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Geotagging Text Content with Language Models
and Feature Mining

Giorgos Kordopatis-Zilos, Student Member, IEEE, Symeon Papadopoulos, Member, IEEE, Ioannis (Yiannis)
Kompatsiaris, Senior Member, IEEE

Abstract—The large-scale availability of user-generated con-
tent in social media platforms has recently opened up new
possibilities for studying and understanding the geospatial aspects
of real-world phenomena and events. Yet, the large majority of
user-generated content lacks proper geographic information (in
the form of latitude and longitude coordinates). As a result,
the problem of multimedia geotagging, i.e. extracting location
information from user-generated text items when this is not
explicitly available, has attracted increasing research interest.
Here, we present a highly accurate geotagging approach for
estimating the locations alluded by text annotations based on
refined language models that are learned from massive corpora
of social media annotations. We further explore the impact
of different feature selection and weighting techniques on the
performance of the approach. In terms of evaluation, we employ
a large benchmark collection from the MediaEval Placing Task
over several years. We demonstrate the consistently superior
geotagging accuracy and low median distance error of the
proposed approach using various datasets and comparing it
against a number of state-of-the-art systems.

Index Terms—geotagging, geolocation, language model, feature
selection, location estimation

I. INTRODUCTION

The ubiquitous availability and use of media capturing
devices (smartphones, cameras) and the increasing penetration
of online social networking and media sharing services have
led to massive increase in the amount of user-generated content
and discussions related to unfolding news stories and real-
world events. A key element of user-generated content is
text, which constitutes either the only component of a social
media post, e.g. a tweet, or an annotation that accompanies
a multimedia item (e.g. Flickr image, YouTube video). Text
annotations are also an important part of online user profiles
(e.g. the description field of a Twitter account). In many cases,
user-generated text annotations are indicative of the location
they originate from or they refer to, either because they
explicitly mention particular geographic entities or because the
text contains cues that implicitly refer to particular locations.

Yet, the majority of user-generated text is not accompanied
by proper geographic information either due to the way they
are generated (e.g., the mobile app used to upload a tagged
image is set to not use the GPS coordinates of the device) or
due to social media platform policies (for instance, Facebook
and Twitter remove all Exif metadata, including geolocation,
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from any uploaded image). Being able to perform geotagging
is often very valuable for social media monitoring applications.
For instance, a journalist may be able to identify and cross-
check the location of a breaking news item by corroborating
multiple social media posts that have been automatically
geotagged. In another example, a business analyst may be able
to determine the popularity of a particular brand over the globe
by aggregating the locations that have been automatically
extracted from social media accounts that mention the brand
in their posts. To this end, the problem of geotagging has at-
tracted increasing research interest and a variety of geotagging
methods have been proposed to tackle it [36], [56].

The most widely used approach for geotagging is geopars-
ing, i.e. the detection of references to known locations with the
help of a gazetteer [1]. Yet, it is often extremely challenging to
reliably infer the location alluded by an arbitrary piece of text
content using such approaches due to the inherent complexity
of the problem and the nature of social media content. In
particular, there is a number of limitations and challenges
faced by geoparsing methods (Figure 1):

• In addition to “fixed” and well-known location names
(e.g. cities, neighbourhoods, landmarks), there is a huge
number of geographic names that are often dynamic (e.g.
shop names, emerging new hip areas). As a result, main-
taining a comprehensive and up-to-date list of geographic
names is a very challenging task.

• More often than not, it is often possible to infer the loca-
tion of a text description without any explicit reference to
geographic entities. Such cases appear for instance when
there are references to local food or when there is use of
local slang.

• There is often considerable ambiguity induced by geo-
graphic names, since the same name may refer to different
locations in the world. For instance, the name Athens
refers to more than 20 locations in the US in addition
to the capital of Greece. Thus, the presence of a single
geographic name without any additional context may be
misleading in terms of the implied location.

To this end, another popular alternative to geotagging is the
use of Language Model-based (LM) approaches [43]. Those
attempt to learn probabilistic text models, which given a piece
of text, provide an estimate of the likelihood that the text
refers to a particular location. LM approaches hold the promise
of alleviating a number of the above challenges faced by
geoparsing methods, since they do not operate on the basis of
an explicit toponym dictionary, but are instead trained on large
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Fig. 1. Visual examples of the estimated locations based on a state-of-the-art geoparsing method [55] (second column) and our proposed Language Model-
based approach (third column). In the first case, the geoparsing approach only managed to detect a very coarse entity (Japan) close to the true location referred
in the text of the input image. In the second case, the geoparsing method was confused due to the ambiguity of the mentioned location. In the third case, the
geoparsing method could not detect any location. Instead, our proposed LM-based approach correctly estimated the true location of all three input images.

corpora of geotagged text, which are nowadays relatively easy
to collect and are rich in terms of location-specific language.
In addition, being probabilistic in nature, LM approaches
take text context into account and do not rely on a specific
term-entity to produce a reliable estimate. However, many
LM-based approaches suffer from two weaknesses: a) they
are tuned to produce good estimates at a given geographic
granularity, e.g. region, city or at best neighbourhood, and
often suffer from lack of precision or robustness (i.e. in case of
an error, their estimate may be very far from the true location);
b) they are sensitive to the training set used to generate the
LM and often end up being dataset-specific, i.e. they suffer
from overfitting.

In this paper, we address the limitations of previous LM-
based approaches to deliver a highly accurate and robust
geotagging approach. To this end, we propose two important
extensions over previous high-performing LM-based systems:

• Unlike previous LM-based approaches that rely on a
single grid of cells, such as the geotagging system by
Popescu [40] (which achieved the best results in the 2013
edition of the MediaEval Placing Task), we propose the
use of multiple grids to capture language geographicity at
different granularities, in a way that ensures both precise

geotagging (i.e. providing estimates that are as close as
possible to the true locations) and resilience in cases
where this is not possible (i.e. provide the best possible
geotagging estimate, avoiding very large errors). As a
result, the precision at low granularities improved almost
10 times. More details on the employed methods are
presented in Sections III-B and III-E.

• Extending previous approaches that use feature selection
during the LM construction step, such as our previous
approach [23], we propose a more versatile, scalable and
powerful feature selection and weighting scheme, which
leads to considerable improvement in terms of geotagging
accuracy and to increased resilience with respect to the
training dataset. In particular, the impact of feature selec-
tion is the reduction of median distance error up to ≈88%.
The proposed feature selection and weighting schemes
were applied on a training set of ≈40M geotagged text
annotations on a commodity server. More details on the
feature selection and weighting methods are presented in
Sections III-C and III-D.

Moreover, we present a comprehensive experimental study (in
Section IV) using the YFCC100M large-scale dataset [48] and
four editions of the MediaEval Placing Task (2013-2016), in
all of which the proposed method achieved the best or very



3

close to best performance. In the latest edition (2016), our
method achieved top performance, with P@1km=24.85% and
median error equal to 28km, which was further improved to
27.4% and 16km respectively, when training the method with
the full YFCC dataset. This is the highest reported geotagging
accuracy in the history of the benchmark when using a com-
pletely independent training dataset and no external resources
(e.g. gazetteers). In addition, we evaluate the contribution
of a number of state-of-the-art techniques [23], [50], [51],
as well as of increasing the size of the training set, to the
overall performance of the geotagging process. To further drive
research in the area, we publish the implementation of the
proposed approach as an open-source project1.

