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Abstract This chapter discusses the problem of Near-Duplicate Video Retrieval
(NDVR). The main objective of a typical NDVR approach is: given a query video,
retrieve all near-duplicate videos in a video repository and rank them based on
their similarity to the query. Several approaches have been introduced in the lit-
erature, which can be roughly classified in three categories based on the level of
video matching, i.e. (i) video-level, (ii) frame-level and (iii) filter-and-refine match-
ing. Two methods based on video-level matching are presented in this chapter. The
first is an unsupervised scheme that relies on a modified Bag-of-Word (BoW) video
representation. The second is a supervised method based on Deep Metric Learn-
ing (DML). For the development of both methods, features are extracted from the
intermediate layers of Convolutional Neural Networks and leveraged as frame de-
scriptors, since they offer a compact and informative image representation, and lead
to increased system efficiency. Extensive evaluation has been conducted on pub-
licly available benchmark datasets, and the presented methods are compared with
state-of-art approaches, achieving the best results in all evaluation setups.
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4.1 Introduction

The problem of verifying multimedia content (images, video) that is contributed by
users of social media platforms such as YouTube, Instagram and Facebook is of
increasing interest given the pervasive use of these platforms and the modern tech-
nological capabilities for real-time capturing and sharing of rich multimedia content.
For instance, in the context of breaking news events, such as natural disasters or ter-
rorist attacks multiple eyewitness reports are posted and shared through social media
platforms. Yet, the reliability and veracity of such reports is often questioned due to
the increasing amount of misleading or manipulated content that can quickly spread
through online social networks and cause disinformation at large scale. As a result,
there is a profound need for technologies that can assist the process of multimedia
verification (or the inverse process of debunking fake content).

One popular verification approach adopted by journalists [42] is to try to establish
the provenance of a social media post by looking for near-duplicate media items
that were posted in the past. For instance, it has been found that images or videos
from past events are often re6posted in the context of breaking news events falsely
claiming to have been captured in the new setting. For instance, the photo in the
tweet in Fig. 4.1 was originally published by the Wall Street Journal on April 20111.
However, the same photo was shared thousands of times more than one year later
during the Hurricane Sandy (29 Oct 2012), supposedly depicting a dangerous storm
descending in New York. To identify such cases and find the origin of an image,
journalists often use online services such as Google Images2 and TinEye3. Yet, there
is currently no available service or tool to support reverse video search. The research
field focusing on this problem is Near-Duplicate Video Retrieval (NDVR).

Due to the exponential growth of social media applications and video sharing
websites, NDVR is increasingly important, yet it poses a highly challenging task. At
the moment, YouTube reports almost two billions users and more than one billion
hours of video viewed per day4. Due to the uncontrolled nature of publishing in
video platforms, a very common phenomenon is the publication of multiple videos
that are either near or partial duplicates of an original video. To this end, our goal
is to build an NDVR approach that is able to efficiently and effectively retrieve all
such videos in order to support the multimedia verification process.

Being a relatively new research topic, there is a variety of definitions and interpre-
tations of NDVR among the multimedia research community. The definitions vary
with respect to the level of resemblance that determines whether a pair of videos are
considered related. These range from a very narrow scope, where only the almost
identical videos are considered positive pairs [55], to very broad where videos from
the same event [38] or with the same semantic content [4] are labeled as related. The
definition that is closer to the needs of multimedia verification is the one provided

1 https://blogs.wsj.com/metropolis/2011/04/28/weather-journal-clouds-gathered-but-no-tornado-damage/
2 https://images.google.com/
3 https://www.tineye.com/
4 https://www.youtube.com/yt/about/press/ (accessed on March 2019)
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Fig. 4.1: Tweet example of re-posted image claiming to be breaking news.

in [55]. Based on this, Near-Duplicate videos (NDVs) are considered those that
originate from the same source, but can be different in terms of photometric vari-
ations (color, light changes), editing operations (caption, logo insertion), encoding
parameters (file format), different lengths, or camera settings (camera viewpoint). A
number of such NDV examples are presented in Fig. 4.2.

Considerable effort has been invested from the research community to the NDVR
problem. Yet, many of the proposed methods are computationally intensive and thus
not easy to apply in a setting where many videos need to be verified in very short
time. Another limitation is the lack of flexibility, in a sense that near-duplicate search
is often too strict (returns only almost exact copies of the input videos) and in some
cases it is not catered for the specific requirements of the problem (e.g. when a
user needs to look for partial near-duplicate search or for frame-to-video search).
Another issue of many state-of-the-art methods is that they adopt a dataset-specific
approach: the same dataset is used for both development and evaluation. This leads
to specialized solutions that typically exhibit poor performance when used on dif-
ferent video collections.

As a result, the challenge in building an effective NDVR solution is to offer flex-
ibility with respect to the definition of near-duplicate videos and additionally sup-
port different requirements of relevance for the verification setting, namely partial-
duplicate search), very high precision and recall scores, and at the same time the
possibility for scalable indexing massive collections of multimedia and achieving
low response times.

