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ABSTRACT Deep learning techniques have achieved significant success in Synthetic Aperture Radar
(SAR) target recognition using predefined datasets in static scenarios. However, real-world applications
demand that models incrementally learn new information without forgetting previously acquired knowledge.
The challenge of catastrophic forgetting, where models lose past knowledge when adapting to new
tasks, remains a critical issue. In this paper, we introduce IncSAR, an incremental learning framework
designed to tackle catastrophic forgetting in SAR target recognition. IncSAR combines the power of
a Vision Transformer (ViT) and a custom-designed Convolutional Neural Network (CNN) in a dual-
branch architecture, integrated via a late-fusion strategy. Additionally, we explore the use of TinyViT to
reduce computational complexity and propose an attention mechanism to dynamically enhance feature
representation. To mitigate the speckle noise inherent in SAR images, we employ a denoising module based
on a neural network approximation of Robust Principal Component Analysis (RPCA), leveraging a simple
neural network for efficient noise reduction in SAR imagery. Moreover, a random projection layer improves
the linear separability of features, and a variant of Linear Discriminant Analysis (LDA) decorrelates
extracted class prototypes for better generalization. Extensive experiments on the MSTAR, SAR-AIRcraft-
1.0, and OpenSARShip benchmark datasets demonstrate that IncSAR significantly outperforms state-of-
the-art approaches, achieving a 99.63% average accuracy and a 0.33% performance drop, representing an
89% improvement in retention compared to existing techniques.

INDEX TERMS Deep learning, incremental learning, robust principal component analysis (RPCA),
synthetic aperture radar (SAR) target classification, vision transformer.

I. INTRODUCTION

SYNTHETIC aperture radar (SAR) is an active remote
sensing technology that obtains high-resolution images

with minimal dependence on light, weather, and other en-
vironmental conditions. SAR automatic target recognition
(SAR-ATR) through deep learning finds applications in a
wide range of fields, such as target acquisition, disaster man-
agement, and maritime vigilance [1]. The interpretation of
SAR images is considered to be a challenging task due to the
presence of speckle noise. In contrast to optical images, SAR
images tend to exhibit smaller inter-class and larger intra-
class distances, rendering their classification a hard challenge
[2].

In practical settings, applications often deal with stream-
ing data with incoming new classes that cannot be stored
and recalled due to bounded storage or privacy issues. An
additional challenge present in practical scenarios concerns
data distribution shifts over time. Class incremental learn-
ing (CIL) aims to build models that continually adapt to
new sets of classes while performing well among all seen
classes. Catastrophic forgetting [3], a crucial issue present
in incremental learning, refers to the phenomenon where a
model’s performance on previously learned tasks deteriorates
as it acquires new knowledge. A relevant challenge in CIL
involves the stability-plasticity trade-off [4], which refers
to the balance between a model’s ability to preserve old
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knowledge and its ability to adapt to new classes. Despite
recent advancements in CIL methods, their performance re-
mains significantly lower compared to conventional machine
learning scenarios, especially in the face of an increasing
number of incremental tasks.

One of the most popular CIL techniques includes
regularization-based methods [5], [6], which use regulariza-
tion terms and typically involve storing a frozen copy of
the old model, imposing constraints on important weights,
or implementing knowledge distillation. Another category
comprises parameter-isolation methods [7], which modify or
add network parameters or sub-modules according to task-
specific requirements in order to adapt the network archi-
tecture during training to new tasks. Replay-based methods
[8] store or generate samples or representations from previ-
ous data to mitigate catastrophic forgetting. Exemplar-based
methods [9], a subset of replay methods, specifically require
a rehearsal buffer to store a fixed number of samples from
previous classes. In contrast, class-prototype based methods
are exemplar-free methods that utilize a network for feature
extraction and memorize a set of representative prototypes
for each class, which are employed for classification pur-
poses [10]. Recently, pre-trained models (PTMs), such as
Vision Transformers (ViT) [11], have demonstrated remark-
able progress in generating strong representations, rendering
them a good choice for CIL scenarios [12]. The generaliza-
tion capability of PTMs can be combined with parameter-
efficient fine-tuning (PEFT) techniques to tackle the different
distribution in downstream tasks [13].

Current incremental learning techniques for SAR-ATR
deal mainly with specific challenges like catastrophic for-
getting, speckle noise reduction, and high computational
requirements but struggle with issues that come up in real-
world cases. Speckle noise, which deteriorates image qual-
ity and interferes with feature extraction, is a SAR-specific
challenge that is often ignored by techniques that attempt
to mitigate catastrophic forgetting. Additionally, rich feature
extraction from SAR data is essential for precise classifica-
tion, and current approaches are often limited in the level of
feature information they extract (i.e., focus on either global
or fine-grained). These limitations demonstrate the need for
a comprehensive incremental learning framework for SAR-
ATR images that is effective in a wide range of changing
real-world circumstances.

To this end, we propose a class-prototype based incre-
mental learning framework, termed IncSAR, for SAR target
recognition. IncSAR integrates a dual-branch architecture,
combining a pre-trained ViT and a custom CNN to ensure ro-
bust feature extraction. It incorporates robust PCA-based de-
noising to mitigate speckle noise, random projection layers to
enhance feature separability, and a class-prototype learning
approach that avoids rehearsal buffer reliance. Extensive ex-
perimental results have shown that IncSAR achieves state-of-
the-art results, outperforming competitive approaches. These
results demonstrate its ability to address challenges effec-
tively while deriving noteworthy performance in real-world

incremental learning scenarios.
Specifically, we argue that PTMs can be successfully

used in CIL for SAR target recognition reducing time re-
quirements, enabling generalization to new tasks and cross-
domain adaptation. IncSAR utilizes a pre-trained ViT and
a custom-designed Convolutional Neural Network (CNN),
called SAR-CNN, as strong feature extractors, combining
them in a late-fusion strategy to take advantage of their
complementary strengths. A scale and shift method is em-
ployed for the PEFT of the PTM to mitigate the distribution
mismatch problem in the downstream dataset. A CNN-based
Robust Principal Component Analysis [14]–[16] is employed
for noise despeckling prior the CNN feature extraction.
Specifically, a bilinear neural network is alleviated to derive
a low-rank and a sparse component of the input SAR images.
The extracted features are randomly projected in a higher-
dimensional space to enhance the linear separability, and
then they are utilized to extract the class prototypes. A linear
discriminant analysis (LDA) [17] approach is used for the
decorrelation of prototypes, which are used for classification.
Moreover, an attention mechanism is introduced within the
IncSAR framework for feature fusion, resulting in improved
SAR target classification. Our main contributions are sum-
marized as follows:

• We propose the IncSAR framework, introducing a late-
fusion strategy that combines a pre-trained ViT and a
custom-designed CNN as network backbones. Both the
ViT-B/16 and a smaller variant, TinyViT [18], are em-
ployed in separate experiments to explore the trade-offs
between model complexity and performance. The ViT
models are fine-tuned using a scale-and-shift method for
PEFT.

• IncSAR adopts an exemplar-free prototype learning ap-
proach, eliminating the need for a rehearsal buffer. A
variant of LDA is used to decorrelate the extracted class
prototypes, improving the framework’s discriminative
ability.

• An attention module, built with a 4-layer ViT, is incor-
porated into the IncSAR framework to enhance feature
extraction, focusing on relevant patterns and improving
SAR target classification.

• A bilinear network approximation of Robust PCA is
effectively utilized for noise despeckling in SAR im-
agery further enhancing the classification accuracy of
IncSAR.

