (8)

where parameter α ∈ [0,+∞] determines how strongly the result is influenced
by the most similar items. In order to perform the calculation, the location coor-
dinates are first transformed to the Cartesian system and are then transformed
back to spherical (latitude and longitude). In case that less than k similar items
are found in cj , then the centre-of-gravity is calculated by only those which are
similar to x. If no similar items are found, then the centre of cj is output as the
estimated location.

3.5 Multiple Resolution Grids

In order to ensure more reliable prediction in finer granularities, we built an
additional language model using a finer grid (cell side length of 0.001◦ for both
latitude and longitude, corresponding to a square of ≈100m×100m near the
equator). The grids for the coarser and finer grids are denoted as Cc, and Cf ,
respectively. Having computed the estimated location for both the coarse and
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fine granularity, we use the following refinement: if the estimated cell cf based
on the finer granularity falls within the borders of the estimated cell of the
coarser granularity cc, then the prediction is based on the fine granularity and
similarity search is applied on cell cf . Otherwise, similarity search is performed
on the cell of coarser granularity cc, since coarser granularity language models
are considered more reliable by default, given that more data per cell are used
for their creation, and hence the resulting probabilistic analysis is more robust.

4 Evaluation

We first evaluate the effectiveness of the proposed approach in comparison to
competing approaches in the MediaEval 2014 Placing task, and next we explore
in detail several performance aspects of the approach using the same reference
dataset. The dataset used in this evaluation was already described in Section 2.
All experiments described here were performed on the largest test set (510K).

4.1 MediaEval 2014

For the participation in the task, we submitted five runs, three of them based
on text, using variants of the presented approach, and two based on the visual
content of images, which are not discussed in this paper.

In the submitted text-based runs, our goal was to demonstrate the improve-
ment of the results by applying the proposed refinements of subsections 3.3-3.5
on the base approach that relies on the language model (subsection 3.1). Hence,
run1 corresponds to using the language model, spatial entropy, similarity search,
and multiple grid, run4, using the language model only (base approach), and
run5, using the language model and similarity search. For all three runs the
parameters used for the similarity search were α = 1 (empirical tests indicated
that the effect of this parameter on the geotagging accuracy was marginal), and
k = 4 (which led to optimal results on the training set). The feature selection
technique described in subsection 3.2 had not been developed and implemented
at that time, so it was not included in these tests (but is assessed later).

Table 1 contains the result of the text-based runs for the various accuracy
ranges. The best performance in terms of both median error and accuracy in all
ranges was attained by run1. Comparing run4 and run5, it appears that sim-
ilarity search had considerable impact on the low range accuracy results. Also
the combination of all features in run1 further improved the overall performance
(reaching a 5.85% accuracy for the 100m range, which was the second best per-
formance in the contest), but the median error was still relatively high (230km),
which means further improvements are possible.

Table 2 contains the results of the best textual runs of all participants in the
MediaEval 2014 Placing Task. Note that for all methods we compare the runs
that used only the training data released by the organizers (the set of ≈5M Flickr
images). As can be seen, the variant of our proposed approach is positioned in the
second or third place for the lower accuracy ranges, which are more important
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Table 1. Geotagging precision (%) for six ranges and median geotagging error (km)

P@10m P@100m P@1km P@10km P@100km P@1000km m. error

run1 0.50 5.85 23.02 39.92 46.87 60.11 230
run4 0.03 0.65 21.87 38.96 46.13 59.87 258
run5 0.31 4.36 22.24 38.98 46.13 59.87 259

Table 2. Geotagging precision (%) for five ranges and median geotagging error (km)
of the best textual runs for all six participants in the MediaEval Placing Task 2014

P@10m P@100m P@1km P@10km P@100km m. error

SocialSensor [9] 0.50 5.85 23.02 39.92 46.87 230
USEMP [15] 0.70 1.60 23.50 40.80 48.10 N/A
UQ-DKE [1] 1.07 4.98 19.57 41.71 52.46 51
TALP-UPC [5] 0.29 4.12 16.54 34.34 51.06 84
RECOD [10] 0.55 6.06 21.04 37.59 46.14 N/A
ICSI/TU Delft [3] 0.24 3.15 16.65 34.70 45.58 N/A

for practical applications. This is also illustrated in Figure 3, where the deep
blue line, that represents the team SocialSensor, lays above the other teams’
lines at the leftmost part of the diagram, but it increases at a lower rate than
competing approaches.