Motivated by the excellent performance of deep learning in a wide variety of mul-
timedia problems, we have developed two NDVR approaches that incorporate deep
learning and can be used in different application scenarios. For both schemes, we
use features from intermediate convolutional layers [40, 60] of pre-trained Convo-
lutional Neural Networks (CNNs) based on the Maximum Activations of Convolu-
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Query Video Near-Duplicate Videos

Fig. 4.2: Examples of queries and near-duplicate videos from the CC WEB VIDEO
dataset.

tions (MAC). The first approach is unsupervised and is a variation of the traditional
Bag-of-Words (BoW) scheme. It uses two layer aggregation techniques, organized
in an inverted file structure for fast retrieval. This method does not need labeled data,
and as a result it can be applied on any video corpus. However, due to several limita-
tions of this approach (i.e. volatile performance), we also built a second supervised
solution leveraging Deep Metric Learning (DML). We set up a DML framework
based on a triplet-wise scheme to learn a compact and efficient embedding function.
A significant benefit of the learning scheme is that it gives the opportunity to be
trained in various scenarios; thus, it provides us with the required flexibility with
respect to the NDV definition. Both approaches outperform several state-of-the-art
methods on the widely used CC WEB VIDEO dataset, and the recently published
FIVR-200K dataset.

The reminder of the chapter is organized as follows. In Section 4.2, we review the
related literature in the field of NDVR by providing an outline of the major trends in
the field. In Section 4.3, we present the two aforementioned NDVR approaches that
have been developed within the InVID project [27, 28]. In Section 4.4, we report on
the results of a comprehensive experimental study, including a comparison with five
state-of-the-art methods. In Section 4.5, we summarize the findings of our work and
offer an outlook into future work in the area.
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4.2 Literature review

In this section we review several representative works in the literature. NDVR is a
challenging problem and has attracted increasing research interest during the last
two decades. For a comprehensive overview of the NDVR literature, the reader is
referred to Liu et al. [32]. The definition of the NDVR problem is discussed and
compared to those of similar research problems (Section 4.2.1). Additionally, a va-
riety of approaches are presented and classified based on the type of similarity com-
puted between videos (Section 4.2.2). Finally, several publicly available benchmark
datasets used to evaluate such approaches are described (Section 4.2.3).

4.2.1 Definition and related research problems

There is a variety of definitions and interpretations among the multimedia research
community regarding the concept of NDVs, as pointed in [33]. The representative
and predominant definitions are those proposed in Wu et al. [55], Shen et al. [41]
and Basharat et al. [4]. These vary with respect to the level of resemblance that
determines whether a pair of videos are considered to be near-duplicates.

Wu et al. [55] adopted the most narrow scope among the definitions: NDVs were
considered only those that are identical or approximately identical videos, i.e. close
to being exact duplicates of each other, but different in terms of file format, encod-
ing parameters, minor photometric variations, editing operations, length, and other
modifications. By contrast the definition in Shen et al. [41] extended this to videos
with the same semantic content but different in various aspects introduced during
capturing time, including photometric or geometric settings. Another definition was
suggested by Basharat et al. [4], which considered NDVs as videos originating from
the same scene. The same semantic concept can occur under different illumination,
appearance, scene settings, camera motion, etc.

Cherubini et al. [8] conducted a large-scale online survey to formulate the defi-
nition of NDVs based on the human perception. The results revealed that the tech-
nical definitions with respect to manipulations of visual content in Wu et al. [55]
and Shen et al. [41] agree to the human perception. However, videos differing with
respect to overlaid or added visual content were not perceived as near-duplicates. It
is evidenced that users perceive as near-duplicate those videos that are both visually
similar and semantically very close [8].

Additionally, NDVR is closely related with other research fields, such as Video
Copy Detection (VCD) [31] and Event Video Retrieval (EVR) [38]. The definition
of video copies in VCD is very close to the one of NDVR, yet it is slightly narrower.
Videos derived from the same source video and differing only with respect to pho-
tometric or geometric transformations are considered as copies based on Law-To et
al. [31]. Also, the objective of a VCD approach is to identify the copied videos and
detect the particular video segments that have been copied. The EVR problem was
formulated by Revaud et al. [38]. The objective of EVR is the retrieval of videos that
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Research Video rep. mAP
Wu et al., 2009 [55] GV 0.892
Shang et al., 2010 [39] GV 0.953
Song et al., 2013 [46] HC 0.958
Hao et al., 2017 [12] HC 0.971
Jing et al., 2018 [23] HC 0.972

Table 4.1: Video representation and mean Average Precision (mAP) on
CC WEB VIDEO dataset of five video-level matching methods. GV stands for
global vectors, HC for hash codes.

capture the same event. The definition of same-event videos is very broad, including
videos that have either spatial or temporal relationship.

4.2.2 NDVR approaches

The NDVR approaches can be classified based on the level of matching performed
to determine near-duplicity into video-level (Section 4.2.2.1), frame-level (Section
4.2.2.2) and filter-and-refine matching (Section 4.2.2.3)

4.2.2.1 Video-level matching

Video-level approaches have been developed to deal with web-scale retrieval. In
such approaches, videos are usually represented with a global signature such as
an aggregated feature vector [55, 34, 16, 39, 6] or a hash code [45, 46, 12, 11,
23]. The video matching is based on the similarity computation between the video
representations. Table 4.1 displays the performance of five video-level approaches
on CC WEB VIDEO.