II. RELATED WORK

Geotagging social media content is a challenging task,
which has attracted increasing research interest in recent years.
Detailed surveys of the field were presented in [36] and [56],
discussing a variety of geotagging approaches. Text-based
approaches are classified into two broad categories: geoparsing
and Language Model-based (LM). Geotagging approaches
based on the visual content of images, such as the ones by
Hayes et al. [16], [17], Lin et al. [35], Weyand et al. [54] and
Li et al. [32], offer another interesting alternative solution to
the problem, which is, however, beyond the scope of this paper.
Similarly, multimodal approaches that combine both text and
visual content to produce location estimates, such as the ones
by Crandall et al. [9], Kelm et al. [20], Trevisiol et al. [49] and
Cao et al. [3] are not further considered here. Yet, it is notewor-
thy that text-based geotagging approaches are currently much
more accurate and reliable compared to visual-based ones,
while combined approaches have at the moment only marginal
gains compared to text-based approaches at considerable added
complexity. For instance, in MediaEval 2015, the best text-
based submission achieved a score of P@1km = 27.3%,
the best visual only a score of P@1km = 5.2%, while the
best combined approach a score of P@1km = 27.54% [26].
In contrast, approaches that exploit information about the
author/creator of a social media post can achieve massive gains
in performance. For instance, Popescu et al. [41] achieved
the best result in MediaEval 2014 (P@1km = 44.13% and
m.error=1.9km), by taking into account the recent locations
(past 24 hours) of the Flickr users that uploaded the test
images. However, such methods are only applicable in limited
scenarios, and thus fall outside the scope of our research.

A. Geoparsing
Gazetteers are essentially large dictionaries or directories

that contain comprehensive lists of geographic entities. These
are described by various features, such as location, toponym
and alternate names (when available). Gazetteers typically
contain high quality and precise information. However, many
of them have limited world coverage, which makes them
insufficient as a basis for a global geotagging solution. The
most well-known gazetteers are Geonames2, OpenStreetMap3

1https://github.com/MKLab-ITI/multimedia-geotagging
2http://www.geonames.org/
3https://www.openstreetmap.org

and Yahoo! GeoPlanet4 and DBpedia [28] (which is not
limited to geographical entities).

Several geotagging approaches are based on gazetteers.
One of the earlier works in the field was presented by
Amitay et al. [1]. This combined different gazetteers to de-
termine the locations of mentioned places in web content.
Keßler et al. [21] combined existing standards to realize a
gazetteer infrastructure allowing for bottom-up contribution
as well as information exchange between different gazetteers.
They ensured the quality of user-contributed information and
improved querying and navigation using a semantics-based
information retrieval approach. Smart et al. [46] presented a
framework that accesses multiple gazetteers and digital maps
in a mediation architecture for a meta-gazetteer service using
similarity matching methods to conflate the multiple sources
of place data in real time. Lieberman et al. [34] introduced
a heuristic method to recognize toponyms and merging lists
of them into comma groups. Toponyms in comma groups
share a common geographic attribute and determine the correct
interpretation of the place name. Zhang et al. [55] developed
a supervised machine learning scheme to weigh the different
features of a world gazetteer and fields of a Twitter message
and to create a model that will prefer the correct gazetteer
candidate to resolve the extracted expression. Middleton et
al. [37] employed OpenStreetMap and used spatial filtering
based on dynamically declared focus areas to generate inverted
indexes for the geo-spatial entity recognition.

B. Language Models

The second class of geotagging approaches rely on the
construction of large-scale geographical Language Models
(LM) from geotagged corpora of text annotations, which act
as training sets for the model. The goal of LM is to generate
a probabilistic geographic model, which, given an arbitrary
piece of text, produces probability estimates that the input text
was generated (or originates) from specific locations across the
globe. In a typical LM approach, a large corpus of geotagged
text items is used for generating (training) the model. This
typically takes the form of a set of geographic clusters (discrete
areas) or a regular grid of cells covering the surface of the
earth. Each such cluster or cell is associated with keyword
frequency statistics that are used to generate location estimates
for arbitrary pieces of text.

One of the earliest LM approaches was presented by
Serdyukov et al. [43], where a predefined grid of cells is
considered, and the prior probabilities for multimedia tags of
a training corpus are computed based on the neighborhood
of the cells where they appear. Hauff et al. [14] attempted to
overcome the limitation of the fixed grid introducing disjoint
dynamically sized cells. O’Hare and Murdock [39] proposed
a statistical grid-based LM approach, which makes use of the
Word-Document model, and they investigated several ways to
estimate the models based on term and user frequency. Another
approach was presented by Van Laere et al. [51], who first
cluster the training corpus and then use the χ2 feature selection
criterion to create a vocabulary for every cluster. They also

4https://developer.yahoo.com/geo/geoplanet/
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extended their approach in two ways: a) using the Dempster-
Shafer theory of evidence to combine estimation from different
granularities and to determine the most probable estimation
[52]; b) using different term selection techniques, based on
kernel density estimation and Ripley’s K statistic to improve
geotagging accuracy [50].

C. MediaEval Placing Task
1) Task description: MediaEval is an annual international

benchmarking initiative that includes a number of multimedia
analysis and retrieval tasks. Within its context, the Placing
Task (PT) is dedicated to the geotagging problem using a
corpus of geotagged Flickr images and videos for reference.
Participants are challenged to estimate the locations (in terms
of latitude and longitude) of items in a predefined test set
using another set of items for training. Every year the released
training and test sets are determined by the task organizers. In
terms of evaluation, the submitted runs are benchmarked based
on their precision in different ranges and their median distance
error. The circular ranges vary from 1m to 1000km covering
different geotagging granularities. The released datasets, the
evaluation methods and the results of the participating ap-
proaches are further described in Section IV and are used as
the state-of-the-art performance to compare with.

2) State-of-the-art geotagging systems: The participating
systems in MediaEval PT over four years (2013-2016) are
presented in Table I. Systems are classified depending on
whether they use one or more of the popular geotagging
approaches, namely: Language Models (LM), Textual Analysis
(TA), Visual Analysis (VA), Multimodal Fusion (MF), User
Modelling (UM) and External Resources (ER)5. Among the
participating systems, the approach presented in this paper is
an extension of the one originally tested in MediaEval PT 2014
[22] and then extended in PT 2015 [26] and PT 2016 [27].

TABLE I
PARTICIPATING SYSTEMS IN MEDIAEVAL PT CLASSIFIED BASED ON

APPROACH.

Approach LM TA VA MF UM ER
Baseline [53] X
Cao et al. [4] [2] X X X
Choi et al. [7] X X X
Davies et al. [11] X X X X
Duong-Trung et al. [12] X
Ferrés et al. [13] X X X X
Kelm et al. [19] X X X X
Kordopatis et al. [26] [27] X X X X
Kordopatis et al. [22] X X X
Kordopatis et al. [25] X X X
L. Li et al. [30] [31] [29] X X X
X. Li et al. [33] X
Muñoz et al. [38] X X X
Popescu et al. [41] [40] X X X
Singh et al. [45] X X X X
Subramanian et al. [47] X

III. PROPOSED APPROACH

The proposed approach relies on a LM that is built by
calculating term occurrence probabilities from processing a

5These include gazetteers, online services such as translators and geocoders,
geo-referenced collections, etc.

