
SoftwareX 23 (2023) 101459

C

r
t
a
G
m

m
s
a
n
w

u
d
i
t

h
2
n

Contents lists available at ScienceDirect

SoftwareX

journal homepage: www.elsevier.com/locate/softx

Original software publication

JGNN: GraphNeural Networks on native Java
Emmanouil Krasanakis ∗, Symeon Papadopoulos, Ioannis Kompatsiaris
entre for Research and Technology Hellas, 57001 Thermi, Thessaloniki, Greece

a r t i c l e i n f o

Article history:
Received 31 October 2022
Received in revised form 29 March 2023
Accepted 23 June 2023

Keywords:
Graph neural networks
Machine learning
Edge computing

a b s t r a c t

We introduce JGNN, an open source Java library to define, train, and run Graph Neural Networks
(GNNs) under limited resources. The library is cross-platform and implements memory-efficient
machine learning components without external dependencies. Model definition is simplified by
parsing Python-like expressions, including interoperable dense and sparse matrix operations and inline
parameter definitions. GNN models can be deployed on smart devices and trained on local data.

© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND
license (http://creativecommons.org/licenses/by-nc-nd/4.0/).

Code metadata

Current code version 1.1.0
Permanent link to code/repository used for this code version https://github.com/ElsevierSoftwareX/SOFTX-D-22-00351
Permanent link to reproducible capsule
Legal code license Apache License, 2.0
Code versioning system used git
Software code language Java
Compilation requirements, operating environments and
dependencies

none

If available, link to developer documentation/manual https://github.com/MKLab-ITI/JGNN/blob/main/README.md
Support email for questions maniospas@iti.gr

1. Motivation and significance

Graph Neural Networks (GNNs) have become a widely acclaimed machine learning paradigm that combines node features with
elational information, and many frameworks have been created to integrate them in GPU computing [1–4]. However, contrary to
ypical neural networks, GNNs can also learn well from small scale data, such as tens of training labels spread throughout graphs of
few hundred nodes. At the same time, graph shift operators, which propagate node representations to neighbors, do not necessitate
PUs to be efficiently computed. Thus, GNN computational demands are easier to meet with low-end computing compared to other
achine learning paradigms.
Consequently, and given the trend of converting other types of data (e.g., images) to graphs so that data mining turns into graph

ining [5–7], GNNs could supply artificial intelligence to a variety of less computationally savvy environments, such as power-efficient
mart devices. There, they could not only perform inference, but also learn from local data, such as private annotations of device users. In
ddition to supporting other types of data mining, GNNs on the edge could also analyze raw relational data, for instance to perform fake
ews detection personalized to the relation contexts of social media application users [8]. This is not supported by existing technologies,
hose design spaces cover either resource-intensive computing or non-GNN edge computing (Section 2).
To fill this technological gap, we developed a native Java library, called JGNN, to define, train, and run neural networks and GNNs

nder limited resources. Machine learning components are implemented from scratch to be memory efficient and avoid external
ependencies, for example that would require hardware- and platform-specific binaries. Thus, the library is lightweight to include
n software packages and is supported by any device hosting the Java Virtual Machine (JVM), such as Android smartphones. It also
rains architectures under limited memory and can define them with a few lines of Java code by parsing Python-like expressions.

∗ Corresponding author.
E-mail addresses: maniospas@iti.gr (Emmanouil Krasanakis), papadop@iti.gr (Symeon Papadopoulos), ikom@iti.gr (Ioannis Kompatsiaris).
ttps://doi.org/10.1016/j.softx.2023.101459
352-7110/© 2023 The Author(s). Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/licenses/by-
c-nd/4.0/).

https://doi.org/10.1016/j.softx.2023.101459
https://www.elsevier.com/locate/softx
http://www.elsevier.com/locate/softx
http://crossmark.crossref.org/dialog/?doi=10.1016/j.softx.2023.101459&domain=pdf
http://creativecommons.org/licenses/by-nc-nd/4.0/
https://github.com/ElsevierSoftwareX/SOFTX-D-22-00351
https://github.com/MKLab-ITI/JGNN/blob/main/README.md
mailto:maniospas@iti.gr
mailto:maniospas@iti.gr
mailto:papadop@iti.gr
mailto:ikom@iti.gr
https://doi.org/10.1016/j.softx.2023.101459
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/