A common process to generate a video representation is by the combination of
visual features extracted from the video frames into a single feature vector. Wu et al.
[55] introduced a simple approach for the video signature generation. They extracted
HSV features from the video keyframes and averaged them to create a single vector.
The distance between two video signatures was computed based on their Euclidean
distance. Huang et al. [16] proposed a video representation model called Bounded
Coordinate System (BCS), which extended Principal Component Analysis (PCA)
over the colour histograms of the video frames. To compute the similarity between
two BCS signatures, scaling and rotation were both considered for matching videos.
To improve retrieval efficiency, a two-dimensional transformation method was in-
troduced based on the bi-directional axes in BCS. Liu et al. [34] proposed a method
where each video was compared with a set of seed vectors, derived from a number of
reference videos. The percentage of video frames that were close to the correspond-
ing reference video was calculated based on the Euclidean distance of their colour
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histograms and used to determine the video similarity. Shang et al. [39] introduced
compact spatio-temporal features based on Local Binary Patterns (LBP) [59], called
STF-LBP, to represent videos and constructed a modified inverted file index. These
spatio-temporal features were extracted based on a feature selection and w-shingling
scheme. They adopted Jaccard similarity to rank videos. Cai et al. [6] presented a
large-scale BoW approach by applying a scalable K-means clustering technique on
the color correlograms [14] of a sample of frames and using inverted file indexing
[44] for the fast retrieval of candidate videos. They used cosine similarity to measure
similarity between two candidate videos.

Hashing schemes have been extensively used for NDVR. Song et al. [45] pre-
sented an approach for Multiple Feature Hashing (MFH) based on a supervised
method that employed multiple frame features (i.e. LBP and HSV features) and
learned a group of hash functions that map the video keyframe descriptors into the
Hamming space. The video signatures were generated by averaging the keyframe
hash codes. The Hamming distance was employed to calculate video distances. They
extended their approach in [46] by including information of the keyframe groups
into the objective function, so as to introduce temporal information in the learning
process of the hash functions, which led to a marginal performance increase. Hao et
al. [12] combined multiple keyframe features to learn a group of mapping functions
that projected the video keyframes into the Hamming space. The combination of the
keyframe hash codes generated a video signature that constituted the video repre-
sentation in the dataset. The Kullback-Leibler (KL) divergence measure was used
to approximate the retrieval scores. They extended their work in [11] by employing
t-distribution to estimate the similarity between the relaxed hash codes and intro-
duced a deep hashing architecture based on a 3-layer CNN. Jing et al. [23] proposed
a supervised hashing method called Global-View Hashing (GVH), which utilized
relations among multiple features of video keyframes. They projected all features
into a common space and learned multi-bit hash codes for each video using only
one hash function. The Hamming distance of the learned hash codes was used to
rank the retrieved videos with respect to an input query.

4.2.2.2 Frame-level matching

In the case of frame-level matching approaches, the near-duplicate videos are de-
termined by the comparison between individual video frames or sequences. Typical
frame-level approaches [48, 10, 32, 22, 54] calculate the frame-by-frame similarity
and then employ sequence alignment algorithms to compute similarity at the video
level. Moreover, a lot of research effort has been invested in methods that exploit
spatio-temporal features to represent video segments in order to facilitate video-
level similarity computation [15, 56, 38, 37, 3]. Table 4.2 displays the performance
of four approaches on the VCDB dataset.

Frame-level methods usually extract local information of video frames and gen-
erate a global frame representation for similarity calculation and video matching.
Tan et al. [48] introduced an approach based on Temporal Networks (TN). They
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Research Features F1 score
Jiang et al., 2014 [21] HC 60.0%
Jiang et al., 2016 [22] DL 65.0%
Wang et al., 2017 [54] DL 70.4%
Baraldi et al., 2018 [3] DL+ST 68.7%

Table 4.2: Employed features and F1 score (%) on VCDB of four frame-level match-
ing methods. HC stands for hand-crafted, DL for deep learning and ST for spatio-
temporal features.

embedded temporal constrains into a network structure and formulated the partial
video alignment problem into a network flow problem. The near-duplicate video
segments were determined based on the longest network’s paths. Also, to precisely
decide the boundaries of the overlapping segments, pair-wise constraints generated
from keypoint matching were applied. Douze et al. [10] detected points of interest
using the Hessian-Affine region detector [36], and extracted SIFT [35] and CS-LBP
[13] descriptors, in order to create a BoW codebook [44] for Hamming Embedding
with weak geometric consistency [17]. Using post-filtering, they verified retrieved
matches with spatio-temporal constrains and devised the so-called temporal Hough
Voting (HV). Jiang et al. [22] employed a pre-trained CNN to extract global features
for the video frames and they also trained another CNN with pairs of image patches
that captures the local information of frames. They experimented with TN and HV
in order to detect the copied video segments. Wang et al. [54] proposed a compact
video representation by combining features extracted from pre-trained CNN archi-
tectures with sparse coding to encode them into a fixed length vector. To determine
the copied video segments, they constructed TNs based on the distance between the
extracted features.