Figure 4 illustrates the median geotagging error in terms of the number of
tags per test image. Obviously, run1 achieves the best result, since it is the
most accurate of the three runs, achieving a median error just below 20km for
images with 16-20 tags, and clearly outperforming run4 and run5 for images
with more than 10 tags. The performance of run4 and run5 is very similar, with
the only exception the images that contain 10-20 tags, where run5 appears to
perform slightly better. It is noteworthy that images with more than 20 tags
appear harder to geotag (for all runs), potentially corresponding to spammy
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or very noisy metadata. Yet, it appears that the proposed extensions (feature
reweighting with spatial entropy, multiple grids) are highly effective in dealing
with such tags.

4.2 Further Performance Analysis

Additionally, beyond the scope of the MediaEval benchmark, in order to improve
further the geotagging accuracy of the proposed approach and to explore its per-
formance,
we made use of the full set of geotagged metadata included in the YFCC100M
dataset. Excluding all the images that do not contain geo-locations and after
the pre-processing step, a total set of approximately 48 million images was used
for creating the language model. On this set, the feature selection method of
subsection 3.2 was applied by partitioning the set in folds of 4.8 million images
each. Calculating the tag geographicities according to Equation 3 for a 1km geo-
tagging range, and filtering those tags with tgeo > θtgeo = 0 and Nt > θu = 1,
we ended up with a tag model of 4,547,803 tags.

Using the language model as baseline, we tested the effect of the different
refinements resulting in various configurations of the proposed approach. We
denote those with FS (Feature Selection), SE (Spatial Entropy re-weighting),
MG (Multiple Grid refinement), and SS (Similarity Search). The results of these
experiments are presented in Table 3. We also group the experiments in two
settings. In the first (the so-called FAIR setting), the users that appear in the
test set are completely excluded from the training set, while in the second setting
(OVERFIT), those users are not removed from the training set. The results of the
latter setting are considered as overly optimistic and not transferable to different
datasets, since the inclusion of tags from the same users in the training set is
bound to have a very positive effect for estimating the location of those images
whose owners (users) are included in the training set. The results using the
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Table 3. Geotagging precision (%) for five ranges and median geotagging error (km)
for different configurations of the proposed approach

FS SE MG SS P@10m P@100m P@1km P@10km P@100km m. error

FAIR

� 0.00 0.74 24.44 41.37 48.29 162
� � 0.00 0.75 24.83 41.54 47.65 181
� � 0.17 6.67 24.69 41.37 48.29 162
� � � 0.66 7.58 24.93 41.38 48.29 162
� � � � 0.67 7.65 25.90 41.54 48.29 160

OVERFIT

0.04 1.37 40.95 54.87 60.41 3.55
� 0.04 1.41 42.30 57.00 62.79 2.68
� � 0.04 1.39 41.94 56.21 61.56 2.89
� � � � 1.57 20.05 42.67 57.20 62.79 2.66

OVERFIT setting are only presented in Table 3 as a kind of “Oracle” setting, and
the setting is not further considered in the rest of the experiments.

The best results are achieved by the combination of all proposed refinements,
which results to P@100m=7.65% and P@1km=25.90%. Hence, applying the pro-
posed refinements appears to have a clear advantage compared to the base lan-
guage model, especially in the fine estimation ranges (100m, 1km). In comparison
to the run that was submitted to MediaEval, the use of more training data (48M
compared to 5M) also contributed to the improvement of the performance. For
instance, comparing the accuracy of run4 with its counterpart in Table 3, which
is the first row, it is evident that a gain of 2.57% (in P@1km), 24.44% versus
21.87%, is achieved. This is a 10% relative improvement, which came at the cost
of increasing the training set size by almost 10 times.