Emmanouil Krasanakis, Symeon Papadopoulos and Ioannis Kompatsiaris SoftwareX 23 (2023) 101459

a
o
t
g
s

w
r

f
a
a
f

2

a
[
H
o
d
a
f
w
f
t

n
f
a
c
i

b
f
d
t

t
c

t
s

3

3

u

2. Scientific and technological context

2.1. Graph neural networks

Graph neural networks (GNNs) account for relational information between data samples by organizing the latter as nodes of graphs
nd exchanging representations between neighbors; they start from representation matrices H (0) whose rows are either node features
r end-to-end trained embeddings, define operations that pool (e.g., average) neighbor representations, and pass these through dense
ransformations. Operations are typically written in matrix form and engage symmetric normalizations A = D−1/2AbinD−1/2 of binary
raph adjacency matrices Abin, where D are diagonal matrices of node degrees. Often, the renormalization trick [9] adds numerical
tability with self-loops to all nodes, and feature or edge dropout improve training robustness.
To understand prospective usage of the library, we present example GNNs. GCN [9] comprises two 64-dimensional layers:

H (ℓ+1)
= σ (AH (ℓ)W (ℓ))

here W (ℓ) are trainable layer weights and σ (x) an activation applied element-by-element on matrix elements — typically chosen as
elu(x) = max{x, 0}. To not oversmooth across edges, APPNP [10] introduces bias towards H (0) via 10 layers:

H (ℓ+1)
= aAH (ℓ)

+ (1 − a)H (0)

or hyperparameter a ∈ (0, 1) and 64-dimensional embeddings H (0) extracted from node features with a two-layer perceptron. Other
pproaches make architectures deeper [11], account for heterophily (dissimilar nodes linking to each other) [12], apply neighbor
ttention [13,14], or implement message passing [15,16]. JGNN supports such principles with operations that express them in matrix
orm.

.2. Learning at the edge

Edge computing processes data in the devices generating them. There are three popular edge learning directions, all of which
cknowledge limitations in processing power and available memory: (a) Collaborative learning, such as federated [17,18] and gossip
19,20] learning, creates local model fragments that collectively learn to make predictions similar to would-be centralized infrastructure.
owever, it tends to rely on high-spec machines (e.g., servers) for critical computations, such as sample gradient aggregations, is
therwise limited to naive (e.g., linear) models, and in most cases requires high device connectivity. (b) Model compression [21–23]
eploys models that sacrifice some predictive power to fit device resources. Training and simplifying large models is resource intensive
nd only pre-trained solutions can be deployed. (c) In-device training of models is less popular, partially due to non-GNN learning
ocusing on high accuracy instead of resource management [24]. Existing tools are limited to either simple models (e.g., SVMs) or
rapping compiled C++ code that is difficult to re-purpose for GNNs. To our knowledge, as of writing, no other machine learning

ramework for Java –the base language of Android devices– fully supports backpropagation through sparse matrix operations needed
o train GNNs.

Here, we position JGNN relative to libraries of similar capabilities. We do not address collaborative learning ones, as they are
on-autonomous. The most important comparison to make is with deeplearning4j [25], which is the premier Java machine learning
ramework [26]. This is designed for distributed learning and dense matrix data. Therefore, and despite its maturity in other fields, such
s in deploying foundational image processing models or training deep convolutional architectures, it does not support GNNs, which
an only be made computationally tractable with sparse representations of adjacency matrices. Additionally, although not necessarily
mpractical, it requires platform-specific binary files that significantly increase application size.

Other lightweight Java libraries that integrate parameter learning, such as Java-ML [27] and JSAT [28], provide specific algorithms
ut not interfaces to build custom architectures. Furthermore, they eschew deep learning in favor of simpler paradigms that account
or Java’s computational speed limitations. Hence, GNN integration needs to start from scratch. All edge learning frameworks, including
eeplearning4j, are also designed for training on independent data batches and not for the recurring GNN principle of passing both
raining and inference samples through architectures to let them exchange information via edges.

Finally, compression systems like Tensorflow-lite [29] can perform inference at the edge by building models in Python and porting
hem to JVM devices. However, only recent approaches address model customization on local data [30] and, even then, accommodating
omputationally intensive dense matrix operations limits support for end-to-end-training.
Overall, there is a lack of Java libraries supporting GNNs, despite (and perhaps due to) the excellence of existing solutions in other

ypes of machine learning. Therefore, and given that Java is a popular language at the edge, we argue that JGNN covers an important
olution space.