Some works utilized spatio-temporal features to accelerate the matching process
and improve the performance by considering not only the spatial information of
frames but also the temporal relations among frames. Huang et al. [15] proposed a
one-dimensional Video Distance Trajectory (VDT) based on the continuous changes
of consecutive frames with respect to a reference point. VDT was further segmented
and represented by a sequence of compact signatures called Linear Smoothing Func-
tions (LSFs), which utilized the compound probability to combine three independent
video factors and compute sequence similarity. Wu and Aizawa [56] proposed a self-
similarity-based feature representation called Self-Similarity Belt (SSBelt), which
derived from the Self-Similarity Matrix (SSM). The interest corners were detected
and described by a BoW representation. Revaud et al. [38] proposed the Circulant
Temporal Encoding (CTE) that encodes frame features in a spatio-temporal repre-
sentation with Fourier transform. The videos are compared in the frequency domain
based on the properties of circulant matrices. Poullot et al. [37] introduced the Tem-
poral Matching Kernel (TMK) that encodes sequences of frames with periodic ker-
nels that take into account the frame descriptor and timestamp. A score function
was introduced for video matching that maximizes both the similarity score and the
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Research Multimodal F1 score
Tian et al., 2013 [50] X 0.950
Jiang et al., 2012 [20] X 0.962
Tian et al., 2015 [52] X 0.952
Chou et al., 2015 [9] 7 0.938

Table 4.3: Multimodal approach and F1 score on TRECVID 2011 of four filter-and-
refine matching methods. If the approach is not multimodal, then the F1 score is
calculated based on the video transformations only.

relative time offset by considering all possible relative timestamps. Baraldi et al. [3]
built a deep learning layer component based on TMK and set up a training process
to learn the feature transform coefficients in the Fourier domain. A triplet loss that
takes into account both the video similarity score and the temporal alignment was
used in order to train the proposed network.

4.2.2.3 Filter-and-refine matching

To overcome the bottleneck of video-level approaches and to achieve efficient
NDVR implementations, researchers developed hybrid approaches by combining
the advantages of frame-level and video-level methods. Table 4.3 displays the per-
formance of four filter-and-refine approaches on TRECVID 2011. Wu et al. [55]
generated video signatures by averaging the HSV histograms of keyframes. Then,
they applied a hierarchical filter-and-refine scheme to cluster and filter out near-
duplicate videos. When a video could not be clearly classified as NDV, they calcu-
lated video similarity based on an expensive local feature-based scheme. Tian et al.
[51] extracted audio-visual features. They applied a BoW scheme on the local vi-
sual features (SIFT [35], SURF [5]) and a locality sensitive hashing (LSH) scheme
on global visual features (DCT) and audio features (WASF [7]). A sequential pyra-
mid matching (SPM) algorithm was devised to localize the similar video sequences.
In contrast, Jiang et al. [20] presented a soft cascade framework utilizing multiple
hashed features to filter out non-NDVs. They modified the SPM to introduce tem-
poral information in a temporal pyramid matching (TPM). To further improve per-
formance, they proposed in [50] a multi-scale sequence matching method by LSH
using WASF, DCT, and the dense color version SIFT (DC-SIFT), combined with
TPM to match near-duplicate segments. Including the concept of transformation-
awareness, copy units, and soft decision boundary, Tian et al. [52] extended the
multimodal detector cascading framework [20], [50] to a more general approach.
Chou et al. [9] proposed a spatio-temporal indexing structure utilizing index pat-
terns, termed Pattern-based Index Tree (PI-tree), to early filter non-near-duplicate
videos. In the refine stage, an m-Pattern-based Dynamic Programming scheme was
devised to localize near-duplicate segments and to re-rank results of the filter stage.
Yang et al. [57] proposed a multi-scale video sequence matching method, which
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Dataset Queries Videos User-gen. Retrieval Task
CC WEB VIDEO [55] 24 12,790 X Near-Duplicate Video Retrieval
UQ VIDEO [45] 24 169,952 X Near-Duplicate Video Retrieval
MUSCLE-VCD [31] 18 101 7 Video Copy Detection
TRECVID 2011 [29] 11,256 11,503 7 Video Copy Detection
VCDB [19] 528 100,528 X Partial Video Copy Detection
EVVE [38] 620 102,375 X Event Video Retrieval
FIVR-200K [26] 100 225,960 X Fine-grained Incident Video Retrieval

Table 4.4: Publicly available video datasets developed for retrieval tasks related to
NDVR.

gradually detected and located similar segments between videos from coarse to fine
scales. Given a query, they used a maximum weight matching algorithm to rapidly
select candidate videos in the coarser scale, then extracted the similar segments in
the middle scale to find the NDVs. In the fine scale, they used bi-directional scanning
to check the matching similarity of video parts to localize near-duplicate segments.

4.2.3 Benchmark datasets

Although the problem of NDVR has been investigated for at least two decades, few
benchmark datasets have been published. Table 4.4 presents an overview of several
publicly available datasets developed for related retrieval tasks. Many researchers
constructed their own datasets and did not release them. For instance, Shen et al.
[41] collected and manually annotated more than 11,000 TV commercials with an
average length of about 60 seconds.

The most popular and publicly available dataset related to the NDVR problem is
CC WEB VIDEO [55]. It was published by the research groups of City University
of Hong Kong and Carnegie Mellon University and consists of 13,129 generated
videos collected from the Internet. For the dataset collection, 24 popular text queries
were submitted to popular video platforms, such as YouTube, Google Video, and
Yahoo! Video. A set of videos were collected for each query and the video with
the most views was selected as the query video. Then, videos in the collected sets
were manually annotated based on their relation to the query video. It is noteworthy
that video sets contain high amounts of near-duplicates. On average there are 27%
videos per query that are considered near-duplicates to the most popular version of
a video in the search results. However, for certain queries, the redundancy of non
near-duplicates can be as high as 94%.