Figure 5 depicts the median geotagging error (relative to the number of
tags) of run1, run4 and two configurations of the approach that use the full
YFCC100M dataset, one combining only the language model with feature se-
lection and the second using all of the proposed refinements. The combination
of all proposed refinements appears to result in the best geotagging accuracy in
almost all tag ranges, except the [6, 10] range where the base language model
slightly outperforms the rest. Another noteworthy fact is that using the pro-
posed improvements on the reduced training set (5M), i.e. run1, has almost an
equivalent benefit on the geotagging accuracy, as the increase of the training set
by almost 10 times in tandem with the base Language Model (LM+YFCC100M).

Figure 6 illustrates the median geotagging error per cell across the globe. The
color bar presents the mapping of median error levels to colors. The cells with
median error less than 150km are displayed with deep blue color, whereas those
with more than 900km are displayed with brown red color. It is noteworthy that
in North America and Australia the dominant color is brown (very high error),
despite the availability of much more training data and the prevalence of English
text (which is expected to be easier to handle). In contrast, in Europe a wide
area is painted light blue, so in these areas the algorithm worked considerably
better. A possible explanation for the high error levels in the US and Australia
is the potential ambiguity in town and city names (e.g., many American towns
are named after European ones). The two configurations that are displayed in
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Fig. 5. Median geotagging error (km) relative to the number of tags per image for the
MediaEval 2014 run1, run4 and two of the runs with the extended training dataset

the figure correspond to run4 in the MediaEval 2014, and the combination of
all proposed refinements using the extended training dataset (ALL+YFCC100M).
There appears to be an improvement in the second map in multiple locations
over the globe.

As a further experiment, we were interested in investigating whether the sum
of cell-tag probabilities for all the tags of an item (the sum terms in Equations 2
and 6) can be used as an indicator of the reliability of the detected location for a
test item. To this end, we computed the geotagging precision only on the subset of
images, for which the respective sum exceeded a user-selected threshold d, which
we varied in this study. Figure 7 illustrates the obtained results. In particular,
Figure 7(a) displays the geotagging precision at different ranges for the images
that exceed threshold d for increasing values of the threshold. Figure 7(b) depicts
the percentage of images that are placed in the range of 1km and exceed the
threshold (blue line) versus the percentage of images that do not exceed the
threshold (and are hence not placeable). A very important finding from this test
is that the sum of cell-tag probabilities for the tags of an image is indeed a very
good indicator of the location prediction reliability, at least for ranges of 1km
and above. For instance, according to Figure 7(a), for images where this sum
exceeds the value of d = 0.1, the geotagging accuracy at 1km range exceeds 70%.
Figure 7(b) suggests that in that case, only 35% of images out of the original test
set can be placed with such accuracy. Hence, this thresholding strategy is very
practical for tuning the trade-off between geotagging accuracy and placeability.

In many cases, the location of an image may differ from the location depicted
in its content, since the registered location (by use of the camera GPS sensors)



Geotagging Social Media Content 35

Fig. 6. Spatial distribution of mean geotagging error in run4 and ALL+YFCC100M

typically corresponds to the location of the photographer and not of the pho-
tographed object. For example, an image of the Eiffel Tower that was taken from
the opposite side of Seine is automatically located relatively far from the actual
Eiffel Tower location. Combined with the fact that we used image text metadata
to build our language model, one may expect that part of the geotagging errors
of the proposed approach, especially in low range accuracies (<1km) could in
fact be attributed to this particularity of the training dataset.

To further expose this issue with a concrete example, we collected the images
from the test set that contain the exact phrase statue of liberty and were
located close to the monument (within a square with approximately 10km sides
and centred on the monument). Figure 8 depicts the images that comply with
the above criteria. The points on the map correspond to the real locations of the
images and are coloured based on their distance error between their estimated
and real locations (green, yellow and red correspond to distance errors <0.5km,
<1km and≥1km, respectively). It is noteworthy that based on the accompanying
text metadata, the photos should have been geotagged on the Statue of Liberty;
yet their capture locations (which were used to generate the language model) are
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Fig. 7. Reliability of location predictions and placeability of social media items