• Extensive experiments on the MSTAR dataset demon-
strate notable gains over state-of-the-art approaches,
achieving accuracies of 99.63% and performance drop-
ping rate improvement of 89% compared to state-of-
the-art. Additional experiments on the SAR-AIRcraft-
1.0 dataset demonstrate the model’s effectiveness in
handling complex real-world scenarios. Moreover, Inc-
SAR’s generalization is evaluated using the OpenSAR-
Ship dataset, and ablation studies further attest to its
robustness and efficiency.
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TABLE 1: Summary of SAR-ATR incremental methods

Methods Regularization Replay/ Parameter Feature Dataset YearExemplars Isolation Extractor
MEDIL [19] ! ! - MSTAR, OpenSARShip 2023
CBesIL [20] ! - MSTAR 2020
Zhou et al. [21] ! ! ! ResNet-18 [22] MSTAR 2022
DCBES [23] ! CNN [24] MSTAR 2023
HPecIL [25] ! ! ! ResNet-18 MSTAR 2022
Hu et al. [26] ! ! Alexnet [27] MSTAR 2022
ICAC [28] ! ! CNN MSTAR, OpenSARShip 2022
MLAKDN [29] ! ! ResNet-18 MSTAR, SAMPLE 2023
DERDN [30] ! ! ODConv [31] MSTAR, SAMPLE 2024
SSF-IL [32] ! ResNet-18 MSTAR 2024
Pan et al. [33] ! ! ! ViT [11] MSTAR, CIFAR100 2023
CIL-MMI [34] ! ResNet-18 MSTAR 2024
IncSAR ! ViT, SAR-CNN MSTAR, OpenSARShip, SAR-AIRcraft-1.0 2024

II. RELATED WORK

Class incremental learning: CIL methods can be broadly
divided into [35]: regularization-based methods (iCaRL [5],
LUCIR [6], Foster [9]), parameter-isolation based methods
(DER [7]), replay-based methods (Fetril [36]), and pre-
trained methods [12]. Recent studies focus heavily on pre-
trained methods benefiting from the powerful feature ex-
traction capabilities of PTMs, and mainly include prompt-
based methods, class-prototype based methods, and model-
mixture based methods. Prompt-based methods insert a small
number of learnable parameters rather than fully fine-tuning
the PTM’s weights (L2P [37], Coda-prompt [38]). Class-
prototype based methods extract representative prototypes
for each class and utilize them for classification (Adam [39],
RanPAC [10], SLCA [40]). These methods can employ a
frozen PTM or be combined with PEFT techniques, and they
can also utilize prototype decorrelation techniques. The main
idea of model-mixture based methods involves ensembling
or merging various fine-tuned PTMs into a single model that
integrates the representational capabilities of multiple models
(PROOF [41], SEED [42], CoFiMA [43]). These methods
are highly complementary and can combine different ap-
proaches, depending on the priorities of the learning scenario.

Class incremental learning for SAR-ATR: Most existing
methods for CIL in SAR-ATR are exemplar-based and rely
on a bounded subset of past training data. A weight cor-
rection method, named MEDIL, was proposed in [19] that
utilizes a hybrid loss function to strike an optimal plasticity-
stability trade-off. The CBesIL approach [20] introduced a
class-boundary selection method using local geometry and
statistics, along with a resampling method for data distri-
bution reconstruction. A major issue with replay methods
concerns the imbalance between old and new classes due to
the limited amount of old class data stored in the rehearsal
buffer. Zhou et al. [21] proposed a bias-correction layer to
tackle the class imbalance problem. The process of selecting
exemplars is critical in data replay methods. DCBES [23]
utilized a greedy algorithm to select representative exemplar

samples based on their density in the feature space. Tang
et al. [25] proposed a method named HPecIL, that com-
bines replay and weight regularization techniques. HPecIL
preserved multiple optimal models from old data, employing
a pruning initialization method to remove low-impact nodes
of the neural network, and using class-balanced training
batches to address the distribution shift in the incremental
tasks. Hu et al. [26] proposed the addition of extra linear
layers after the feature extractor of the network and before
each incremental task to generate distilled labels. The ICAC
approach [28] was based on anchored class data centers to
promote tighter clustering within each class and better sepa-
ration between classes. ICAC introduced separable learning
to mitigate class imbalance, a learning strategy that computes
the loss functions for old and new exemplars separately.
MLAKDN [29] was proposed as a method that combines
classification and feature-level knowledge distillation. Ren
et al. [30] introduced a dynamic feature embedding network
and a hybrid loss function to optimize the proposed method.
Some recent works utilized PTMs as feature extractors. Gao
et al. [32] introduced a mechanism for enhancing the linear
separability of features, utilizing a Resnet-18. Pan et al.
[33] proposed employing a ViT combined with a dynamic
query navigation module, which was designed to improve
the plasticity of the model. An exemplar-free based method,
that does not retain any old-class samples was proposed by
Li et al. [34], employing a mutual information maximization
method to avoid the distribution overlap among classes. A
comprehensive summary of the discussed SAR-ATR incre-
mental methods is presented in Table 1.

While most studies utilize exemplars, our work introduces
an exemplar-free approach based on prototype learning. Fur-
thermore, while previous research has explored the usage of
PTMs, we extend the literature by proposing a dual-fusion
strategy. This leverages the advantages of combining general
features extracted from a PTM with specialized features
derived by a custom-designed CNN.

A significant subset of SAR-ATR approaches focuses on
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detection tasks, where multiple objects, such as vehicles
and ships, are present, necessitating the use of efficient
detectors [44]–[51]. Among these, YOLO-based detectors
play a significant role in real-world applications of SAR-
ATR. A YOLOv3-based detector, called GCN-YOLO, that
utilizes a graph convolution network was proposed in [52],
which employs a block attention module to enhance semantic
features. Also, a confidence loss was introduced to enable
GCN-YOLO efficiency in foreground samples. A SAR-to-
optical image translation network was proposed in [53],
which employs a modified dense nested U-net to enhance
feature translation for target recognition. In addition, a virtual
dataset generation method was introduced to improve recog-
nition accuracy by combining 3-D model-based optical im-
ages with SAR data. A ship target detection method, named
DBW-YOLO, built upon YOLOv7-tiny was introduced in
[54] employing a deformable convolution network for robust
feature extraction, coupled with an attention mechanism and
an IoU-based loss function to improve detection accuracy.

III. METHODOLOGY
A. BACKGROUND
CIL: Unlike the “traditional” machine learning setting,
where a model is trained on all classes with all training
data available at once, in CIL a model sequentially receives
new training data with additional classes over time. In a
more detailed view, in a CIL scenario we assume a sequence
of T tasks and their corresponding training sets Dt for
t ∈ {1, 2, . . . , T}. A task refers to a set of classes that are
disjoint and do not overlap with the classes in other tasks.
For each incremental task t, the training set is defined as
Dt = {(xi, yi)}Nt

i=1, where Nt is the number of training
samples in Dt, and (xi, yi) is a training instance with its
corresponding label. Here, yi ∈ Yt and Yt denotes the label
space of task t. We refer to D0 as the base task, and all
other tasks as incremental tasks. In typical CIL, it is assumed
that there are no overlapping classes between different tasks:
Yt∩Yt′ = ∅ for t ̸= t′. During training on task Dt, only data
from this task is accessible; data from previous tasks is not
available. We adopt an offline learning setting, where we may
process the training data multiple times during the current
task before moving to the next. After each task, the trained
model is evaluated over all seen classes, represented by the
set Yt =

⋃t
i=1 Yi. The aim of CIL is to build a classification

model that acquires knowledge of all seen classes Yt and
performs well not only on the ongoing task but also in
preserving its performance on previous ones. Particularly,
in exemplar-based methods, limited access to old training
samples is allowed by storing a small subset of data from
previous tasks in a memory buffer, in contrast to exemplar-
free methods, which do not retain any previous data.