Fig. 2. Overview of proposed geotagging approach.

massive amount of geotagged items of a training set Dtr .
Given the generated model, it is then possible to estimate the
location (in terms of latitude and longitude coordinates) for
every query item m in a set of test items Dts . In the case of
Flickr images and videos (used as experimental test bed in this
work), the metadata used include the tags, title, user id, image
id and description. The metadata used to build the LM are the
tags and titles of the items in Dtr . The initial LM is further
refined through feature selection and weighting. Finally, the
location estimation system employs two more steps (multiple
grids, similarity search) oriented to achieve more accurate
estimation in finer granularities. An overview of the proposed
approach is illustrated in Figure 2. The system response can
be modelled as a function Gpr (m) that produces a location
estimate for media item m. Given the ground truth location
of item Gre f (m), the geotagging precision of the system P at
range R is computed based on Equation 1.

P@R =
|{m|d(Gpr (m),Gre f (m)) < R}|

|Dts |
(1)

where d(x, y) is the geodesic distance between points x and
y and |Dts | is the total number of items in test set. Also, the
median distance error is computed, which is the median of the
estimation errors across all test items in Dts , i.e. the distances
between the predicted and actual locations.

A. Pre-processing

A pre-processing step is first applied to determine the term
set Tm of every item m. In the case of Flickr images and videos,
their tags and titles are utilized to form the items’ term sets.
Initially, they are URL-decoded6 and tokenized. All accents,
punctuation and symbols are removed, all characters are trans-
formed to lowercase, and all tokens consisting of numerics
are removed. Additionally, there are multi-keyword tags, of
which the keywords are linked by whitespaces. These multi-
keyword tags are further split to single tags (e.g., statue of
liberty is split into statue, of and liberty) and these
are then added to the resulting tag set (if not already included).
As a result, multi-keyword tags are included both as a whole
and as separate tokens. The purpose of this operation is to
increase the influence of multi-keyword tags on the geotagging

6This is specific to the MediaEval Placing Task dataset: texts in different
languages are URL encoded.
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results, and reduce the one of frequently occurring terms (e.g.
new, san). After pre-processing, several items in Dtr are left
with no tags and title and are hence disregarded from the
remaining steps.

The terms of the resulting term sets associated with input
items are considered as their representative features and are
further processed for training the geotagging approach. The
set of all unique terms of all items in Dtr is denoted as T .

Note that the same pre-processing is applied on the test
items before the actual location estimation process, since the
format of the test set is the same. Nevertheless, for estimating
the location of a query item, its description is only used in
cases where the term set from its tags and title is empty or did
not generate any estimated location. Item descriptions are not
used in any other case, since this would lead to less accurate
results due to the fact that descriptions are sometimes very
long and may refer to multiple locations, often irrelevant to the
main location of the item. This was experimentally confirmed.

B. Language Model

The LM is constructed using a scheme that was originally
presented in [40]. According to this, a rectangular grid C of
cells is considered at granularity g and a map of term-cell
probabilities is generated. Figure 3 illustrates an example of
an LM cell with its term-cell probabilities. In the cell that lays
upon the New York city, terms nyc, manhattan, york, etc.
have high probability; in contrast, general interest terms (e.g.
new) are assigned lower probability scores, because they are
commonly used in many other cells around the globe. Note
that the particular example is just for visualization purposes
and the illustrated grid does not accurately reflect reality. Since
the earth is ellipsoid and its projection on a 2D plane causes
deformation, cells become shorter as they approach the poles
instead of having the same side height across the entire globe.

For the needs of the proposed approach, four grids at
different granularities are considered. Starting from coarser
to finer granularity, we consider grid cells at the level of
region, city, neighborhood and street with sides
of 1◦, 0.1◦, 0.01◦ and 0.001◦ for both latitude and longitude,
corresponding to geodesic distances of approximately 100km,
10km, 1km and 100m near the equator, respectively. The
default LM for our system is built at a neighborhood level,
since this was empirically found to lead to better results. The
remaining grid levels are defined for the following reasons:
a) to support the formulation of the multiple grids technique
(cf. section III-E); b) to support the generation of geotagging
models that are better tuned for other granularities (e.g. to
produce coarser or much more detailed location predictions).

The main purpose of the LM is to estimate the most likely
cell c ∈ C for a query item m based on its term set Tm. The
probability p of a term t in a particular cell c is calculated as
the total number of different Flickr users that used t inside c,
divided by the total count of users over the entire grid C. For
simplicity, the total count of different users over the whole grid
C that used a specific term t will be referred as the user count

Fig. 3. Visual example of LM term-cell probabilities.

of t. Eventually, the term-cell probability p(t |c) is calculated
for every term t ∈ T according to Equation 2.

p(t |c) = Nu,c

Nt
(2)

where Nu,c is the number of users in Dtr that used the term t
inside the borders of cell c, and Nt is the user count of term
t in all cells. Note that a user can be counted in Nt more than
once. If a user u is found in multiple cells, every time he/she
is found in a different cell, he/she is considered as a new user
and increases the total count of users.

To assign a query item to a cell, the probability of each
cell of C is first calculated summing up the contributions of
each term in T . Then, the cell with the highest probability is
selected as the most likely cell (mlc) according to Equation 3.

mlcm = argmax
ci ∈C

|Tm |∑
k=1

p(tk |ci) (3)

where Tm is the set of terms for item m, and p(tk |ci) is the
term-cell probability for term tk ∈ Tm in cell ci ∈ C. As a
result, the centroid of the estimated mlc may be considered as
a coarse location estimation for query item m and is denoted
by Glm

pr (m). If during this process there is no outcome (i.e. the
probability for all cells is zero), then the description of the
query item m (in case of Flickr images and videos) is utilized.
For items where there is no result (e.g. images completely
lacking text annotations), their location is set equal to the
centre of the most populated cell, which is a kind of maximum
likelihood estimation.

C. Feature selection

To increase the robustness of the model and reduce its
size, a feature selection scheme is necessary, which reduces
the set of features (terms) into a compact set Ts ⊂ T , with
|Ts | << |T |. The goal of this refinement is the selection of the
most appropriate terms based on their ability to discriminate
different locations from each other. A first filtering step
removes all terms in T that are used by only one user, as they
are considered user- and dataset-specific. The reduction of the
term set through this simple step is dramatic (up to 87%). The
remaining terms are then ranked and filtered on the basis of
three measures: accuracy, spatial entropy and locality.
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1) Accuracy: This was originally proposed in [23] as a
means of quantifying the geotagging capability of terms and
correlating their occurrence with correct location estimates. To
calculate the accuracy of a term t ∈ T , a scheme similar to
cross-validation is employed. First, Dtr is partitioned into q
folds. The number of partitions is empirically selected; in our
experiments, it is set to 10. Subsequently, one partition Dp

tr at
a time is withheld, and the remaining p−1 partitions are used
to build the LM. Using this LM, the location of every item in
the withheld partition is predicted as described in subsection
III-B. Then, accuracy is computed as the ratio of the correctly
geotagged items where the term appears over the total number
of items where the term appears (Equation 4).