the points displayed on the map. This is obviously expected to have an impact
on the accuracy of the proposed approach, especially in lower ranges, since the
approach tends to assign a query image to the most likely cell (given the language
model) and then to the textually most similar image from the training set. In
this example, there are images that are taken from the ferry in the open sea or on
the coast across the statue (images 1, 2 in Figure 8). Those images were placed
by the proposed approach on the actual location of the Statue of Liberty, which
is the desired outcome. Yet, due to their GPS location (which was different from
the statue), the resulting test distance error was relatively high, which should
be interpreted with caution. In contrast, image 3 was correctly placed thanks to
the accompanying tag battery park, which together with the phrase statue

of liberty led the algorithm to a more accurate estimation, i.e. a location
inside the mentioned park. Another challenging case is presented by image 4,
where the Statue of Liberty appears far in the background, yet it appears in the
textual content of the image, thus misleading the geotagging process.
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Fig. 8. Statue of Liberty example

A further issue with respect to the training data that was used for building
the language model pertains to the use of textual descriptions that are related
to temporary events, such as emergencies and natural disasters. Figure 9 illus-
trates the heatmaps generated from the locations of images carrying the tags
earthquake and riot respectively. In the first case (Figure 9(a)), one may note
that the most “active” regions actually correspond to seismogenic zones, such as
Japan and California. We may hypothesize that taking into account this infor-
mation in the location estimation process can be beneficial, since it considerably
reduces the space of possible locations. In contrast, taking into account the tag
riot in the geotagging process may actually not be particularly informative. Ac-
cording to the heatmap of Figure 9(b), there is a variety of locations across the
globe (with higher density in London, European capitals and major US cities).
One might hypothesize that when using a very large training set (such as the
YFCC100M), the resulting language model would be bound to contain riot-
related content in all major cities of the world. In addition, given the temporal
volatility of such events (e.g., there may be periods, where more riots take place
within a particular city), one should be very cautious when using such tags for
building a geographic language model.

In a final experiment, we explore the performance of the approach when es-
timating the location of media content that is associated with emergency situa-
tions. To this end, we retrieved the test set images that contained at least one of
the keywords fire, flood, earthquake, hurricane, riot and demonstration,
all of which are linked to emergency situations. The total number of retrieved
test images was approximately 6,000. The results of the approach on this set of
images (Emergency set) are presented in Table 4 and compared to the results
on the full MediaEval 2014 test set. We may note that the geotagging accuracy
in the small accuracies (10m, 100m) is very similar (marginally lower for the
emergency set). However, the geotagging accuracy in the emergency set is con-
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(a) Heatmap of earthquake images

(b) Heatmap of riot images

Fig. 9. Tag-specific heatmaps based on the YFCC100M training set

Table 4. Geotagging precision on full MediaEval 2014 test set (same as fourth entry
of Table 3) and reduced test set focusing on emergency-related images

P@10m P@100m P@1km P@10km P@100km m. error

Full test set 0.67 7.65 25.90 41.54 48.29 160
Emergency set 0.58 7.55 28.96 49.11 57.82 15

siderably higher for the rest of the ranges (and for the median error), which are
very important for improved situational awareness and for devising appropri-
ate emergency response strategies. An important finding from this test is that
emergency-related images seem to carry text metadata that are helpful for the
geotagging problem, and hence one could make use of such images even when
they do not carry GPS metadata.
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5 Conclusions

We presented a number of refinements over the base language model for geotag-
ging social media content based on text. The proposed refinements included a
method for performing feature selection, a feature reweighting function based on
spatial entropy, similarity search, and a multiple grid technique. We presented a
thorough experimental study on the MediaEval 2014 Placing Task and demon-
strated the highly competitive performance of the proposed method, along with
further improvements as a result of using a considerably larger training dataset,
and further tuning the configuration of the refined approach. We consider that
the proposed approach along with the insights gained from the conducted exper-
imental study can lead to a reliable geotagging solution for social media settings
in a variety of practical settings.

In the future, we aim at exploring the effect of using training data from
different social media sources (i.e. other than Flickr) on the performance of the
approach, as well as the generalization ability of the system (i.e. training using
data from one social media source, and testing using data from a different one).
Furthermore, we are interested in making use of the visual content of images,
which is a much more challenging problem, to further improve on the geotagging
accuracy and placeability.
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