B. INCSAR FRAMEWORK
The proposed framework, called IncSAR, is inspired by Ran-
PAC [10], a class-prototype based method that takes advan-
tage of a PTM’s feature extraction capabilities. The pipeline

of IncSAR is demonstrated in Fig.1. A late-fusion strategy
is introduced, comprising two individual branches that take
advantage of two different backbones: a pretrained ViT-B/16
model and a custom-designed CNN model, as shown in Fig.
2. The backbone networks are trained individually during the
base task, and then the weights are frozen during incremental
tasks. A filtering RPCA module is employed before the CNN
model, as detailed in Fig. 3. After the feature extraction,
a random projection layer is employed, and the projected
features are utilized to compute the class prototypes, while
an LDA approach is employed to decorrelate them. Finally,
the logits of each branch are integrated to derive the final pre-
diction. Moreover, an IncSAR variant, called IncSARLAtt,
employs a proposed attention mechanism for feature fusion
prior to random projection, combining the proposed SAR-
CNN model with a pre-trained ViT-Ti [55] to further en-
hance feature extraction and integration, as shown in Fig.
4. By leveraging SAR-CNN’s capability to capture spatial
and spectral features alongside transformer’s strengths in
capturing global context through self-attention, this hybrid
approach enriches the model’s representation efficiency. The
attention mechanism dynamically prioritizes feature compo-
nents from SAR-CNN and ViT, effectively balancing fine-
grained and high-level semantic information. Moreover, an
additional variant is introduced, named IncSARLite, which
follows the base IncSAR pipeline as shown in Fig. 1, sub-
stituting ViT with TinyViT while maintaining the late fusion
strategy. This modification leverages TinyViT’s lightweight
architecture, reducing computational demands while preserv-
ing essential feature extraction capabilities.

In a more detailed view, our proposed CNN, denoted as
SAR-CNN, constitutes a simple yet effective model. SAR-
CNN is trained from scratch in the base task, and then its
weights are frozen during the incremental tasks. The input
layer takes the RPCA-filtered image X′, with an input size
of 70x70 and is followed by a sequence of 4 convolutional
layers, each one followed by a max pooling layer. The
activation function for each layer is a ReLU function. The
kernel sizes are 7× 7, 5× 5, 3× 3, 3× 3 and the numbers of
kernels are 16, 32, 64, and 128 respectively. Finally, a dropout
layer and a dense layer are applied. The proposed SAR-CNN
is depicted in Fig. 2.

The input image X is filtered by RPCA. The presence of
speckle noise in SAR images poses significant challenges,
hindering precise analysis and accurate classification. RPCA
[14] has been utilized in various applications in computer
vision. Here, RPCA is utilized as a pre-processing step to
denoise SAR images and improve the classification accuracy
of the SAR-CNN. An example of RPCA filtering is depicted
in Fig. 5.

Let X be a matrix with a dimension of m× l, representing
a noisy SAR image. RPCA defines the problem of decom-
posing a corrupted data matrix X ∈ Rm×l into two com-
ponents: a low-rank matrix L ∈ Rm×l, which captures the
noisy background, and a sparse matrix X′ ∈ Rm×l, which
represents the filtered SAR image. We use an implementation

4 VOLUME 4, 2016

This article has been accepted for publication in IEEE Access. This is the author's version which has not been fully edited and 

content may change prior to final publication. Citation information: DOI 10.1109/ACCESS.2025.3528633

This work is licensed under a Creative Commons Attribution 4.0 License. For more information, see https://creativecommons.org/licenses/by/4.0/



Author et al.: Preparation of Papers for IEEE TRANSACTIONS and JOURNALS

FIGURE 1: Illustration of IncSAR: A late-fusion approach is employed. The input image feeds a ViT network to extract features
F1. The input image is passed through the filtering RPCA module, and the filtered output feeds the proposed CNN to extract
features F2. The backbone networks are trained only in the base task of CIL, and then their weights are frozen. The extracted
features F1, F2 are projected into a higher dimensional space using a random projection layer with frozen weights W and an
activation function ϕ, giving H1, H2 features respectively. During incremental training, the matrices of the decorrelated class
prototypes P1, P2 are continually updated for each task. The logits L1, L2 are passed to a softmax layer S and an element-wise
addition layer to derive the final prediction ŷ.

FIGURE 2: Architecture of the proposed SAR-CNN model.

of RPCA as a neural network, as proposed by Han et al. [15],
that formulates RPCA as a surrogate optimization problem:

min ∥X′∥1 subject to X = L+X′ and L = ABX (1)

Here, matrices A ∈ Rm×r,B ∈ Rr×m correspond to
the learnable parameters of a network with two linear layers,

FIGURE 3: Robust PCA procedure resulting in a low-rank
and a sparse component.

where r is the desired rank of L. A window size of 128× 128
is selected for the input image, which is flattened into a one-
dimensional vector. The first layer projects the input into
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the lower-dimensional space of rank r, and the second layer
maps it back to the original input space giving the low-rank
component L. The sparse component X′, which leads to the
filtered image, is computed as:

X′ = L−X (2)

The network is trained in the images of the base task and then
its weights are frozen during incremental tasks. The entire
procedure is depicted in Fig. 3.

The pre-trained ViT-B/16 model, initially trained on the
ImageNet-21K dataset and fine-tuned on ImageNet-1K, is
fine-tuned exclusively on the base task in our study, with
its weights frozen during the incremental tasks. The pre-
trained TinyViT, initially trained on ImageNet-22K, and fine-
tuned on ImagNet-1K employing a fast knowledge distil-
lation method from a CLIP-ViT-L/14, is frozen during the
base and incremental tasks. Notably, neither ImageNet-21K
nor ImageNet-1K contain SAR images in their training sets.
However, despite the absence of SAR data in pre-training, the
model demonstrates strong performance when fine-tuned on
the base task using the MSTAR dataset. We employ a scale
and shift (SSF) method, which was proposed by Lian et al.
[56], to adjust the extracted features to match the distribution
of the downstream dataset. This method appends an extra
SSF layer after each operation layer of the ViT model. Let
xin be the output of an operation layer with a dimension of
d. The modulated output xo is computed by:

xo = γ ⊗ xin + δ (3)

where ⊗ is an element-wise multiplication operator and
γ, δ ∈ Rd are the scale and shift factors.

During each incremental task, the features F are extracted
individually from each branch. An extra layer, followed by
a non-linear function ϕ, is employed after feature extraction
to randomly project the features into a higher-dimensional
space M. The projected features H are given by:

H = ϕ(F⊤W) (4)

This feature transformation is employed to enhance linear
separability, and its weights W are frozen and generated ran-
domly only once before the incremental training. Addition-
ally, a variation of LDA for continual learning is employed
to remove correlations between class prototypes. The Gram
Matrix G of features H is extracted in an iterative manner:

G =

T∑
t=1

Nt∑
n=1

Ht,n ⊗Ht,n, (5)

The concatenated matrix C of class prototypes is given by:

C =

T∑
t=1

Nt∑
n=1

Ht,n ⊗ yt,n (6)

where ⊗ is the outer product, T is the number of incremental
tasks and Nt is the number of training samples in each task.
The weights P represent the decorrelated class prototypes:

P = (G+ λI)−1C (7)

ViT-Ti

RPCA

Transformer Encoder

SAR-CNN

Feature Fusion

...

FIGURE 4: Illustration of the proposed feature fusion atten-
tion module, demonstrating the integration of features from
the ViT and SAR-CNN branches to produce an enhanced
unified representation.

where λ is the ridge regression parameter. Parameter λ is
updated after each task and is optimized by randomly divid-
ing the training data for that task using an 80:20 ratio and
selecting the value of λ that minimizes the mean square error
between targets and the set of predictions. The logits L are
computed by:

L = HtestP (8)

where Htest refers to the encoded features of a test sample
after the random projection layer.