α(t) =
|{m|t ∈ Tm ∧ d(Gpr (m),Gre f (m)) < R}|

mt
∈ [0, 1] (4)

where α(t) is the accuracy of term t, the numerator determines
the total number of correctly geotagged items (within range
R) associated with t in Dp

tr , and mt is the total number of
items in Dp

tr where the term t occurs. The selected range
R is considered as a system hyperparameter and its effect
is explored in Section IV-A. The grid used for the accuracy
calculation is always the same as the grid of the default LM.

To perform feature selection, terms in T are sorted in
descending order based on their accuracy generating a ranked
set of terms Tα. Terms with the same accuracy score are further
sorted based on their frequency. In that way, it is possible to
build an LM with a target number of terms N by selecting the
first N elements of Tα.

2) Spatial Entropy: This feature selection measure attempts
to capture the spatial ambiguity of terms [22]. The measure
is computed by quantifying the stochasticity (or randomness)
in the spatial distribution of the term. To this end, the spatial
entropy of a term is computed based on the Shannon entropy
formula on the term-cell probability distribution (Equation 5).

se(t) = −
|C |∑
i=1

p(t |ci) log p(t |ci) (5)

where se(t) is the spatial entropy of term t and p(t |ci) is the
term-cell probability of t in cell ci ∈ C. In a sense, spatial
entropy expresses the amount of information conveyed by term
t regarding a cell c. Terms appearing in few cells tend to have
low spatial entropy values (high information), while terms with
a relatively uniform distribution over many cells have high
entropy values (low information).

For feature selection, the terms in T are sorted in ascending
order based on their spatial entropy resulting in a ranked
term set denoted as Tse. The grid granularity that is used for
the calculation of spatial entropy is considered as a system
hyperparameter and its effect is explored in Section IV-A.
Hence, the LM can be built based on a target number of N
terms by selecting the first N elements of Tse.

3) Locality: In [50], Van Laere et al. introduced two
approaches to capture the spatial discrimination of a tag: a
method based on Kernel Density Estimation (KDE) [44], and
one based on Ripley’s K statistic [42]. However, both methods
are computationally expensive. Thus, the main objective of

defining locality has been to come up with a measure that is
equally discriminating as the Ripley’s K statistic, but compu-
tationally much lighter so that it is possible to compute over
massive datasets.

The computation of locality is based on the number of
different users that make use of a term in the same cells. The
locality score of a term is calculated based on the term user
count and the unique users that have used it in a cell of the
grid. The users that have used a term t in a cell c are assigned
to the unique user set Ut,c of that particular cell. Every unique
user u ∈ Ut,c is associated with all other users included in the
set, i.e. with |Ut,c | −1 other unique users in c. Locality derives
from the summation over all such user associations across all
grid cells divided by the total user count. As a result, cells
with only a single user in their set do not affect the locality
calculation. Locality is computed according to Equation 6:

l(t) =
∑

c∈C
∑

u∈Ut,c
|Ut,c | − 1

Nt
=

∑
c∈C |Ut,c |(|Ut,c | − 1)

Nt
(6)

where l(t) is the locality score of term t, Nt is the user count
of t, C denotes the set of cells and Ut,c denotes the set of
users that used tag t in cell c.

Similar to the previous feature selection measures, the terms
in set T are sorted in descending order based on locality. Terms
with the same locality score are further sorted based on their
user count. In that way, a ranked term set Tl is generated.
The grid granularity that is used for the calculation of locality
is considered as a system hyperparameter and its effect is
further explored in Section IV-A. Similar to the aformentioned
measures, it is possible to build an LM with a target number
of terms N by selecting the first N elements of Tl .

D. Feature Weighting

Feature weighting aims to make geotagging more accurate
by giving more importance to terms with good accuracy,
spatial entropy and locality scores. To this end, weighting
scores wα, wse and wl are computed for each term in the set of
selected features Ts based on scores α, ses and l respectively.

Since accuracy scores are already in the range [0,1], the
generated weights are equal to them, i.e. wα = α.

The computation of spatial entropy weights is a bit more
complicated. Based on our observations, terms with either too
high or too low entropy values typically carry no geographic
information. For instance, terms with too low entropy values
tend to be user-specific. In contrast, very high entropy values
indicate terms that are widely spread across the globe. Such
terms carry no geographical interest (e.g., baby and fun)
and therefore their influence on location estimation needs to
be suppressed. To this end, after experimenting with different
distribution functions that appeared to fit the empirical spa-
tial entropy distribution, we selected the gamma distribution
(Equation 7) for transforming the spatial entropy values.

F(se(t)|a, b) = 1
baΓ(a) se(t)a−1e

−se(t )
b (7)

where F is the probability density function of the gamma
distribution, and parameters a, b are the shape and scale pa-
rameter respectively, which are learned based on the empirical
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Fig. 4. Histogram of spatial entropy values based on city level grid and the
corresponding probability density function of the fitted gamma distribution.

spatial entropy distribution on Dtr . The transformed values are
then used as the spatial entropy weights. Figure 4 illustrates
the distribution of entropy values along with the fitted density
function. These weights are then normalized (by dividing them
with the maximum value in the new distribution) to bring them
in the range (0, 1].

Locality scores are quite sensitive to the respective term
frequencies. To mitigate this sensitivity, terms in Tl (set
of selected terms ordered by locality) are assigned weights
proportional to their position in Tl (Equation 8).

wl =
|Tl | − ( j − 1)
|Tl |

(8)

where wl is the weight value of term t on the j-th position in
the ordered set Tl . This weighting approach returns values in
the range (0, 1].

To combine the three weights, a linear scheme is applied:

wt = ωα · wα + ωse · wse + ωl · wl

ωα + ωse + ωl = 1
(9)

where wt is the final term weight, wa, wse and wl are the
weights derived based on accuracy, spatial entropy and locality,
respectively, and ωα, ωse and ωl are constants that determine
the effect of each weight, and summing to 1. The choice of
each ω will be discussed in the evaluation Section IV.

Finally, after the computation of the final term weights,
the estimation of the most likely cell for a query item m is
performed using Equation 10.

mlcm = argmax
ci ∈C

|Tm |∑
k=1

wtk p(tk |ci) (10)

Table II presents the top 15 terms based on the generated
weighting scores (computed at the neighborhood grid).
Terms ranked by accuracy correspond to very specific loca-
tions or events (Table II(a)), those ranked by the spatial entropy
weight correspond to landmarks or points of interest, while
locality ranked terms correspond to cities. This means that the
three weighting scores capture different types of geographic
information and are all valuable in deriving a total weighting
score that captures the importance of a term for location
estimation.

TABLE II
TOP 15 TERMS BASED ON THEIR WEIGHTS.