Several variations of the CC WEB VIDEO dataset were developed [39, 45, 6, 9].
In order to make the NDVR problem more challenging and benchmark the scal-
ability of their approaches, researchers usually extend the core CC WEB VIDEO
dataset with many thousands of distractor videos. The most well-known public
dataset that was created through this process is UQ VIDEO [45]. For the dataset col-



4 Finding near-duplicate videos in large-scale collections 17

lection, they chose the 400 most popular queries based on Google Zeitgeist Archives
from years 2004 to 2009. Each query was fed to YouTube search and they limited
the returned videos to one thousand. After filtering out videos with size greater
than 10MB, the combined dataset contains 169,952 videos (including those of the
CC WEB VIDEO) in total with 3,305,525 keyframes and the same 24 query videos
contained in CC WEB VIDEO. Unfortunately, only the HSV and LBP histograms
of the video keyframes are provided by the authors.

Another popular public benchmark is the Muscle-VCD, created by Law-To et al.
[31]. This dataset was designed for the problem of VCD. It consists of 100 hours of
videos that include Web video clips, TV archives, and movies with different bitrates,
resolutions and video format. A set of original videos and their corresponding trans-
formed videos are given for the evaluation of copy detection algorithms. Two kinds
of transformation were applied on the queries: a) entire video copy with a single
transformation, where the videos may be slightly recoded and/or noised; b) partial
video copy with a mixture of transformations, where two videos only share one or
more short segments. Both transformations were simulated by using video-editing
software to apply the transformations. The transformed videos or segments were
used as queries to search their original versions in the dataset.

The annual TRECVID [1] evaluation included a task on copy detection in years
2008 to 2011. Each year a benchmark dataset was generated and released only to
the registered participants of the task. The TRECVID datasets were constructed in
a very similar way to the Muscle-VCD dataset. The latest edition of the dataset [29]
contained 11,503 reference videos of over 420 hours. Query videos were catego-
rized into three types: (i) a reference video only, (ii) a reference video embedded
into a non-reference video, and (iii) a non-reference video only. Only the first two
types of query videos were near-duplicates to videos in the dataset. Each query was
generated using a software to randomly extract a segment from a dataset video and
impose a few predefined transformations. The contestants were ask to find the orig-
inal videos and detect the copied segment.

A more recent dataset that is relevant to our problem is the VCDB [19]. This
dataset is composed of videos derived from popular video platforms (i.e. YouTube
and Metacafe) and has been compiled and annotated as a benchmark for the par-
tial copy detection problem, which is highly related to the NDVR problem. VCDB
contains two subsets, the core and the distractor subset. The core subset contains 28
discrete sets of videos composed of 528 query videos and over 9,000 pairs of partial
copies. Each video set was manually annotated by seven annotators and the video
chunks of the video copies were extracted. The distractor subset is a corpus of ap-
proximately 100,000 distractor videos that is used to make the video copy detection
problem more challenging.

Moreover, the EVVE (EVent VidEo) [38] dataset was developed for the problem
of event video retrieval. The main objective of the systems evaluated on this dataset
is the retrieval of all videos that capture a particular event given a query video. The
dataset contains 13 major events that were provided as queries to YouTube. A total
number of 2,375 videos were collected and 620 of them were selected as video
queries. Each event was annotated by one annotator, who first produced a precise
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definition of the event. In addition to the videos collected for specific events, the
authors also retrieved a set of 100,000 distractor videos by querying YouTube with
unrelated terms. These videos were collected before a certain date to ensure that the
distractor set did not contain any of the relevant events of EVVE, since all events
were temporally localized after that date.

Finally, the FIVR-200K [26] dataset was developed to simulate the problem of
Fine-grained Incident Video Retrieval (FIVR). For the dataset collection, the ma-
jor events occurring in the time span from January 2013 to December 2017 were
collected by crawling Wikipedia. The event headlines were then used to query
YouTube. In total, 225,960 videos were collected from 4,687 events, and 100 query
videos were selected using a systematic process. Then the videos in the dataset were
manually annotated based on their relation to the queries. FIVR-200K includes three
different tasks: a) the Duplicate Scene Video Retrieval (DSVR) task which is highly
related to the NDVR problem and it only accepts as positive matches videos that
contain at least one identical scene, b) the Complementary Scene Video Retrieval
(CSVR) task which is a broader variant of the NDVR problem where videos that
contain scenes captured at the same time but from different camera viewpoints are
considered related, and c) Incident Scene Video Retrieval (ISVR) task where all
videos with scenes displaying the same incident are considered positive matches.

4.3 NDVR approaches in InVID

In InVID, two video-level solutions have been developed, since video-level NDVR
appeared to offer the best trade-off between computational cost and retrieval effec-
tiveness. Additionally, most video-level methods can be adapted to a corresponding
frame-level approach in a straightforward manner if further retrieval accuracy is
needed. Of the two developed video-level approaches, one is unsupervised (Section
4.3.1) and the other supervised (Section 4.3.2). The former is a modified BoW-
scheme based on the extracted CNN features. The latter is based on Deep Metric
Learning (DML), which learns an embedding function that maps the CNN descrip-
tors into a feature space where the NDVs are closer than the other videos.