The predictions of each model are integrated to obtain the
final decision. A softmax layer S is applied on top of the
logits of each model to get the probabilities and an element-
wise addition layer to make the final prediction ŷ:

ŷ = argmax
c∈Yt

(
S(Lc

1) + S(Lc
2)

)
(9)

where L1, L2 are the logits of SAR-CNN and the logits of
ViT respectively, calculated for each class c to select the
maximum result for the final prediction.

Attention Fusion. The proposed feature fusion technique
leverages a transformer encoder, denoted as E , illustrated
in Fig. 4. The proposed approach is employed to substitute
the late fusion strategy resulting in the IncSARLAtt variant.
Specifically, we utilize ViT-Ti [55], a lightweight version of
ViT, and SAR-CNN as feature extractors. The transformer
encoder E consists of 4 layers with an embedding dimension
of 672, employs 8 attention heads, and has a feed-forward
network dimension of 336. SAR-CNN is trained from scratch
on RPCA-filtered images, while ViT-Ti, which processes the
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(a) Original image (b) Filtered Image

FIGURE 5: An example of RPCA filtering, employed in
MSTAR dataset. On the left, the original SAR image is
depicted. On the right, the output of the filtering module is
shown.

original images, is fine-tuned with the SSF technique. The
extracted features from ViT-Ti and SAR-CNN, denoted by
F1 and F2, respectively, are concatenated and subsequently
input into E for further processing:

F = E([F1;F2]) (10)

ViT-Ti, SAR-CNN and E are trained in an end-to-end way
in the base task. The extracted features F are then randomly
projected, and prototypes P and logits L are calculated with
the same methodology, as described in Eqs. (4) − (8). To
create a more lightweight framework and reduce the net-
work’s computational cost and training time, we calculate
the parameter λ during the base task and keep it constant
throughout the incremental tasks. The final prediction ŷ is
computed as:

ŷ = argmax
c∈Yt

(Lc) (11)

IV. EXPERIMENTS
A. DATASETS AND EXPERIMENTAL SETTINGS
Datasets. To evaluate IncSAR for classifying SAR images,
we initially employ the MSTAR dataset [57]. MSTAR is a
publicly available benchmark dataset of SAR images that
contains 10 ground mobile targets, as shown in Table 2.
SAR images are acquired at two different angles of depres-
sion, i.e., 15° and 17°. Images at 17° are used for training,
and images at 15° are used for testing. The OpenSARShip
[58] dataset is also employed in the conducted experiments
for generalization purposes, as done in [25]. OpenSARShip
contains 11, 346 SAR ship chips, integrated with automatic
identification system (AIS) messages. The dataset covers 17
AIS types collected from 41 Sentinel-1 SAR images. Three
ship types are selected, i.e., bulk carrier, container ship, and
tanker, under the VV polarization mode. We randomly select
300 samples from each class and split them into training and
test sets with an 80:20 ratio. Additionally, the SAR-AIRcraft-
1.0 dataset [59] is used for further the experiments. This
dataset provides images in four different sizes: 800 × 800,

1000 × 1000, 1200 × 1200, and 1500 × 1500 pixels, featuring
16, 463 aircraft instances across seven categories: A220,
A320/321, A330, ARJ21, Boeing 737, Boeing 787, and an
’other’ category. It is characterized by complex scenes, rich
categories, dense targets, noise interference, and multi-scale
data, making it particularly suited for various SAR-based
tasks. The SAR-AIRcraft-1.0 configuration is demonstrated
in Table 3. Figure 6 illustrates representative samples from
the SAR-AIRcraft-1.0 dataset. These three datasets were
selected due to their prevalent use in related literature, as can
be seen in Table 1.

TABLE 2: Configuration of MSTAR dataset.

Class Class name Training set Testing set
Depression Number Depression Number

0 BTR60 17◦ 256 15◦ 195
1 T72 17◦ 232 15◦ 196
2 2S1 17◦ 299 15◦ 274
3 T62 17◦ 299 15◦ 273
4 ZIL131 17◦ 299 15◦ 274
5 ZSU234 17◦ 299 15◦ 274
6 BRDM2 17◦ 298 15◦ 274
7 D7 17◦ 299 15◦ 274
8 BMP2 17◦ 233 15◦ 195
9 BTR70 17◦ 233 15◦ 196

TABLE 3: Configuration of SAR-AIRcraft-1.0 dataset.

Class Class name Training Set Testing set
0 Other 2000 200
1 A220 2000 200
2 Boeing787 2000 200
3 Boeing737 2000 200
4 A320 1571 200
5 ARJ21 987 200
6 A330 209 200

Evaluation Protocol. A suite of evaluation metrics is
employed to assess the performance of IncSAR. Top-1 ac-
curacy in the tth task is denoted as At. The accuracy in the
last incremental task, denoted as AL, is a suitable metric
to measure the overall accuracy among all classes. The av-
erage incremental accuracy Ā takes into consideration the
overall accuracy scores along all incremental tasks: Ā =
1
T

∑T
t=0 At. Also, we utilize the performance dropping rate

PD = A0 − AL and the performance dropping rate per task
PDt = A0 − At, where A0 denotes accuracy in the base
task and At accuracy in the tth incremental task. PD is an
established metric in the literature, that tries to quantify how
much forgetting takes place in the overall procedure.

Training Details. Experiments are implemented using
the PyTorch [60] framework and PILOT [61], a pre-trained
model-based continual learning toolbox. Two different data
augmentation approaches are employed for each backbone.
For ViT-B/16, the original images are simply padded to a
size of 224 × 224. For SAR-CNN, the training images are
filtered by RPCA followed by common transformations, such
as cropping to 32 × 32, resizing to 70 × 70, and random
horizontal flipping. The targets in the MSTAR and Open-
SARShip datasets are centered in the middle of the image,
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FIGURE 6: Example aircraft photos (top row) and corresponding SAR images (bottom row) for seven different aircraft classes
of SAR-AIRcraft-1.0 dataset: A220, A320/321, A330, ARJ21, Boeing 737, Boeing 787, and ’other.’ The images illustrate the
visual and radar characteristics of each class. The figure is adapted from [59].

allowing cropping to discard unwanted noise peripheral to
the target. The SAR-CNN branch is trained for 30 epochs and
the ViT/B-16 branch for 10 epochs, both using a learning rate
of 0.01, a weight decay of 0.0005, and stochastic gradient
descent optimizer with a momentum of 0.9. The dimension
of random projection is set to M = 10000. In IncSARLAtt,
the network is trained for 15 epochs with the same hyperpa-
rameters.

TABLE 4: Comparison with prior works across each in-
cremental task on MSTAR dataset. Base incremental task
consists of 4 classes, and each incremental task consists of
1 class.

Method
Accuracy in each task (%)

PD ↓ Ā ↑
0 1 2 3 4 5 6

DualPrompt [62] 85.50 66.17 53.97 45.57 39.43 36.03 33.73 51.77 51.48

iCaRL [5] 70.90 72.85 73.49 76.48 58.95 55.94 52.66 18.24 65.89

FOSTER [9] 63.54 84.90 71.27 69.72 67.65 61.01 59.42 4.12 68.21

SimpleCIL [39] 88.81 88.61 86.88 86.31 84.46 80.48 76.87 84.63 11.94

aper_adapter [39] 89.13 88.70 87.01 86.65 84.71 80.62 76.99 12.14 84.83

aper_ssf [39] 93.07 94.55 92.40 91.02 90.02 85.64 80.95 12.12 89.66

MEMO [63] 91.36 93.40 93.61 92.90 91.64 88.83 85.15 6.21 90.98

FeCAM [64] 94.56 94.64 94.55 94.72 93.81 91.16 87.59 6.97 93.00

RanPAC [10] 98.61 98.68 98.12 98.35 97.49 94.93 94.23 4.38 97.20

Pan et. al [33] 98.49 - - - - - 74.65 - -
ICAC [28] 99.49 98.04 96.76 95.65 94.83 93.42 91.76 4.66 96.65

IncSAR 100.00 99.75 99.39 99.43 99.41 97.71 99.22 0.78 99.27

IncSARLite 99.25 98.60 98.92 98.81 98.23 98.83 97.77 1.48 98.63

IncSARLAtt 99.47 99.59 99.66 99.83 99.75 98.70 98.39 1.08 99.34

B. COMPETING METHODS
The proposed IncSAR framework is compared with state-of-
the-art incremental learning methods that use PTMs, as well
as with state-of-the-art CIL algorithms designed specifically
for SAR-ATR recognition. Moreover, two variants of Inc-
SAR are tested in the experiments on the MSTAR dataset:
one incorporates a lite version of the ViT with the attention
module, and the other uses the lite version of the ViT with the
late-fusion strategy. Two main incremental setups consistent
with the literature were employed for the evaluation of the
proposed framework.