(a) accuracy

barclays center arena
romanische kunst
untermyer
passim
rigid inflatable boats
cpbrasil
national police week
festineuch
lincoln imp
david bell
gangale
frannie garretson
protest photography
barnsdall art park
buskersbern

(b) spatial-entropy

kaiyukan
cancale
collins street
gatorland
friedrichstraße
how long is now
fairford
beaumaris
plaza del pilar
amarapura
queens house
stintino
marischal
port macquarie
roosevelt island

(c) locality

london
paris
nyc
eiffel
san francisco
barcelona
york
francisco
berlin
louvre
manhattan
amsterdam
rome
brooklyn
new york

Fig. 5. Depiction of the Multiple Grids technique using Singapore as example.

E. Multiple Grids

To ensure more reliable and accurate estimations, the es-
timations based on two LMs at different granularities are
combined into a single estimation. The most likely cells for
the coarser and finer granularities are denoted as mlcc and
mlc f respectively. The combination of the two is performed
using the multiple grids method originally proposed in [22]:
if the estimated fine granularity cell mlc f falls within the
borders of the estimated coarse granularity cell mlcc , then the
prediction of the finer granularity is considered reliable and the
final estimated cell is mlc f . Otherwise, the final estimated cell
is mlcc , since coarser granularity LMs are considered more
reliable by default, assuming that more data per cell are used
for their creation, and hence the resulting probabilistic analysis
is more robust. The process is outlined by the Equation 11 and
illustrated in Figure 5.

mlcmg =

{
mlc f if mlc f ⊆ mlcc

mlcc otherwise
(11)

where mlcmg is the estimated cell from the multiple grids
technique.
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The red granularity grid in Figure 5 represents the coarse
granularity and the blue the fine one respectively. The most
likely cell of the red grid mlcc has been colored green. If
the most likely cell of the finer grid mlc f is one of the blue
cells of the particular example, then the final estimation of the
system would be based on mlc f ; otherwise, in case that mlc f

is outside mlcc , then the whole green cell mlcc will be used
to produce the final estimation.

A related but much more complicated method was used
in [52], where the authors combined the results of multiple
geographic models using the Dempster-Shafer theory of evi-
dence to determine the most reliable prediction. However, the
approach in [52] is not based on regular grids, but on spatial
clusterings of items using k-means for different values of k.

F. Similarity Search

Given the most likely cell for a query item, a further
refinement is conducted using the similarity search technique
of [51]. This is done by identifying the k most similar items
to a query item from Dtr in terms of textual similarity, and
combining their locations (weighted by their similarity to the
query). To this end, we first compute the textual similarity
between the query item m and every item in Dtr that falls
inside the borders of mlcmg by use of the Jaccard similarity
on the corresponding sets of terms (Equation 12).

J(Tm,Ti) =
|Tm ∩ Ti |
|Tm ∪ Ti |

,m ∈ Dts, ci = mlcmg (12)

where Tm, Ti denote the term sets of items m and i, respec-
tively, and ci is the cell of item i.

After calculating the similarity with every item in the mlc,
the top k most similar items to the query are selected and
the final estimation is the centre-of-gravity of their locations,
weighted by the similarity values. The estimated location for
item m is determined by Equation 13.

Gss
pr (m) =

1
k

k∑
i=1

J(Tm,Ti)a · loc(i) (13)

where parameter α ∈ [0,+∞) determines how strongly the
result is influenced by the most similar items and loc(i)
denotes the vector of coordinates for item i. For the accurate
calculation of the average location [51]7, the location coor-
dinates of the k items are first transformed to the Cartesian
(x, y, z) system and after the computation are transformed back
to spherical coordinates (latitude, longitude).

IV. EVALUATION

For the evaluation of the proposed approach, we use the
precision P in various ranges R (P@R), computed by Equation
1, and the median distance error, which is the median of the
estimation errors across all test items in Dts in terms of the
distance between the predicted and the actual location.

The datasets used for building the LMs and testing the
approach are all derived from YFCC100M [48]: Dtr consists
of all the images and videos in YFCC100M that are geotagged,

7http://www.geomidpoint.com/calculation.html

excluding all items of users that are also included in the test set
to avoid over-fitting and providing misleading results. Dts was
released by the organizers of MediaEval PT, and its different
versions are presented in Table III. All datasets used in this
section consist of images and videos (except for the 2013
version that contains only images). The way that both videos
and images are processed is identical.

TABLE III
FOUR EDITIONS OF MEDIAEVAL PT USED FOR TESTING.

Year Training Set Test Set Originimages videos images videos
2013 [15] 8,539,050 - 262,000 - Flickr
2014 [8] 5,000,000 25,000 500,000 10,000 YFCC100M
2015 [5] 4,672,382 22,767 931,573 18,316 YFCC100M
2016 [6] 4,991,679 24,955 1,497,464 29,934 YFCC100M

The calculation of geodesic distance between the estimated
and the real location of an item is based on Karney’s algo-
rithm [18]8, which relies on the assumption that the shape
of the earth is an oblate spheroid. This algorithm produces
more accurate distances than methods such as the great-circle
distance that assume the shape of the earth is spherical.

For the sake of brevity, we use the following short names for
the components of the approach: LM (Language Model), FSx
(Feature Selection), FW (Feature Weighting), MG (Multiple
Grid), and SS (Similarity Search).

A. Fine Tuning

A set of 100k items was withheld from the training set
and was used for experimenting with different values of the
method’s parameters to optimize performance in terms of
P@1km and median distance error. In particular, parameter
tuning was carried out with respect to the thresholding used
for each feature selection measure, and the ω factors used for
feature weighting in Equation 9.

1) Feature Selection: In this paragraph, we evaluate the per-
formance of an LM built at neighborhood level, involving
a certain number of terms denoted by Tα, Tse or Tl , as selected
by the three feature selection measures of section III-C. After
the initial filtering, where the terms used by a single user were
removed, the total amount of remaining terms is ≈2M. The
objective of this step is to minimize the median error of the
location estimations by selecting a certain number of top terms
from the ranked sets Tα, Tse, Tl . As described in section III-C,
for tuning term selection with respect to accuracy, different
values of parameter R are considered (i.e. 1km, 10km and
100km); instead, for tuning with respect to spatial entropy
and locality, the four granularity levels are compared.

Figure 6 depicts the performance of the different feature
selection measures in terms of median error. The locality
measure appears to lead to the best results. The minimum
median error of 28km is reached when the top 600k tags are
selected at the city grid (Figure 6(c)). Regarding accuracy,
the best performance is achieved for R = 100km at 1.1M tags
with 92km median error (Figure 6(a)). Finally, spatial entropy
performs the worst in comparison to the other two measures

8http://geographiclib.sourceforge.net/geod.html
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Fig. 6. Median distance error (km) of the approach when selecting an increasing number of features (terms) ranked based on accuracy, spatial entropy and
locality scores. Accuracy metric is tuned based on the range R, spatial entropy and locality are tuned based on the granularity grid used.

(a) ωα - ωse (b) ωse - ωl (c) ωl - ωα

Fig. 7. Geotagging precision at 1km (%) of the approach using the different values of ωα , ωse , ωl . Blue color indicates higher precision, whereas red color
lower precision.

for all grid levels, since it needs almost all features to perform
equally well as other much more succinct models produced
using locality and accuracy. In particular, the region grid
performs the best with 150km median error when the top 1.9M
tags are selected (Figure 6(b)).