. Software description

.1. Software architecture

JGNN’s code base comprises source code, examples, and documentation. The source code is organized into three major modules
nder the mklab.JGNN namespace: (a) core defines tensor and matrix primitives and related operations, (b) nn defines neural

network components, and (c) adhoc provides high-level functionality, such as fast data loading and symbolic parsing to define neural
architectures from textual descriptions. These packages are further split into the 16 sub-packages displayed in Fig. 1, which span 86
files and 8.7k lines of code.

Top-level packages define abstract base classes to be polymorphically extended in sub-packages. For example, Tensor and Matrix
abstract classes reside in namesake files under core and are inherited by classes of the core.tensor and core.matrix sub-packages
respectively. Source code is extensible (e.g., its implementation of neighbor attention requires less than 50 lines of code). All components
are documented with Javadoc and verified with integration tests.
2



Emmanouil Krasanakis, Symeon Papadopoulos and Ioannis Kompatsiaris SoftwareX 23 (2023) 101459

3

v
p
a
w
J

i
F
r
u

3

a
p
p

c
h
m
m
a
v
n
i

L
T
S

3

o

Fig. 1. JGNN packages, dependencies between them, and sub-packages.

.2. Interoperable primitives

Core primitives define common arithmetic operations, such as element-by-element addition and multiplication, and in-place
ariations that save on memory allocation. Tensors and all derivative data types –including matrices– are handled with the same
rogramming interfaces. To achieve interoperability between sparse and dense data, the library internally determines the type of
rithmetic operation results based on ad-hoc criteria. For example, addition involving dense tensors always yields dense outputs,
hereas the type of matrix multiplication outcome is determined via stochastic estimation of its expected density. When possible,

GNN reframes index traversal loops into iterating only over the minimum number of allocated memory elements.
Primitive dimensions can be named (null names are wildcards). Names are checked together with dimension sizes for logical

ntegrity during operations and transferred to respective result dimensions. Finally, transparent data views eschew memory allocation.
or example, M.asTransposed() returns a transposed view of a matrix M, whereas M.accessRow(0).asColumn() accesses the first
ow of a matrix (to use as a base Tensor) and reshapes it into an one-row column matrix without copying any data. Everything happens
nder the hood so that developers only need to think about the data types and dimension names of inputs.

.3. Symbolic architecture definition

The nn package provides a large number of machine learning components that can be combined via Java code to define complex
rchitectures, such as GNNs. To avoid hand-wiring data transfers, and therefore reduce errors and simplify usage patterns, the adhoc
ackage provides model building mechanisms; these declare neural model parameters and hyperparameters, and construct models by
arsing Python-like expressions. For instance, parsing the text

y=sigmoid(dropout(x, 0.5)@ matrix(features, classes, reg)+vector(classes))

reates all necessary components to apply dropout with rate 0.5 on an input matrix x with a number of columns equal to a declared
yperparameter features, perform a learnable dense transformation into classes dimensions by multiplying it with a parameter
atrix, add a learnable vector bias term on each row, and pass the output through a sigmoid activation. Of shown operations, @ performs
atrix multiplication, the matrix method defines usage of an anonymous dense matrix variable with the provided dimensions
nd weight decay reg, and the vector method defines an anonymous learnable vector variable with the provided length. Both
ariables are constructed once and their elements are learned during neural training. Architecture hyperparameters, constant tensors,
amed parameters, input variables, and output variables are declared with appropriate method calls. Including the above, the library
mplements 35 operations to use in symbolic definitions.

A base ModelBuilder class parses GNN expressions, and two extensions add simplifications to architecture definitions. First,
ayeredBuilder replaces {l} and {l+1} predicates with automatically increasing layer counters. Layers can be named (Section 4).
his extension retains full control of input and output declarations (e.g., to consider adjacency matrices as inputs instead of constants).
econd, FastBuilder supplies methods that further simplify popular component usage.