In the first setup, denoted as B4Inc1, the base task com-
prises 4 classes, while each incremental task consists of a

single class. The class order is shown in Table 2, following
the same order as in [33]. Nine CIL state-of-the-art methods
were employed together with two state-of-the-art methods
from the field of SAR-ATR, namely, DualPrompt, iCaRL,
FOSTER, aper_adapter, aper_ssf, SimpleCIL, MEMO, Fe-
CAM, RanPAC, ICAC, and a method proposed by Pan et
al. [33]. The PILOT [61] toolbox is used to test the state-
of-the-art methods in a standardized manner. The proposed
IncSAR achieves an average accuracy of 99.27%, demon-
strating very strong performance in classifying SAR im-
ages, and outperforming the state-of-the-art RanPAC method,
which yields an accuracy of 97.2%. IncSAR also surpasses
the state-of-the-art ICAC approach by 7.52% in terms of
AL and by 2.64% in terms of Ā. IncSAR demonstrates a
noteworthy percentage improvement of 81.07% regarding
performance drop, attaining 0.78% and outperforming FOS-
TER, which yields a performance drop of 4.12%. ICAC is
lagging behind IncSAR and FOSTER with a performance
drop of 4.66%. IncSARLite variant derives an Ā of 98.63%,
outperforming state-of-the-art methods, while IncSARLAtt

reaches an average accuracy of 99.34% making it the top-
performing method on the MSTAR dataset. It also achieves
a performance drop of 1.08% making the second best result
yielding an improvement of 73.79% compared to state-of-
the-art methods. The results are detailed in Table 4.

In the second setup, denoted as B2Inc2, all incremental
tasks are equally split, each consisting of two classes. The
same class order is employed, as in [25], [29], [30]. The vast
majority of methods in the base task demonstrate accurate
results achieving over 99%. As tasks increase sequentially,
catastrophic forgetting occurs, leading to performance drops,
as shown in Fig. 7. However, IncSAR exhibits robust perfor-
mance over all incremental tasks, showcasing the lowest PD
compared to the state-of-the-art. Experimental results attest
to the remarkable ability of IncSAR to resist catastrophic for-
getting achieving a PD of 0.78% and outperforming RanPAC,
which attains a PD of 3.05%, demonstrating an improvement
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TABLE 5: Comparison with state-of-the-art in each incre-
mental task on the MSTAR dataset. The classes are equally
divided into five tasks, with each task consisting of two
classes.

Method Accuracy in each task (%) PD ↓ Ā ↑
0 1 2 3 4

Hu et al. [26] 99.60 87.96 84.60 83.89 84.60 15.00 88.13
SSF-IL [32] - - - - - - 98.05
MLAKDN [29] 99.64 99.82 98.98 96.87 94.50 5.14 97.96
DERDN [30] 99.63 99.05 97.71 95.48 93.70 5.93 97.11
HPecIL [25] 99.45 98.83 98.79 96.70 96.16 3.29 97.99
Zhou et al. [21] - - - - - - 97.73
RanPAC [10] 98.18 98.51 96.45 95.15 95.13 3.05 96.68
IncSAR 100.00 99.89 98.94 99.15 99.22 0.78 99.44
IncSARLite 100.00 100.00 99.43 99.73 99.38 0.62 99.70
IncSARLAtt 100.00 99.89 97.94 97.60 97.90 2.10 98.66

of 74.43%. IncSAR surpasses MLAKDN by 5% in AL and
by 84.83% in PD. IncSAR yield an improvement of 3.18%
regarding AL and 76.07% regarding PD, when compared to
HPecIL. IncSAR outperforms its state-of-the-art competitors
resulting in an average accuracy of 99.44%. Moreover, note-
worthy improvements are noticed when the IncSARLite vari-
ant of IncSAR is employed along with the late fusion module,
yielding a performance drop of 0.62% outperforming state-
of-the art approaches. The same results stands for the aver-
age accuracy and last task accuracy achieving a 99.7% and
99.38%, respectively, surpassing in both cases the state-of-
the-art approaches. It should be also noted that IncSARLite.
achieves the best results in all incremental tasks in MSTAR
dataset. The third variant of IncSAR, which incorporates the
attention module, delivers exceptional performance, surpass-
ing state-of-the-art methods in both average accuracy and
minimizing performance drop It should also be noted that
IncSAR, and its variants, does not use exemplars, unlike
HPecIL, MLAKDN, and DERDN. This makes it an even
more challenging scenario, as it lacks direct access to past
data, unlike exemplar-based methods, which preserve and
replay stored samples to mitigate catastrophic forgetting. The
results are shown in Table 5.

TABLE 6: Comparative analysis of different variations of
IncSAR framework on the MSTAR dataset.

Method Parameters (M) MACs (G) Training Time (s)
IncSAR 106 17.62 466
IncSARLite 21 1.34 359
IncSARLAtt 17 1.30 92

Additionally, a comparative analysis of the variations of
IncSAR on the MSTAR dataset using the first setup is shown
in Table 6. All experiments were conducted on an RTX 4090
GPU with Multiply-Accumulate Operations (MACs) calcu-
lated using the fvcore [65] library. IncSAR requires the most
computational resources, consisting of 106M parameters and
17.62G MACs. In contrast, IncSARLite has 80.18% fewer
parameters and achieves a 22.9% reduction in training time
compared to IncSAR. IncSARLAtt maintains similar compu-
tational requirements to IncSARLite in terms of MACs, but
has 19% fewer parameters and exhibits a notable reduction
of 74.37% in training time. These results demonstrate that
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FIGURE 7: Comparison with state-of-the-art methods on
MSTAR dataset. Classification accuracy At and performance
drop PDt of each incremental task t are depicted.

the IncSAR framework can be effectively utilized in source-
constrained scenarios without compromising performance.

C. EVALUATION OF GENERALIZATION ABILITY

For the evaluation of the generalization ability of IncSAR and
its variants, three classes from OpenSarShip are added in the
last incremental tasks as done in [25], for fair comparisons.
The setup and experimental results are listed in Table 7. The
accuracy in each task and the performance dropping for var-
ious state-of-the-art methods are depicted in Fig. 8. Despite
the different distribution and varying sizes of targets in the
OpenSarShip dataset, IncSAR outperforms its competitors,
attaining an average accuracy of 98.62%, while HPecIL is
lagging behind deriving an accuracy of 97.1%. IncSAR is
also the top performing approach in the last incremental
task, demonstrating a noteworthy accuracy of 96.01%, while
HPecIL and ECIL+ yielded 94.07% and 92.26%, respec-
tively. The proposed IncSAR demonstrates superior results
in all incremental tasks compared to state-of-the-art methods
and the iCaRL one, which acts as a baseline. It is worth
mentioning that IncSAR derives a value of 3.99 regard-
ing performance drop, significantly outperforming HPecIL,
which attains a value of 5.38. This indicates that IncSAR
maintains high accuracy across all incremental tasks, effec-
tively addressing the challenge of catastrophic forgetting.
This is particularly significant in demanding generalization
experiments that closely mirror real-world applications. The
IncSARLite variant also achieved an average accuracy of
98.98% outperforming all its competitors. Moreover, its ro-
bust performance is attested by the performance drop rate of
3.74%. The IncSARLAtt variant derives the top performance
drop value of 3.34%, while it reaches a 98.17% in terms
of average accuracy. The rest of the methods demonstrate
higher values reaching a PD of 10.11 for the ECIL method.
Compared to HPecIL, IncSAR improves by 2.06% in AL

and by 25.84% in PD. These results attest to the remarkable
efficacy of IncSAR and its variants in handling the cross-
dataset challenges posed by the OpenSARShip dataset.
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TABLE 7: Results in cross-dataset testing. Three classes of the OpenSarShip dataset are added in the last incremental tasks to
evaluate the generalization ability of IncSAR.