The final term set used to build the LM is the intersection
of sets Tα, Tse or Tl that maximizes geotagging performance
in terms of median error, i.e. Ts = Tmax

α ∩ Tmax
se ∩ Tmax

l
,

where Ts is the selected term set and Tmax
x is the subset

of Tx that minimizes the median error. The feature selection
scheme is initially applied to significantly reduce the amount
of processed terms and minimize the requirements of the
approach in terms of computation time and storage space. The
total size of the selected term set Ts is 550,050 terms, which
equals to approximately 4% of the initial term set.

2) Feature Weighting: The goal of this step is to deter-
mine the combination of weight parameters that maximize
geotagging performace. The performance metric used for the
tuning is P@1km, because it was found to be sensitive to
small variations between the setups and hence can express
the differences in performance more accurately compared to
median error. The results of the approach for different values
of ωα, ωse, ωl are illustrated in Figure 7. In each plot, the
dependence of performance on every pair of ω parameters
is presented; at each point, the third weight value derives
from the constraint of Equation 9. The triangular form is
due to the fact that the sum of three parameters can never
exceed 1. Blue color corresponds to parameter values leading
to higher P@1km, while red to parameter values leading to
lower P@1km. The plots indicate that higher locality and

spatial entropy weights lead to better geotagging performance.
In the first parameter pair, deep blue is concentrated at the left
side. In this area ωα is equal to zero and ωl has values 0.3-0.5
indicating that ωse has values 0.5-0.7. This parameter set is
further supported by the rest of the plots. In the ωl-ωse pair,
the deepest blue color is in the hypotenuse of the triangle and
in the ωα-ωse, it is at the bottom side of the triangle. As a
result, the values of ωα, ωse, ωl are selected to be equal to
0.0, 0.65, 0.35 respectively.

It is noteworthy that ωα is set to zero, even though accuracy
was found to be beneficial for feature selection. In contrast,
ωse was found to have the highest weight among others,
despite the fact that spatial entropy scoring had only minimal
impact on the feature selection process. This observation
demonstrates the complementarity among the three feature
selection and weighting measures and the fact that all three of
them contribute to optimizing the geotagging performance of
the approach.

B. Performance Analysis

This section explores in detail the performance of the
approach. All experiments use the parameter set that was
selected in the previous section. The objective of the discussion
is to highlight the contribution of each of the processing steps
described in section III to the overall geotagging performance.
The training dataset used for these experiments is the entire
YFCC100M, excluding all items from users also appearing
in the test set. Hence, the total number of items used for
training is ≈40M. The test set used in all experiments is the one
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TABLE IV
GEOTAGGING PRECISION (%) FOR FIVE RANGES AND MEDIAN

GEOTAGGING ERROR (KM) FOR DIFFERENT CONFIGURATIONS OF THE
PROPOSED APPROACH.

LM FS FW MG SS P@10m P@100m P@1km P@10km P@100km m. error
X 0.02 0.75 23.83 40.67 47.96 173
X X 0.02 0.81 26.57 47.08 55.08 20
X X X 0.02 0.81 26.83 47.85 56.06 16
X X X X 0.18 7.15 27.18 47.85 56.06 16
X X X X X 0.70 7.52 27.40 47.86 56.06 16
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Fig. 8. Median geotagging error (km) with respect to the number of terms
per item for different approach variations.

released by the organizers of MediaEval 2016 PT, comprising
1,527,398 items.

Table IV presents the performance of the framework when
different processing steps are included. The base approach
using solely the LM performs poorly in low ranges, e.g. it
achieves P@100m=0.75%, and has a high median error of
173km. Applying the feature selection scheme (FS) described
in section IV-A, the median error is dramatically reduced to
20km and the precision in medium/high ranges improves in
absolute terms by more than 10%. Applying feature weight-
ing (FW) further reduces the median error to 16km and
leads to slight improvements in the medium/high ranges (10,
100km). The introduction of multiple grids (MG), leads to
significant improvements (almost 10-fold) in the low ranges
(10, 100m), e.g. reaching P@100m=7.15%. Finally, the best
results are achieved by also integrating the similarity search
step (SS), which leads to a performance of P@100m=7.52%,
P@1km=27.40% and 16km median distance error.

Figure 8 depicts the performance of the approach on
different subsets of images that differ with respect to the
number of terms associated with them. It becomes obvi-
ous that the introduction of feature selection (FS) leads to
dramatic improvements with respect to median error: while
in the original LM-based approach, geotagging performance
starts deteriorating for items with more than 15 terms, the
FS-powered version of the system manages to retain stable
performance for almost all items with more than 15 terms.
As a result, the LM+FS version of the system achieves a
median error of just 3.6km for items with a number of terms
in the range [21,25], while applying the additional refinements
(FW+MG+SS) leads to a further decrease of the error to just
3km for items with number of terms in the range [26,30].

Fig. 9. Spatial distribution of median distance error per cell of the best system
configuration. Deep blue color indicates median error < 100km, whereas
brown red color indicates median error > 1000km.

Figure 9 illustrates the median geotagging error per cell
across the globe. The cells with median error less than
100km are displayed with deep blue color, whereas those with
more than 1000km are displayed with brown red color. It is
noteworthy that in North America and Australia the dominant
color is brown (very high error), despite the availability of
much more training data and the prevalence of English text
(which is expected to be easier to handle). In contrast, in
Europe large areas are painted in blue, so in these areas the
system worked considerably better. A possible explanation for
the high error levels in the US and Australia is the potential
ambiguity in town and city names (e.g., many American and
Australian towns are named after popular European ones).

To further delve into this performance aspect, we compute
the spatial entropy of terms in the test set based on the scheme
presented in section III-C2 (at the city granularity level) and
create a scatter plot of the terms’ geotagging precision at 10km
range in relation to their spatial entropy. The precision of a
term is computed over the set of items that are associated with
this term. The scatter plot, which is illustrated in Figure 10,
comprises all terms that occur more than 100 times in the
test set and are associated with at least two different places
from the Geonames dataset9 (in particular, the cities with a
population above 1,000).

The plot reveals that terms with relatively large spatial
entropy values tend to be associated with low precision scores,
and vice versa. To further study the hypothesis that text
annotations with ambiguous names are harder to geotag, we
compute the median of the spatial entropy values of ambiguous
terms with more than 100 occurrences (Ma=3.626) and split
this set in two groups, one with terms that have spatial entropy
less than Ma and one with the remaining ones. Accordingly,
we generate two sets of items from the Mediaeval 2016 PT
test set, denoting them as low-ambiguity set (Low-AS) and
high-ambiguity set (High-AS) respectively. The geotagging
performance for these two sets is reported in Table V. The
results confirm our hypothesis that text annotations of low
ambiguity can be geotagged with higher precision compared to
those of high ambiguity. For instance, the low-ambiguity items
were geotagged with a P@100m=15.22% and median distance

9http://www.geonames.org/
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Fig. 10. Scatter plot of geotagging precision (P@10km) in relation to spatial
entropy for the most frequently appearing ambiguous terms. The red line
indicates the median of the spatial entropy values.

error of 1.09km. The accuracy for the highly ambiguous set
is considerably lower, but still higher than the one obtained
using the overall test set. This is attributed to the fact that the
overall test set contains a considerable number of items with
no or very little annotations, which is even more challenging
for text-based approaches compared to ambiguous annotations.