.4. Additional features

Training machine learning architectures, such as those constructed with model builders, involves parsing (batch) inputs, desired
utputs, loss functions, and optimizers, running over many epochs, and eventually selecting parameters based on validation data. JGNN
3



Emmanouil Krasanakis, Symeon Papadopoulos and Ioannis Kompatsiaris SoftwareX 23 (2023) 101459

v

p
c
c

4

o
t
f
a

D

1
s

M

w

M

a
t
n

provides a helper class called ModelTraining to define and run such procedures. This supports different losses between training and
alidation, as well as setting up early stopping based on stagnant validation loss.
To aid debugging, syntax errors are checked during parsing (e.g., to catch unknown variable names). Architecture diagnostics can

rint the routing between components, export execution graphs into graphviz format for visualization [31], and check for unused
omputational branches. Exceptions thrown for incompatible primitive dimension sizes or names are enriched by pointing to the neural
omponents where errors occur and their inputs.

. Illustrative example

We provide an example of defining, training, and testing the APPNP architecture [10] on node classification. Other architectures are
btained by modifying symbolic layer definitions, as detailed in the documentation. For experimentation, we load one of the datasets
he library automatically downloads and obtain node features, labels, and an adjacency matrix. These could be manually constructed
or new data. Using the library’s matrix manipulation methods, diagonal elements are set to 1 to facilitate the renormalization trick
nd symmetric normalization is applied. Dimension names aid potential debugging.

ataset dataset = new Datasets.Citeseer();
Dataset dataset = new Citeseer();
Matrix features = dataset
.features()
.setDimensionName("nodes", "features");
Matrix labels = dataset
.labels()
.setDimensionName("nodes", "labels");
Matrix adjacency = dataset.graph()
.setMainDiagonal(1)
.setToSymmetricNormalization()
.setDimensionName("nodes", "nodes");
long numClasses = dataset.labels().getCols();

We use the FastBuilder to define the architecture for loaded data with a functional programming style that chains method calling.
We first configure variable initialization hyperparameters, namely dimension sizes features,hidden,classes and the weight decay
reg. FastBuilder starts from the input feature matrix, and we declare two dense layers. Then, the top layer is remembered as 0, a
diffusion constant a is defined, and the constant A holding the adjacency matrix –this is automatically declared by the FastBuilder–
is used to diffuse h{0}. New layers are added when parsing .layer definitions, and .layerRepeat iterates the diffusion’s definition
0 times to avoid repetition. The final layer is submitted for node classification with a namesake FastBuilder method; this applies the
oftmax transformation, sets a list node identifiers as the input, and keeps corresponding predictions.

odelBuilder modelBuilder = new FastBuilder(adjacency, features)
.config("reg", 0.005)
.config("features", features.getDimensionSize("features"))
.config("hidden", 64)
.config("classes", numClasses)
.layer("h{l+1}=relu(h{l}@matrix(features, hidden, reg)+vector(hidden))")
.layer("h{l+1}=h{l}@matrix(hidden, classes)+vector(classes)")
.rememberAs("0")
.constant("a", 0.9)
.layerRepeat("h{l+1} = a*(dropout(A, 0.5)@h{l})+(1-a)*h{0}", 10)
.classify();

We now employ the ModelTraining class to automate model variable training with specific optimizers, loss functions, and number
of epochs. More complex tasks, such as graph classification, can be implemented with the more generic LayeredBuilder and trained
ith manual calls to built model backpropagation.

odelTraining trainer = new ModelTraining()
.setOptimizer(new Adam(0.01))
.setEpochs(300)
.setPatience(100)
.setLoss(new CategoricalCrossEntropy())
.setValidationLoss(new CategoricalCrossEntropy());

To train the declared model, we retrieve it from its builder, initialize its variables, and provide to it the training strategy alongside
feature matrix input (for node classification, this is a column of all node identifiers), a matrix of corresponding labels, and slices of

raining and validation node indices. Slices collect row indices to gather from inputs and outputs, and can be constructed from fixed
umerical ranges or collected from ranges within other shuffled slices.
4



Emmanouil Krasanakis, Symeon Papadopoulos and Ioannis Kompatsiaris SoftwareX 23 (2023) 101459

M

Table 1
GNN training resources on the Cora dataset.
GNN Tensorflow JGNN JGNN reduced

Acc Time Memory Acc Time Memory Acc Time Memory

GCN 76.8% 26 s 2,560 MB 87.5% 249 s 40 MB 87.5% 85 s 14 MB
APPNP 89.1% 43 s 2,304 MB 88.2% 306 s 40 MB 87.8% 117 s 28 MB