4.3.1 Bag-of-Words approach

The proposed unsupervised NDVR approach relies on a Bag-of-Words (BoW)
scheme [27]. In particular, two aggregation variations are proposed: a vector ag-
gregation where a single codebook of visual words is used, and a layer aggregation
where multiple codebooks of visual words are used. The video representations are
organised in an inverted file structure for fast indexing and retrieval. Video similar-
ity is computed based on the cosine similarity of the tf-idf weighted vectors of the
extracted BoW representations.
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4.3.1.1 CNN-based feature extraction

In recent research [58, 60], pre-trained CNN models are used to extract visual fea-
tures from intermediate convolutional layers. These features are computed through
the forward propagation of an image over the CNN network and the use of an ag-
gregation function (e.g. VLAD encoding [18], max/average pooling) on the convo-
lutional layer.

We adopt a compact representation for frame descriptors that is derived from
activations of all intermediate convolutional layers of a pre-trained CNN by apply-
ing the function called Maximum Activation of Convolutions (MAC) [40, 60]. A
pre-trained CNN network C is considered, with a total number of L convolutional
layers, denoted as L 1,L 2, ...,L L. Forward propagating a frame through network
C generates a total of L feature maps, denoted as M l ∈ Rnl

d×nl
d×cl

(l = 1, ...,L),
where nl

d×nl
d is the dimension of every channel for convolutional layer L l (which

depends on the size of the input frame) and cl is the total number of channels. To ex-
tract a single descriptor vector from every layer, an aggregation function is applied
on the above feature maps. In particular, we apply max pooling on every channel of
feature map M l to extract a single value. The extraction process is formulated in:

vl(i) = max M l(·, ·, i), i = {1,2, ...,cl} (4.1)

where layer vector vl is a cl-dimensional vector that is derived from max pooling on
every channel of feature map M l . The layer vectors are then `2-normalized.

We extract and concatenate frame descriptors only from activations in interme-
diate layers, since we aim to construct a visual representation that preserves local
structure at different scales. Activations from fully-connected layers are not used,
since they are considered to offer a global representation of the input. A positive
side-effect of this decision is that the resulting descriptor is compact, reducing the
total processing time and storage requirements. For the VGGNet and GoogLeNet
architectures, we do not use the initial layer activations as features, since those lay-
ers are expected to capture very primitive frame features (e.g. edges, corners, etc.)
that could lead to false matches.

Uniform sampling is applied to select one frame per second for every video and
extract the respective features for each of them. Hence, given an arbitrary video
with N frames {F1,F2, ...,FN}, the video representation is a set that contains all
feature vectors of the video frames v = {vF1 ,vF2 , ...,vFN}, where vFi contains all
layer vectors of frame Fi. Although vFi stands for a set of vectors, we opted to use
this notation for convenience.

4.3.1.2 Feature aggregation

We follow two alternative feature aggregation schemes (i.e. ways of aggregating fea-
tures from layers into a single descriptor for the whole frame): a) vector aggregation
and b) layer aggregation. The outcome of both schemes is a frame-level histogram
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Fig. 4.3: The two proposed aggregation schemes and the final video representation.

HF that is considered as the representation of a frame. Next, a video-level histogram
HV is derived from the frame representations by aggregating frame-level histograms
to a single video representation. Figure 4.3 illustrates the two schemes.

Vector aggregation: A bag-of-words scheme is applied on the vector vc resulting
from the concatenation of individual layer features to generate a single codebook of
K visual words, denoted as CK = {t1, t2, ..., tK}. The selection of K, a system param-
eter, has critical impact on the performance of the approach. Having generated the
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visual codebook, every video frame is assigned to the nearest visual word. Accord-
ingly, every frame Fi with feature descriptor vc

Fi
is aggregated to the nearest visual

word tFi = NN(vc
Fi
), hence its HFi contains only a single visual word.

Layer aggregation: To preserve the structural information captured by interme-
diate layers L of the CNN network C , we generate L layer-specific codebooks of
K words (denoted as Cl

K = {t l
1, t

l
2, ..., t

l
K}, l = 1, ...,L), which we then use to extract

separate bag-of-words representations (one per layer). The layer vectors vl
Fi

of frame
Fi are mapped to the nearest layer words t l

Fi
= NN(vl

Fi
), (l = 1,2, ...,L). In contrast

to the previous scheme, every frame Fi is represented by a frame-level histogram
HFi that results from the concatenation of the individual layer-specific histograms,
thus comprising L words instead of a single one.

The final video representation is generated based on the BoW representations of
its frames. In particular, given an arbitrary video with N frames {F1,F2, ...,FN}, its
video-level histogram HV is derived by summing the histogram vectors correspond-
ing to its frames, i.e. HV = ∑i∈[1,N] HFi . Note that for the two aggregation schemes,
histograms of different sizes are generated. In the first case, the total number of
visual words equals K, whereas in the second case, it equals K ·L.

4.3.1.3 Video indexing and querying

In the proposed approach, we use tf-idf weighting to calculate the similarity between
two video histograms. The tf-idf weights are computed for every visual word in
every video in a video collection Cb:

wtd = ntd · log |Cb|/nt (4.2)

where wtd is the weight of word t in video d, ntd and nt are the number of occur-
rences of word t in video d and the entire collection respectively, while |Cb| is the
number of videos in the collection. The former factor of the equation is called term
frequency (tf) and the latter is called inverted document frequency (idf).