TABLE V
GEOTAGGING PRECISION (%) FOR FIVE RANGES AND MEDIAN

GEOTAGGING ERROR (KM) OF THE PROPOSED APPROACH ON LOW- AND
HIGH-AMBIGUITY OF ITEMS.

P@10m P@100m P@1km P@10km P@100km m. error
Low-AS 1.36 15.22 48.55 78.88 85.63 1.09
High-AS 0.71 7.69 28.88 52.57 64.48 7.17

Finally, we benchmarked the geotagging performance of
the proposed approach using either the locality or Ripley’s K
statistic for feature selection and weighting. The dataset used
for training and testing is the MediaEval PT 2016 edition. The
locality was calculated at the city level, while for computing
Ripley’s K a sample of 10,000 items per term was used. For
feature selection, the terms with either locality or Ripley’s K
statistic greater than zero were selected. For feature weighting,
the same process described at Section III-D was applied in
both cases.

Table VI displays the results of the LM using either locality
or Ripley’s K statistic. Performance is very similar for both
measures, with Ripley’s K statistic performing slightly better.
Yet, the proposed locality measure comes with a huge com-
putational benefit: computing Ripley’s K statistic required 465
min, whereas locality took just 7 min, i.e. it was approximately
66× faster and was calculated without any sampling. The
sets of terms selected by the two measures (terms with value
greater than zero) amount to 278,240 for locality and 304,419
for Ripley’s K. The Jaccard similarity of the two sets is
≈89% meaning that both measures lead to highly similar sets
(274,359 of the 278,240 terms selected based on locality had
been also selected based on Ripley’s K statistic).

A more nuanced performance analysis of the approach is
presented in [24], which reveals how the performance changes
depending on particular traits of the test dataset (e.g. when
the dataset consists of images from a specific location, depict
specific objects, etc.).

TABLE VI
GEOTAGGING PRECISION (%) FOR THREE RANGES AND MEDIAN

GEOTAGGING ERROR (KM) OF THE LM USING FOR FEATURE SELECTION
AND WEIGHTING EITHER LOCALITY OR RIPLEY’S K STATISTC.

P@1km P@10km P@100km m. error
LM+FS+FW (locality) 23.94 43.44 51.48 60
LM+FS+FW (Ripley’s K) 24.02 43.72 52.02 56

C. Comparison against geoparsing methods

In this section, the performance of the proposed approach is
compared with two state-of-the-art geoparsing approaches on
the MediaEval 2016 PT dataset. The results for the proposed
approach were obtained using the LM with all the refinements
and using the entire YFCC100M for training (after excluding
all items from users also appearing in the test set). The selected
geoparsing approaches are the following:
• Zhang et al. [55]: This is a preference learning approach

that, given an input text, detects the GeoNames entities
(if any) that are mentioned; the approach makes use
gazetteer-based features and a corpus of geotagged tweets
in order to build an accurate geoparsing model.

• DBpedia geoparsing [28]: This is a simple geoparsing
scheme that provides the input text as a geo-query to
DBpedia, i.e. a query that is limited only to objects
associated with geographical information, and uses the
returned DBpedia entities as location candidates.

• CLAVIN10: This is a widely used open-source geoparsing
library; however, it produced location estimates for only
a tiny fraction of the test items and therefore led to very
poor results. For that reason, its results are not included
in our comparison.

The same testing protocol was used as in the case of our
proposed approach: The tags and titles of the test items
were fed as input to the geoparsing methods. In cases where
no estimation was returned, the item descriptions were then
provided. The only text pre-processing step on the input data
is URL-decoding. Since geoparsing methods produce a set of
geographical entities (each of which associated with a pair of
lat/lon coordinates) and not necessarily a single location, it
was necessary to devise a location selection step to determine
a single location per input item. To this end, two variations
were considered:
• optimal: The distance between all candidate locations

and the ground truth location is computed, and then
the location with the smallest distance is selected. This
corresponds to an upper bound of performance (i.e. case
where the candidate selection step would be perfect).

• random: According to this, a random location is se-
lected for every item among the candidate locations. This
process is repeated 10 times and the mean performance
is reported. This correspond to an average estimate of
performance for such methods.

Table VII presents the results of the comparison. The
proposed approach outperforms both geoparsing methods at
a very large margin, even in their optimal variation. In
all ranges, especially low ones (i.e. 100m, 1km), precision

10https://github.com/Berico-Technologies/CLAVIN
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TABLE VII
GEOTAGGING PRECISION (%) FOR FOUR RANGES AND MEDIAN

GEOTAGGING ERROR (KM) OF THE PROPOSED APPROACH AND THE
VARIANTS OF THE COMPETING GEOPARSING METHODS.

P@100m P@1km P@10km P@100km m. error
Zhang (optimal) [55] 1.77 13.71 37.04 48.68 131
Zhang (random) [55] 0.68 5.78 17.65 27.87 1148
DBpedia (optimal) [10] 1.78 10.94 29.49 37.88 891
DBpedia (random) [10] 1.31 8.74 25.22 34.05 1151
proposed approach 7.52 27.40 47.86 56.06 15

scores are significantly better. Similar results are also obtained
when comparing the respective median errors: the proposed
approach achieves > 8× lower error than the second best.

D. MediaEval Placing Task

In this section, the proposed system is benchmarked against
the participating teams in the MediaEval PT of years 2016 [6],
2015 [5], 2014 [8] and 2013 [15]. Every year, participants
were asked by the organizers to submit their approaches using
the released dataset. However, the volume and origin of the
released datasets vary from year to year. Table III presents
those details for every edition of the task.

The proposed system is tested with every one of the four
datasets using the corresponding evaluation setup, and its re-
sults are compared with the reported results of the approaches
that participated in the respective edition. For years 2014, 2015
and 2016, the test set of each year is a superset of the one
used in the previous editions, i.e. 2015 test set is a superset
of the 2014 set, and 2016 test set a superset both 2015 and
2014 sets. Consequently, their results are presented in a single
concatenated table to facilitate comparison, and provide a
comprehensive view into the performance of all methods. The
detailed method results were provided by the MediaEval PT
organizers. In all cases, the instance of the proposed approach
was built based on the tuning process of section IV-A. In
addition to presenting the results when training the approach
with the training sets provided by the organizers each year,
we also report the performance of the method (under the entry
proposed approach (YFCC)) when it is trained with a much
larger set, i.e. the full YFCC100M (after removing items of
which the owners appear in the test set).

1) MediaEval 2013: The proposed approach was evaluated
based on the data of MediaEval 2013 Placing Task, i.e. a
training set of ≈8.5M items and a test set of 262k items.