Accuracy in each task (%) PD ↓ Ā ↑
Method ZIL131/D7 BTR70/T72 BMP2/BRDM2 T62/BTR60 2S1/ZSU234 Bulk Carrier/Container Tanker

0 1 2 3 4 5 6
iCaRL [5] 99.27 99.25 93.40 92.32 93.88 90.62 89.99 9.28 94.1
ECIL [25] 99.45 98.82 98.54 95.31 93.65 94.20 89.34 10.11 95.61
ECIL+ [25] 99.63 98.51 98.08 96.69 96.41 94.43 92.26 7.37 96.57
HPecIL [25] 99.45 98.83 98.79 96.70 96.16 95.89 94.07 5.38 97.10
IncSAR 100.00 99.89 98.94 99.15 99.22 97.13 96.01 3.99 98.62
IncSARLite 99.82 99.89 99.65 99.57 99.59 98.27 96.08 3.74 98.98
IncSARLAtt 100.00 99.89 97.94 97.60 97.90 97.25 96.66 3.34 98.17
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FIGURE 8: Comparison with state-of-the-art methods for
testing the generalization ability of the proposed framework.

D. CROSS-DOMAIN EVALUATION
To further attest to the robustness of the IncSAR framework,
we conducted a cross-domain evaluation that challenges the
model’s ability to generalize across distinct SAR image
datasets, namely, SAR-AIRcraft-1.0, MSTAR, and Open-
SARShip. The goal of this setup is to simulate a realistic and
demanding scenario where the model first learns to classify
aircraft images and must incrementally adapt to recognize
military vehicles and ships, all with minimal forgetting of
previously learned classes. IncSAR is trained on four base
classes, as shown in Table 3, according to B4Inc1 scenario.
In each incremental task, one additional class is introduced
from the SAR-AIRcraft-1.0 dataset until all aircraft classes
are learned. Afterwards, the model transitions to learning
ten additional classes of military vehicles from the MSTAR
dataset, followed by the three classes of OpenSARShip,
where it encounters a new set of ship images. This pro-
gressive training, moving from aircraft to military vehicles
and finally to ships, simulates a cross-domain learning path
requiring the model to handle increasingly diverse visual
categories without compromising prior knowledge.

IncSAR achieves a high Ā of 96.78% and an accuracy of
93.7% on the last task, showing that it generalizes effectively
across the three domains. However, the model exhibits a
PD of 5.42%, indicating some degree of forgetting as new
classes and domains are introduced. This result suggests that
while IncSAR can manage a cross-domain shift, the transi-
tion between disparate categories introduces challenges for
knowledge retention. IncSARLite yields similar outcomes,
achieving an Ā of 96.73% with a slightly higher PD of 5.7%.
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FIGURE 9: Cross-domain evaluation combining SAR-
AIRcraft-1.0, MSTAR, and OpenSARShip.

This variant performs comparably to IncSAR but demon-
strates a marginally larger performance drop. IncSARLAtt

demonstrates a distinct advantage in terms of PD, achieving
the lowest performance drop at 3.08%. It also reports a higher
last-task accuracy AL = 94.67%, highlighting the attention
module’s utility in mitigating forgetting and retaining learned
features when adapting to new domains. However, the aver-
age accuracy Ā = 96.57% is slightly lower than the other two
variants. The cross-domain results are shown in Table 8 and
in a more detailed view the accuracy in each task is depicted
in Fig. 9.

These results collectively demonstrate the capability of the
IncSAR framework in tackling cross-domain SAR classifica-
tion tasks. IncSARLAtt’s superior performance in mitigating
forgetting highlights the effectiveness of attention mecha-
nisms, especially in complex cross-domain scenarios. How-
ever, all variants show some performance drop, indicating
that cross-domain incremental learning remains a challeng-
ing task, particularly when the target categories vary greatly
in visual characteristics and domain-specific features.

TABLE 8: Cross-domain evaluation combining SAR-
AIRcraft-1.0, MSTAR, and OpenSARShip.

Method Ā PD AL

IncSAR 96.78 5.42 93.7
IncSARLite 96.73 5.7 93.42
IncSARLAtt 96.57 3.08 94.67
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E. ABLATION STUDIES
1) Contribution analysis of IncSAR modules
The proposed IncSAR framework benefits from multiple
modules, including RPCA, SSF adaptation of ViT, fusion
of the individual SAR-CNN and ViT branches, RP, and
LDA. To explore the contribution of these modules, a series
of experiments were conducted and the results are shown
in Table 9. The ablation experiments were conducted on
the MSTAR dataset using the B4Inc1 setup. First, we as-
sess the performance of ViT-B/16 as a network backbone,
where the models’ weights remain frozen throughout the
training process. This serves as a baseline to understand
the capabilities of the pre-trained ViT-B/16 model without
any fine-tuning and other componenets enabled, achieving
76.87% in terms of AL. When ViT-B/16 is adapted with the
SSF technique, RP, and LDA the model improves AL by
27.09%, showing that if there is sufficient data in the base
task, adapting the PTM to the downstream dataset can be
effective. Moreover, experiments employing only the single
branch with SAR-CNN were conducted achieving an aver-
age accuracy of 96.45%. We demonstrate the improvement
achieved by RPCA filtering, when using the proposed SAR-
CNN architecture as a backbone, where IncSAR attains an
average accuracy of 98.58% compared to the resulting ac-
curacy without employing the RPCA module. This indicates
that RPCA enhances SAR-CNN’s ability to provide more
distinguishable features, leading to better class separability.
When both backbone branches are combined, the late-fusion
strategy remarkably enhances the detection ability of Inc-
SAR, resulting in an average accuracy of 99.27%, while last
task’s accuracy reaches 99.22%. This indicates that com-
bining the specialized features produced by the SAR-CNN
with the more general features derived by the pre-trained
ViT leads to a significant increase in performance. Moreover,
when TinyViT [18] and SAR-CNN are combined along with
the late fusion module the proposed approach derives an
average accuracy of 98.63% which is further increased when
the late fusion is substituted by the attention module yielding
an average accuracy of 99.34%, as demonstrated in Table 9.

TABLE 9: Ablation studies on multiple components of Inc-
SAR on MSTAR dataset.