Video querying is the online part of the approach. Let q denote a query video.
Once the final histogram Hq

v is extracted from the query video, an inverted file in-
dexing scheme [44] is employed for fast and efficient retrieval of videos that have at
least a common visual word with the query video. For all these videos (i.e. videos
with non-zero similarity), the cosine similarity between the respective tf-idf repre-
sentations is computed:

sim(q, p) =
wq ·wp∥∥wq
∥∥∥∥wp

∥∥ =

K
∑

i=0
wiqwip√

K
∑

i=0
w2

iq

√
K
∑

i=0
w2

ip

(4.3)
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where wq and wp are the weight vectors of videos q and p, respectively, and ‖w‖ is
the norm of vector w. The collection videos are ranked in descending order based
on their similarity to the query.

In the inverted file structure, each entry corresponds to a visual word, and con-
tains its ID, the idf value and all the video IDs in which the visual word occurs. The
video IDs map to a video in the collection Cb where the occurrences (tf ) of the vi-
sual words are stored. With this inverted file structure, all the needed values for the
calculation of the similarity between a query and a dataset video can be retrieved.

4.3.2 Deep Metric Learning approach

The unsupervised approach has several limitations. The most important is that it
offers a dataset-specific solution, i.e. the extracted knowledge is not transferable,
and re-building the model is computationally expensive. To observe no performance
loss, a sufficiently large and diverse dataset to create vocabularies is required, which
needs significant effort to be collected or sometimes is not even possible. Hence, we
also developed a Deep Metric Learning (DML) approach to overcome this limitation
[28]. This involves training a Deep Neural Network (DNN) to approximate an em-
bedding function for the accurate computation of similarity between two candidate
videos. For training, we devised a novel triplet generation process.

For feature extraction, we build upon the same process as the one presented in
Section 4.3.1.2. Hence, given an arbitrary video with N frames {F1,F2, ...,FN}, we
extract one feature descriptor for each video frame by concatenating the layer vector
to a single vector. Global video representations v are then derived by averaging
and normalizing (zero-mean and `2-normalization) these frame descriptors. Keep in
mind that feature extraction is not part of the training (deep metric learning) process,
i.e. the training of the network is not end-to-end, and as a result the weights of the
pre-trained network used for feature extraction are not updated.

4.3.2.1 Problem formulation

We address the problem of learning a pairwise similarity function for NDVR from
the relative information of pairwise/triplet-wise video relations. For a given query
video and a set of candidate videos, the goal is to quantify the similarity between
the query and every candidate video and use it for the ranking of the entire set of
candidates with the goal of retrieving the NDVs at the top ranks. We first define the
similarity between two arbitrary videos q and p as the squared Euclidean distance
in the video embedding space:

D( fθ (q), fθ (p)) = ‖ fθ (q)− fθ (p)‖2
2 (4.4)
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where, fθ (·) is the embedding function that maps a video to a point in the Euclidean
space, θ are the system parameters and D(·, ·) is the squared Euclidean distance in
this space. Additionally, we define a pairwise indicator function I(·, ·) that specifies
whether a pair of videos are near-duplicate.

I(q, p) =

{
1 if q, p are NDVs
0 otherwise

(4.5)

Our objective is to learn an embedding function fθ (·) that assigns smaller dis-
tances to NDV pairs than others. Given a video with feature vector v, a NDV with
v+ and a dissimilar video with v−, the embedding function fθ (·) should map video
vectors to a common space Rd , where d is the dimension of the feature embedding,
in which the distance between query and positive videos is always smaller than the
distance between query and negative. This is formulated as:

D( fθ (v), fθ (v+))< D( fθ (v), fθ (v−)),

∀v,v+,v− such that I(v,v+) = 1, I(v,v−) = 0
(4.6)

4.3.2.2 Triplet loss

To implement the learning process, we create a collection of N training instances
organized in the form of triplets T = {(vi,v+i ,v

−
i ), i = 1, ...,N}, where vi,v+i ,v

−
i are

the feature vectors of the query, positive (NDV), and negative (dissimilar) videos. A
triplet expresses a relative similarity order among three videos, i.e. vi is more similar
to v+i in contrast to v−i . We define the following hinge loss function for a given triplet
called ‘triplet loss’ :

Lθ (vi,v+i ,v
−
i ) = max{0,D( fθ (vi), fθ (v+i ))−D( fθ (vi), fθ (v−i ))+ γ} (4.7)

where γ is a margin parameter to ensure a sufficiently large difference between the
positive-query distance and negative-query distance. If the video distances are cal-
culated correctly within margin γ , then this triplet will not be penalised. Otherwise
the loss is a convex approximation of the loss that measures the degree of violation
of the desired distance between the video pairs specified by the triplet. To this end,
we use batch gradient descent to optimize the objective function:

min
θ

m

∑
i=1

Lθ (vi,v+i ,v
−
i )+λ ‖θ‖2

2 (4.8)

where λ is a regularization parameter to prevent overfitting, and m is the total size
of a triplet mini-batch. Minimising this loss will narrow the query-positive distance
while widening the query-negative distance, and thus lead to a representation sat-
isfying the desirable ranking order. With an appropriate triplet generation strategy
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Fig. 4.4: Illustration of DML network architecture.

in place, the model will eventually learn a video representation that improves the
effectiveness of the NDVR solution.