The results of the participating approaches are illustrated
in Table VIII along with those of the proposed approach. In
this case, run1 was not strictly restricted to the use of text-
only information; to make comparison fair, the table includes
only the results from teams that submitted a text-only run. The
proposed approach ranks firmly between the first and second
place in the different precision ranges: it achieves 25.21% at
P@1km and the second best median error (47km). Overall,
the proposed scheme is highly competitive and outperforms
most of the participating systems.

2) MediaEval 2014, 2015, 2016: The comparative results
of the proposed approach for each of the three editions of
PT (2014-2016) are presented in Table IX. Three versions of
the proposed approach are presented given that each year a

TABLE VIII
GEOTAGGING PRECISION (%) FOR FIVE RANGES AND MEDIAN

GEOTAGGING ERROR (KM) OF THE TEXT RUNS RUN1 FOR PARTICIPANTS
IN THE MEDIAEVAL PT 2013 AND FOR THE PROPOSED APPROACH.

P@100m P@1km P@10km P@100km m. error
CERTH [25] 2.96 10.26 23.52 36.25 651
UoS [11] 5.43 23.15 37.70 43.83 451
SCUT [2] 4.90 20.74 42.95 55.26 38
CEA LIST [40] 7.41 26.00 42.77 50.03 99
VIT [47] 0.06 0.74 3.92 15.24 6183
RECOD [29] 6.07 20.13 37.60 47.64 168
proposed approach 6.23 25.21 44.02 53.25 47
p. approach (YFCC) 7.74 26.71 44.94 54.78 32

different training set was released. Note that earlier versions
of the proposed approach had contested under the names
SocialSensor [22] and CERTH/CEA LIST [26] [27].

The proposed approach ranks in the first or second place in
all years and performance measures; in particular, it achieves
significantly better results in precision ranges P@1km and
P@10km (P@1km = 25.45% and P@10km = 45.76% on
the 2014 test set), as well as the best median error (25km
on the 2014 test set). In addition to achieving top results
against all state-of-the-art approaches, it is noteworthy that the
performance of the proposed approach is very stable across the
various datasets, exhibiting only minimal variance with respect
to the different training and test sets.

Also, as expected, the performance of the approach is
further improved when it is trained on the much larger set.
For instance, in the case of MediaEval PT 2013, we achieved
an absolute increase between 1.5% and 1.9% in terms of P@R
and a reduction of 15km in median error. Similar gains are also
achieved for the 2014-2016 editions of the task, with a notable
absolute increase of ≈ 2.5% in P@1km and P@10km for all
test sets. This observation points to an interesting trade-off and
question of whether a measurable but moderate increase in the
geotagging performance justifies the investment in a very large
increase (almost 10-fold) in the training set.

E. Discussion: Geotagging on other datasets

Through our experimental study, we presented compelling
evidence that the proposed approach achieved excellent geo-
tagging accuracy, outperforming all text-based approaches that
have competed in MediaEval Placing Task, as well as a
couple of popular geoparsing approaches. However, we need
to recognize that all tests have been carried out on Flickr
collections. Hence, it should not come as a surprise that
applying the proposed approach on arbitrary (non-Flickr) text
data, such as tweets and news articles, may lead to suboptimal
or even unsatisfactory performance. The main reason for such
an expectation stems from the fact that the underlying LM was
built using a dataset of Flickr image and video annotations.
Even though the used training sets were very large scale, one
needs to bear in mind that they exhibit specific characteristics
that are tightly associated with the “typical” content that is
published on Flickr (ranging from photos of touristic sites,
events, social activities, artistic creations, etc.).

It is worth mentioning that we have carried out experiments
on Twitter data with encouraging results, even though the
underlying LMs were the same as the ones that we used for
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TABLE IX
GEOTAGGING PRECISION (%) FOR THREE RANGES AND MEDIAN GEOTAGGING ERROR (KM) OF TEXT RUNS (RUN1) FOR PARTICIPANTS OF EACH YEAR OF

MEDIAEVAL PT COMPARED TO THE PROPOSED APPROACH. THE APPROACHES ARE IMPLEMENTED BASED ON THE THREE TRAINING SETS AND
EVALUATED BASED ON THE THREE TEST SETS.

Tr
ai

ni
ng

20
14

SocialSensor [22]
USEMP [41]
UQ-DKE [4]
TALP-UPC [13]
RECOD [31]
ICSI/TU Delft [7]
proposed approach

Tr
ai

ni
ng

20
15

Baseline [53]
CERTH/CEA LIST [26]
ImCube [19]
Geo_ML [12]
RECOD [30]
proposed approach

Tr
ai

ni
ng

20
16

Baseline [53]
CERTH/CEA LIST [27]
RECOD [31]
UoA [45]
proposed approach

YFCCproposed approach

Test 2014
P@100m P@1km P@10km m. error

5.87 23.01 39.92 230
1.61 23.50 40.80 168
4.98 19.56 41.71 51
4.12 16.53 34.33 84
6.06 21.03 37.59 233
3.15 16.65 34.70 307
6.30 25.20 45.64 26
4.26 18.74 40.43 61
6.43 24.71 43.57 60
1.84 8.68 21.34 280
1.26 9.73 30.80 271
5.61 20.01 37.03 292
6.39 25.45 45.68 27
3.90 18.31 39.72 70
6.51 25.01 43.80 55
6.29 21.58 38.73 227
2.91 14.97 35.41 87
6.23 25.26 45.76 25
7.60 27.91 48.44 14

Test 2015
P@100m P@1km P@10km m. error

- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -

4.23 18.44 39.96 71
6.40 24.33 43.07 69
1.84 8.56 21.07 293
1.25 9.51 30.03 291
5.49 19.75 36.60 310
6.39 25.13 45.26 30
3.85 17.99 39.28 81
6.57 24.84 43.36 70
6.54 22.06 38.89 234
2.91 14.70 35.58 99
6.33 25.16 45.33 29
7.66 27.79 47.87 16

Test 2016
P@100m P@1km P@10km m. error

- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -
- - - -

3.82 17.73 39.06 80
6.43 24.55 43.32 65
6.06 21.01 37.91 259
2.88 14.12 35.24 94
6.22 24.85 45.39 28
7.52 27.40 47.86 16

this work. However, as expected, there were also numerous
cases, where the approach failed. We have found that this was
mainly due to a large mismatch between the Flickr-based LM
and the language used on Twitter, as well as to the highly
irregular and dynamic linguistic patterns arising on Twitter.
Due to space limitations, we cannot provide further details
on these tests in this paper, and we leave as future work, a
comprehensive performance evaluation of geotagging across
datasets from different sources, as well as on new methods to
improve cross-dataset performance.

V. CONCLUSIONS

We presented a text-based geotagging approach that
improves upon previous Language Model-based systems
thanks to a number of novel feature selection and weighting
schemes. The proposed approach was shown to consistently
outperform or be highly competitive to the state-of-the-art
through comprehensive experiments on four editions of
the Mediaeval Placing Task, a popular open benchmark
for the multimedia community, while several performance
aspects of the proposed approach were examined through
carefully designed experiments. By releasing the source code
of the proposed approach along with the best performing
Language Models that we generated, we aspire to provide a
very strong and robust state-of-the-art method to be used for
comparisons, and to stimulate further research on the problem.
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