Model SSF RPCA Fusion RP LDA Ā AL

ViT-B/16 x x x x x 84.63 76.87
ViT-B/16 x x x ✓ x 85.48 77.57
ViT-B/16 x x x x ✓ 98.56 96
ViT-B/16 x x x ✓ ✓ 98.83 96.66
ViT-B/16 ✓ x x ✓ ✓ 98.84 97.69
TinyViT [18] x x x ✓ ✓ 97.53 92.49
ViT-Ti [55] ✓ x x ✓ ✓ 96.55 91.92
SAR-CNN x x x ✓ ✓ 96.45 95.67
SAR-CNN x ✓ x ✓ ✓ 98.58 98.14
ViT-B/16 + SAR-CNN ✓ ✓ late ✓ ✓ 99.27 99.22
TinyViT + SAR-CNN ✓ ✓ late ✓ ✓ 98.63 97.77
ViT-Ti + SAR-CNN ✓ ✓ attention ✓ ✓ 99.34 98.39

To further validate the performance of the proposed Inc-
SAR approach, we conducted experiments on the SAR-
AIRcraft-1.0 benchmark dataset under the B4Inc1 setup.
The selected class order is shown in Table 3. The results

TABLE 10: Ablation studies on multiple components of
IncSAR on SAR-AIRcraft-1.0 dataset and comparisons with
state-of-the-art.

Method SSF RPCA Fusion Accuracy in each task (%) PD ↓ Ā ↑
0 1 2 3

FeCAM [64] x x x 77.38 76.90 77.25 77.69 −0.31 77.30
RanPAC [10] x x x 96.25 95.70 95.83 94.38 1.87 95.54
Vit-B/16 x x x 95.75 95.40 95.00 80.92 14.83 91.77
Vit-B/16 ✓ x x 97.25 97.30 97.08 97.08 0.17 97.18
SAR-CNN x x x 98.88 96.10 98.42 96.00 2.88 97.35
SAR-CNN x ✓ x 98.88 98.00 97.83 97.00 1.88 97.89
Vit-B/16 + SAR-CNN ✓ x late 98.38 97.20 98.17 96.31 2.07 97.52
Vit-B/16 + SAR-CNN ✓ ✓ late 98.38 97.10 97.33 98.31 0.07 97.78
TinyViT [18] + SAR-CNN x x late 98.88 98.90 98.67 83.31 15.57 94.94
TinyViT [18] + SAR-CNN x ✓ late 98.12 97.70 97.92 97.92 0.20 97.92
ViT-Ti + SAR-CNN ✓ ✓ attention 97.75 97.60 96.83 96.69 1.06 97.21

shown in Table 10, highlight the superior performance of
IncSAR compared to state-of-the-art methods like FeCAM
and RanPAC in both average accuracy and performance drop.
The proposed model, which integrates a dual-branch TinyViT
[18] and SAR-CNN architecture with RPCA and a late fusion
strategy, achieves an average accuracy of 97.92%, outper-
forming FeCAM (77.30%) and RanPAC (95.54%) by signifi-
cant margins. Moreover, IncSAR demonstrates a remarkably
low performance drop of 0.20%, indicating its strong ability
to retain learned knowledge across incremental tasks. In
contrast, RanPAC suffers from a PD of 1.87%, demonstrating
more noticeable degradation in performance as new tasks are
introduced. In a variant of the proposed model that includes
SSF, RPCA, and the late fusion strategy, the model performs
accurately, achieving an average accuracy of 97.78% and an
exceptionally low performance drop of 0.07%. This minimal
PD indicates almost perfect retention of learned knowledge,
affirming the effectiveness of both the SSF and RPCA mod-
ules in reducing catastrophic forgetting. These components
help the model maintain performance stability across all
tasks in this challenging incremental learning scenario. When
both the SSF and RPCA modules are removed, the model’s
performance drops sharply, achieving only 94.94% average
accuracy, while the performance drop increases drastically to
15.57%. This significant degradation highlights the crucial
role these components play in both feature extraction and
noise reduction in SAR data. Even when only RPCA is
removed, the model still maintains strong performance, with
an average accuracy of 97.52% and a PD of 2.07%. This
suggests that the late fusion strategy and SSF continue to
contribute to robust performance, though RPCA evidently
plays an important role in further reducing PD by denois-
ing the SAR images and improving feature consistency. In
another variation of the IncSAR framework, where attention-
based module replaces the late fusion strategy, the model
achieves an average accuracy of 97.21% with a performance
drop of 1.06%. Although this variant slightly underperforms
compared to the late fusion approach, the use of the attention
mechanism still proves effective in managing task transitions,
dynamically weighting important features for improved task-
specific learning.
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2) Comparative analysis of backbone networks
The detection ability of SAR-CNN within the IncSAR frame-
work is evaluated, comparing its performance against a va-
riety of pre-trained backbone networks. Table 11 demon-
strates the comparison of the proposed IncSAR by employing
DenseNet-121 [66], ResNet-18 [22], ResNet-101 [22], VGG-
19 [67], and CLIP-ViT-L/14 [68] and the proposed SAR-
CNN on the MSTAR dataset under the B2Inc2 setup. The
experiments utilize the IncSAR framework, as described in
Section III, with the ViT branch remaining consistent, while
different networks are tested in the second branch of Inc-
SAR. It is observed that freezing the weights demonstrated
better performance compared to fine-tuning them during the
base task. SAR-CNN is a lightweight network, that shows
remarkable memory efficiency with only 140k parameters,
outperforming the rest of the backbones that require much
higher memory budgets. DenseNet-121 requires 7M param-
eters, achieving an Ā of 97.92% and a PD of 3.31%. When
compared to ResNet-101, which yields to 98.37% and 2.47%
in Ā and PD, respectively, SAR-CNN leads to a performance
improvement achieving 99.14% in Ā and 1.24% in PD
outperforming all its competitors. Moreover, CLIP-ViT-L/14
requires 303M parameters and reaches an Ā of 98.39% and
a PD of 3.1%. VGG-19 is lagging behind SAR-CNN and
DenseNet-121, yielding an Ā of 98.30% and a PD of 2.89%
and comprising 140M parameters.

TABLE 11: Comparative analysis of different backbone net-
works in IncSAR framework.

Network Params Ā PD AL

DenseNet-121 [66] 7M 97.92 3.31 96.33
ResNet-18 [22] 11M 98.47 2.76 97.24
ResNet-101 [22] 44M 98.37 2.47 97.53
VGG-19 [67] 140M 98.30 2.89 97.11
CLIP-ViT-L/14 [68] 303M 98.39 3.10 96.54
SAR-CNN 140K 99.14 1.24 98.76

3) IncSAR evaluation on limited data scenarios
Subsets of the MSTAR dataset are randomly selected to
assess the detection ability of the proposed framework under
various reduced training data scenarios. Specifically, three
different scenatios are tested, employing 80%, 50%, and
30% of the initial training data. When 50% of the initial
training data are employed, IncSAR yields an average ac-
curacy of 98.64%, outperforming state-of-the-art MLAKDN
and HPECIL methods, which attain 97.96% and 97.92%, re-
spectively. In the challenging scenario of retaining only 30%
of samples, IncSAR demonstrates a noteworthy performance
of 97.48% in terms of average accuracy, which is slightly
lower than MLAKDN by 0.48%. These results underscore
IncSAR’s efficiency in detecting SAR images with limited
training data, highlighting its capability to generalize well in
real-world scenarios.

Furthermore, we investigate the performance of IncSARLite

in data-limited scenarios, using the same portion of training

data as in previous experiments. When trained with 80%
of the initial training data, IncSARLite achieves top per-
formance, with an Ā of 99.7%, outperforming MLAKDN,
HPecIL, and other IncSAR variants. Additionally, it regis-
ters the best PD value of 0.45%, indicating its robustness
in incremental learning, even with reduced training data.
Notably, even when the model is trained with 50% of the
initial training data, it achieves a remarkable Ā of 98.99%
and maintains a PD of 1.02%, outperforming state-of-the-
art methods. This demonstrates the effectiveness of the
IncSARLite variant in scenarios with significantly limited
data. In the most challenging case, when only 30% of the
initial training data is used, IncSARLite continues to perform
impressively, achieving Ā of 97.35%, showcasing its adapt-
ability and resilience in extreme data-scarcity conditions. In
comparison, the second variant, IncSARLAtt, also delivers
strong results. With 80% of the training data, it achieves an
Ā of 98.59%, outperforming state-of-the-art methods, though
trailing behind the other IncSAR variants. When trained with
50% of the data, IncSARLAtt records an Ā of 97.82% with a
PD of 3.34%, showing good performance but slightly higher
forgetting compared to the IncSARLite variant. Detailed
results are shown in Table 12.