Slice nodes = dataset.samples().getSlice().shuffle(100); // shuffle seed 100
odel model = modelBuilder.getModel()
.init(new XavierNormal())
.train(trainer,
nodes.sampleIdsAsFeatures(), // inputs = all node ids
labels,
nodes.range(0, 0.6), // 60% of inputs for training
nodes.range(0.6, 0.8)); // 20% of inputs for validation

We make predictions by running the model for the feature matrix input and casting the first and only output to the Matrix class
(this is equivalent to Java’s typecasting). We iterate over the last 20% of shuffled nodes left for testing, access each row of the predictions
and corresponding labels, and check whether their maximum is found at the same position. Labels are sparse matrices, but knowing
this detail is not necessary to write the testing code.

Matrix output = model
.predict(nodes.samplesAsFeatures())
.get(0)
.cast(Matrix.class);

double acc = 0;
for(Long node : nodes.range(0.8, 1)) {
Matrix nodeLabels = labels
.accessRow(node)
.asRow();

Tensor nodeOutput = output
.accessRow(node)
.asRow();

acc += nodeOutput.argmax()==nodeLabels.argmax()?1:0;
}
System.out.println("Acc\t "+acc/nodes.range(0.8, 1).size());

The implementation is concise, especially by Java standards. Not counting necessary import statements, the pipeline spans only 55
lines of code. Code writing is simplified thanks to symbolically parsing large parts of the architecture definition.

5. Impact

To our knowledge, JGNN is the first Java machine learning library that supports training of GNNs on edge devices. As such, estimating
its impact on shaping future applications or research is difficult. For now, we acknowledge the emerging trend of moving data processing
to the edge and point to the popularity of GNNs in centralized machine learning; the library adapts this paradigm to an emerging
setting. We used early versions in decentralized social media applications [32], where we empirically corroborated the usefulness of
graph learning at the edge.

As an indication of how few resources are consumed, we replicate the two GNN architectures of Section 2.1 for node classification
and capture the time and minimum memory needed to train them within edge devices on the well-known Cora dataset [33], which
comprises 2,708 nodes and 57,884 edges. We also explore lightweight GNN variations that reduce layer dimensions to the number of
output classes. Due to lack of direct competitors, we compare JGNN with equivalent Tensorflow GPU implementations [34] written in
Python.

Table 1 shows test set accuracy on a 60-20-20 train-validation-test split and resource consumption to train across 300 epochs.
All implementations run on a 2.6 GHz CPU and DDR3 RAM. Tensorflow also leverages a 1.2 GHz GPU with 1,920 cores and DDR6
memory. Implementations exhibit similar accuracy and we attribute differences to our components running on 64-bit (instead of 32-
bit) arithmetics. Overall, JGNN runs within 14-40 MB of memory, which is over 70 times less than Tensorflow. In edge applications, we
expect usage with similar or a fraction of these data volumes, but JGNN is scalable; memory and computation demands are proportional
to the number of edges plus the data volume of feature matrices. Given enough memory, graphs can comprise up to the JVM’s maximum
long number (typically 264

−1) of edges, with dense operations being restricted up to the maximum integer number (typically 231
−1)

of nodes. GNN versions with reduced parameters are trained in time comparable to GPUs with minimal accuracy drop. Training with
more layer dimensions is more time consuming due to lack of parallelization for dense data transformations; we do not leverage edge
GPUs in favor of memory efficiency. Nonetheless, the library can take advantage of multiple processor cores for parallel batching on
tasks that support it, like graph classification.

Concerning the library’s portability, a JAR file holding cross-platform JVM instructions consumes 168 kB of disk space. deeplearning4j’s
latest release stripped down to its basic neural network functionality and without external dependencies needs at least 5 MB of disk

space for hardware-specific code, which doubles for deployment with cross-platform binaries.

5



Emmanouil Krasanakis, Symeon Papadopoulos and Ioannis Kompatsiaris SoftwareX 23 (2023) 101459

i
p
c
i
t

D

i
r

D

A

R

6. Conclusions

In this work we presented JGNN, a lightweight native Java library to define, train, and run GNNs on the edge. This provides
nteroperable implementations of common sparse and dense matrix operations needed to define graph learning, and boasts concise
rogramming interfaces. Well-performing yet lightweight architectures run in only a fraction of the memory needed by performance-
entric frameworks. Programming interfaces are easy to use with a few lines of code. The library is deployed via Jitpack for integration
n Maven and Gradle projects and its source code and extensive documentation are publicly available under the Apache 2.0 license at
he GitHub repository https://github.com/MKLab-ITI/JGNN. Developers are encouraged to contribute to the code base.

eclaration of competing interest

The authors declare the following financial interests/personal relationships which may be considered as potential competing
nterests: Emmanouil Krasanakis reports that financial support was provided by the European Commission. Emmanouil Krasanakis
eports a relationship with Centre for Research and Technology-Hellas that includes: employment.

ata availability

Data are appropriately cited and automatically downloaded upon running the example code snippets.

cknowledgment

Development of the package was partially funded by the European Commission under contract number H2020-951911 AI4Media.

eferences

[1] Scarselli F, Gori M, Tsoi AC, Hagenbuchner M, Monfardini G. The graph neural network model. IEEE Trans Neural Netw 2008;20(1):61–80.
[2] Wang MY. Deep graph library: Towards efficient and scalable deep learning on graphs. In: ICLR workshop on representation learning on graphs and manifolds.

2019.
[3] Fey M, Lenssen JE. Fast graph representation learning with PyTorch Geometric. 2019, arXiv preprint arXiv:1903.02428.
[4] Ferludin O, Eigenwillig A, Blais M, Zelle D, Pfeifer J, Sanchez-Gonzalez A, et al. TF-GNN: graph neural networks in TensorFlow. 2022, arXiv preprint

arXiv:2207.03522.
[5] Shekkizhar S, Ortega A. Graph construction from data by non-negative kernel regression. In: ICASSP 2020-2020 IEEE international conference on acoustics,

speech and signal processing. ICASSP, IEEE; 2020, p. 3892–6.
[6] Hu H, Yao M, He F, Zhang F. Graph neural network via edge convolution for hyperspectral image classification. IEEE Geosci Remote Sens Lett 2021;19:1–5.
[7] Pradhyumna P, Shreya G, et al. Graph neural network (GNN) in image and video understanding using deep learning for computer vision applications. In: 2021

second international conference on electronics and sustainable communication systems. ICESC, IEEE; 2021, p. 1183–9.
[8] Dou Y, Shu K, Xia C, Yu PS, Sun L. User preference-aware fake news detection. In: Proceedings of the 44th International ACM SIGIR conference on research and

development in information retrieval. 2021, p. 2051–5.
[9] Kipf TN, Welling M. Semi-supervised classification with graph convolutional networks. 2016, arXiv preprint arXiv:1609.02907.

[10] Klicpera J, Bojchevski A, Günnemann S. Predict then propagate: Graph neural networks meet personalized pagerank. 2018, arXiv preprint arXiv:1810.05997.
[11] Chen M, Wei Z, Huang Z, Ding B, Li Y. Simple and deep graph convolutional networks. In: International conference on machine learning. PMLR; 2020, p.

1725–35.
[12] Zhu J, Yan Y, Zhao L, Heimann M, Akoglu L, Koutra D. Beyond homophily in graph neural networks: Current limitations and effective designs. Adv Neural Inf

Process Syst 2020;33:7793–804.
[13] Veličković P, Cucurull G, Casanova A, Romero A, Lio P, Bengio Y. Graph attention networks. 2017, arXiv preprint arXiv:1710.10903.
[14] Zhang J, Shi X, Xie J, Ma H, King I, Yeung D-Y. Gaan: Gated attention networks for learning on large and spatiotemporal graphs. 2018, arXiv preprint

arXiv:1803.07294.
[15] Gilmer J, Schoenholz SS, Riley PF, Vinyals O, Dahl GE. Neural message passing for quantum chemistry. In: International conference on machine learning. PMLR;