TABLE 12: Ablation study of the IncSAR framework under
training in different portions of the MSTAR dataset.

Method Size (%) Accuracy in each task (%) PD ↓ Ā ↑
0 1 2 3 4

IncSAR

100 100.00 99.89 98.94 99.15 99.22 0.78 99.44
80 100.00 99.89 98.08 99.09 98.93 1.07 99.19
50 99.82 99.68 97.94 97.76 98.14 1.68 98.66
30 100.00 99.47 95.60 95.79 96.54 3.46 97.48

IncSARLite

100 100.00 100.00 99.43 99.73 99.38 0.62 99.70
80 100.00 99.89 99.57 99.52 99.55 0.45 99.70
50 99.82 99.89 97.80 98.67 98.80 1.02 98.99
30 99.64 99.79 96.81 96.91 93.61 6.03 97.35

IncSARLAtt

100 100.00 99.89 97.94 97.60 97.90 2.10 98.66
80 100.00 99.89 97.80 97.28 97.98 2.02 98.59
50 100.00 99.89 96.45 96.16 96.66 3.34 97.83
30 100.00 99.36 94.32 93.07 94.10 5.90 96.17

MLAKDN [29] 100 99.64 99.82 98.98 96.87 94.50 5.14 97.96
HPecIL [25] 100 99.45 98.83 98.79 96.70 96.16 3.26 97.92

To further assess the robustness of IncSAR in real-world
scenarios with limited training data, we conducted ablation
experiments on the SAR-AIRcraft-1.0 benchmark dataset,
testing the model with various portions of the training set.
The performance of each variant, i.e., IncSAR, IncSARLite,
and IncSARLAtt, was also evaluated at 80%, 50%, and 30%
of the initial training data. With the full dataset, IncSAR
achieves Ā of 97.78% and a PD of 0.07%, showcasing its
ability to maintain high accuracy across tasks. When trained
with 80% of the data, IncSAR slightly improves, reaching
Ā of 98.23% and a negative PD of −0.19%, demonstrating
stability even with reduced data. As the data availability
decreases further, IncSAR’s performance starts to decline. At
50%, the model reaches a Ā of 95.39% with an increased
PD of 6.11%, showing some loss in its ability to retain
previously learned information. With 30% of the data, the
model achieves Ā of 91.52% with a negative PD of −0.73%,
maintaining decent performance but reflecting greater sensi-
tivity to data reduction.

IncSARLite achieves noteworthy results even with limited
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data, demonstrating its flexibility and stability. Using the full
100% of the data, it achieves Ā of 97.91% and PD of 0.20%,
comparable to IncSAR’s performance. With 80% of the data,
IncSARLite maintains high accuracy, achieving Ā of 97.89%
with a PD of −0.56%, again showcasing a small performance
gain from the original setup. In lower data regimes, however,
IncSARLite shows noticeable variance. At 50% of the data,
it achieves Ā of 93.60% and a PD of −0.04%, indicating
resilience but with some loss in accuracy. When data avail-
ability is reduced to 30%, the model’s performance declines
more significantly, with Ā dropping to 90.09% and PD in-
creasing to 11.58%. This highlights that, while IncSARLite

performs well with moderate data reduction, it becomes more
susceptible to performance drops in extreme data-scarce sce-
narios. IncSARLAtt also shows good overall performance but
is generally outpaced by the other two variants. With the
full dataset, IncSARLAtt achieves Ā of 97.21% and a PD of
1.06%, a bit lower than the other two variants. With 80% of
the data, the model’s accuracy decreases to Ā of 94.66% and
PD of 0.69%, indicating some sensitivity to data reduction.
At 50% data, IncSARLAtt maintains respectable accuracy at
Ā of 94.14% with PD of 0.53%. When further reduced to
30%, it achieves Ā of 88.86% and PD of 0.88%, showing
effective generalization but a larger drop compared to the
other variants. Detailed results are shown in Table 13.

This evaluation demonstrates that IncSAR and IncSARLite

perform effectively under reduced data conditions, with
IncSARLite showing particular resilience at moderate data
reductions (80% and 50%). IncSARLAtt, while achieving
good results, is slightly more impacted by limited data, espe-
cially at extreme reductions. These results reinforce the effi-
cacy of the IncSAR framework and its variants in maintaining
high accuracy and minimizing catastrophic forgetting across
incremental tasks, even in challenging, data-constrained en-
vironments.

TABLE 13: Ablation study of the IncSAR framework under
training in different portions of the SAR-AIRcraft dataset.

Method Size (%) Accuracy in each task (%) PD ↓ Ā ↑
0 1 2 3

IncSAR

100 98.38 97.10 97.33 98.31 0.07 97.78
80 98.12 98.50 98.00 98.31 −0.19 98.23
50 96.88 97.10 96.83 90.77 6.11 95.39
30 94.12 84.30 92.83 94.85 −0.73 91.52

IncSARLite

100 98.12 97.70 97.92 97.92 0.20 97.91
80 97.75 98.10 97.42 98.31 −0.56 97.89
50 96.88 83.70 96.92 96.92 −0.04 93.60
30 94.50 93.70 89.25 82.92 11.58 90.09

IncSARLAtt

100 97.75 97.60 96.83 96.69 1.06 97.21
80 95.00 95.00 94.33 94.31 0.69 94.66
50 94.38 94.60 93.75 93.85 0.53 94.14
30 88.88 89.40 89.17 88.00 0.88 88.86

F. LIMITATIONS
The proposed framework achieves notable improvements
over state-of-the-art methods, as demonstrated in the exper-
imental results; however, there are aspects that require fur-
ther consideration. Although the dual-fusion strategy, which
combines a ViT and the custom-designed SAR-CNN is suc-
cessful in utilizing both global and domain-specific features

it is still technically difficult to achieve the optimal trade-
off between these branches. Additionally, while improv-
ing feature representation the attention-based mechanism in
the IncSARLAtt variant adds architectural complexity and
marginally increases computational requirements. Further-
more, even though it is essential for increasing classification
accuracy, the added RPCA module for speckle noise re-
duction results in additional computational overhead, which
might make it impractical for applications with limited re-
sources or strict real-time requirements. In order to achieve
optimal performance, the framework also depends on hyper-
parameter tuning such as those pertaining to random projec-
tions and LDA decorrelation. This could pose challenges in
scenarios involving large distribution shifts that would render
the selected hyperparameters suboptimal. Future research
will concentrate on resolving these issues by simplifying the
framework’s architecture to increase scalability and optimize
computational efficiency as well as investigating ways to
expand its applicability to a wider range of datasets and
operational contexts.

V. CONCLUSION
A novel incremental learning framework for SAR target
recognition, IncSAR, has been proposed based on exemplar-
free prototype learning. IncSAR integrates a neural network-
based RPCA module to reduce SAR speckle noise and em-
ploys a random projection layer to improve feature linear
separability. Using a late-fusion strategy, IncSAR combines
a ViT backbone for generalized features with a specialized
custom SAR-CNN for domain-specific details, while an
attention-based module enhances feature interactions. Inc-
SAR achieves a strong balance between stability and plas-
ticity, outperforming state-of-the-art methods on MSTAR,
SAR-AIRcraft, and OpenSARShip datasets. Extensive eval-
uations, including data-limited and cross-domain settings,
demonstrate IncSAR’s resilience to catastrophic forgetting
and robust generalization across SAR domains, supporting
its applicability in real-world scenarios.
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