2017, p. 1263–72.
[16] Feng J, Chen Y, Li F, Sarkar A, Zhang M. How powerful are k-hop message passing graph neural networks. 2022, arXiv preprint arXiv:2205.13328.
[17] Li X, Huang K, Yang W, Wang S, Zhang Z. On the convergence of fedavg on non-iid data. 2019, arXiv preprint arXiv:1907.02189.
[18] Li T, Sahu AK, Talwalkar A, Smith V. Federated learning: Challenges, methods, and future directions. IEEE Signal Process Mag 2020;37(3):50–60.
[19] Blot M, Picard D, Cord M, Thome N. Gossip training for deep learning. 2016, arXiv preprint arXiv:1611.09726.
[20] Hegedűs I, Danner G, Jelasity M. Gossip learning as a decentralized alternative to federated learning. In: IFIP International conference on distributed applications

and interoperable systems. Springer; 2019, p. 74–90.
[21] Buciluǎ C, Caruana R, Niculescu-Mizil A. Model compression. In: Proceedings of the 12th ACM SIGKDD international conference on knowledge discovery and

data mining. 2006, p. 535–41.
[22] Cheng Y, Wang D, Zhou P, Zhang T. A survey of model compression and acceleration for deep neural networks. 2017, arXiv preprint arXiv:1710.09282.
[23] He Y, Lin J, Liu Z, Wang H, Li L-J, Han S. Amc: Automl for model compression and acceleration on mobile devices. In: Proceedings of the European conference

on computer vision. ECCV, 2018, p. 784–800.
[24] Véstias MP, Duarte RP, de Sousa JT, Neto HC. Moving deep learning to the edge. Algorithms 2020;13(5):125.
[25] Eclipse Deeplearning4j Development Team. Deeplearning4j: Open-source distributed deep learning for the JVM. 2016.
[26] Parvat A, Chavan J, Kadam S, Dev S, Pathak V. A survey of deep-learning frameworks. In: 2017 International conference on inventive systems and control. ICISC,

IEEE; 2017, p. 1–7.
[27] Abeel T, Van de Peer Y, Saeys Y. Java-ml: A machine learning library. J Mach Learn Res 2009;10:931–4.
[28] Raff E. JSAT: Java statistical analysis tool, a library for machine learning. J Mach Learn Res 2017;18(1):792–6.
[29] Li S. Tensorflow lite: On-device machine learning framework. J Comput Res Dev 2020;57:1839.
[30] Demosthenous G, Vassiliades V. Continual learning on the edge with tensorflow lite. 2021, arXiv preprint arXiv:2105.01946.
[31] Ellson J, Gansner E, Koutsofios L, North SC, Woodhull G. Graphviz—open source graph drawing tools. In: International symposium on graph drawing. Springer;

2001, p. 483–4.
[32] Sarridis I, Gkatziaki V, Krasanakis E, Giatsoglou N, Sarris N, Papadopoulos S, et al. Helios. TALK: A decentralised messaging framework that preserves the privacy

of users. Open Research Europe 2022;2(29):29.
[33] Sen P, Namata G, Bilgic M, Getoor L, Galligher B, Eliassi-Rad T. Collective classification in network data. AI Mag 2008;29(3):93.
[34] Abadi M, Agarwal A, Barham P, Brevdo E, Chen Z, Citro C, et al. TensorFlow: Large-scale machine learning on heterogeneous systems. 2015, Software available

from tensorflow.org.
6

https://github.com/MKLab-ITI/JGNN
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb1
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb2
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb2
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb2
http://arxiv.org/abs/1903.02428
http://arxiv.org/abs/2207.03522
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb5
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb5
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb5
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb6
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb7
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb7
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb7
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb8
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb8
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb8
http://arxiv.org/abs/1609.02907
http://arxiv.org/abs/1810.05997
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb11
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb11
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb11
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb12
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb12
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb12
http://arxiv.org/abs/1710.10903
http://arxiv.org/abs/1803.07294
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb15
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb15
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb15
http://arxiv.org/abs/2205.13328
http://arxiv.org/abs/1907.02189
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb18
http://arxiv.org/abs/1611.09726
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb20
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb20
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb20
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb21
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb21
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb21
http://arxiv.org/abs/1710.09282
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb23
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb23
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb23
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb24
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb25
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb26
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb26
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb26
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb27
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb28
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb29
http://arxiv.org/abs/2105.01946
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb31
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb31
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb31
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb32
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb32
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb32
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb33
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb34
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb34
http://refhub.elsevier.com/S2352-7110(23)00155-3/sb34

	JGNN: Graph Neural Networks on native Java
	Motivation and significance
	Scientific and technological context
	Graph neural networks
	Learning at the edge

	Software description
	Software architecture
	Interoperable primitives
	Symbolic architecture definition
	Additional features

	Illustrative example
	Impact
	Conclusions
	Declaration of competing interest
	Data availability
	Acknowledgment
	References