4.3.2.3 DML network architecture

For training the DML model, a triplet-based network architecture is proposed (Fig.
4.4) that optimizes the triplet loss function in Equation 4.7. The network is provided
with a set of triplets T created by the triplet generation process of Section 4.3.2.5.
Each triplet contains a query, a positive and a negative video with vi, v+i and v−i
feature vectors, respectively, which are fed independently into three siamese DNNs
with identical architecture and parameters. The DNNs compute the embeddings of
v : fθ (v)∈Rd . The architecture of the deployed DNNs is based on three dense fully-
connected layers and a normalization layer at the end leading to vectors that lie on
a d-dimensional unit length hypersphere, i.e. ‖ fθ (v)‖2 = 1. The size of each hidden
layer (number of neurons) and the d-dimension of the output vector fθ (v) depends
on the dimensionality of input vectors, which is in turn dictated by the employed
CNN architecture. The video embeddings computed from a batch of triplets are
then given to a triplet loss layer to calculate the accumulated cost based on Equation
4.7.

4.3.2.4 Video-level similarity computation

The learned embedding function fθ (·) is used for computing similarities between
videos in a target video corpus. Given an arbitrary video with v = {vF1 ,vF2 , ...,vFN},
two variants are proposed for fusing similarity computation across video frames:
early and late fusion.

Early fusion: Frame descriptors are averaged and normalized into a global video
descriptor before they are forward propagated to the network. The global video sig-
nature is the output of the embedding function fθ (·):
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fθ (v) = fθ (
1
N

N

∑
i=1

vFi) (4.9)

Late fusion: Each extracted frame descriptor of the input video is fed forward
to the network, and the set of their embedding transformations is averaged and nor-
malized:

fθ (v) =
1
N

N

∑
i=1

fθ (vFi) (4.10)

There are several pros and cons for each scheme. The former is computationally
lighter and more intuitive; however, it is slightly less effective. Late fusion leads to
better performance and is amenable to possible extensions of the base approach (i.e.
frame-level approaches). Nonetheless, it is slower since the features extracted from
all selected video frames are fed to the DNN.

Finally, the similarity between two videos derives from the distance of their rep-
resentations. For a given query q and a set of M candidate videos {pi}M

i=1 ∈ P, the
similarity within each candidate pair is determined by normalizing the distance with
respect to the maximum value and then subtracting the result from the unit to map
the similarity scores to the range [0, 1]. This process is formulated in:

S(q, p) = 1− D( fθ (q), fθ (p))
max
pi∈P

(D( fθ (q), fθ (pi)))
(4.11)

where S(·, ·) the similarity between two videos and max(·) is the maximum function.

4.3.2.5 Triplet generation

A crucial part of the proposed approach is the generation of the video triplets. It is
important to provide a considerable amount of videos for constructing a representa-
tive triplet training set. However, the total number of triplets that can be generated
equals the total number of 3-combinations over the size N of the video corpus, i.e.:(

N
3

)
=

N · (N−1) · (N−2)
6

(4.12)

We have empirically determined that only a tiny portion of videos in a corpus could
be considered as near-duplicates for a given video query. Thus, it would be ineffi-
cient to randomly select video triplets from this vast set (for instance, for N = 1,000,
the total number of triplets would exceed 160M). Instead, a sampling strategy is
employed as a key element of the triplet generation process, which is focused on
selecting hard candidates to create triplets.

The proposed sampling strategy is applied on a development dataset. Such a
dataset needs to contain two sets of videos: P , a set of near duplicate video pairs
that are used as query-positive pairs, and N , a set of dissimilar videos that are used
as negatives. We aim at generating hard triplets, i.e. negative videos (hard negatives)
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with distance to the query that is smaller than the distance between the query and
positive videos (hard positives). The aforementioned condition is expressed in:

T = {(q, p,n)|(q, p) ∈P,n ∈N ,D(q, p)> D(q,n)} (4.13)

where T is the resulting set of triplets. The global video features are first extracted
following the process in Section 4.3.1.1. Then, the distance between every query in
P and every dissimilar video in N is calculated. If the query-positive distance is
greater than a query-negative distance, then a hard triplet is formed composed of
the three videos. The distance is calculated based on the Euclidean distance of the
initial global video descriptors.

4.4 Evaluation

In this section, the two developed approaches are evaluated. The experimental setup
is described in Section 4.4.1, where we present the datasets used, the evaluation met-
rics, several implementation details, and a number of competing approaches from
the state-of-the-art. Extensive experimental evaluation is conducted and reported
under various evaluation settings in Section 4.4.2.

4.4.1 Experimental setup

4.4.1.1 Evaluation datasets

Experiments were performed on the CC WEB VIDEO dataset [55], which is avail-
able by the research groups of City University of Hong Kong and Carnegie Mellon
University. The collection consists of a sample of videos retrieved by submitting 24
popular text queries to popular video sharing websites (i.e. YouTube, Google Video,
and Yahoo! Video). For every query, a set of video clips were collected and the most
popular video was considered to be the query video. Subsequently, all videos in
the collected set were manually annotated based on their near-duplicate relation to
the query video. Table 4.5 depicts the types of near-duplicate types and their annota-
tion. In the present work, all videos annotated with any symbol but X are considered
near-duplicates. The dataset contains a total of 13,129 videos consisting of 397,965
keyframes.

In addition, we use the FIVR-200K [26] dataset for validating the results on a
second independent dataset. It consists of 225,960 videos collected based on the
4,687 events, and contains 100 video queries. Table 4.5 depicts the annotation la-
bels used in the dataset and their definitions. FIVR-200K includes three different
tasks: a) the Duplicate Scene Video Retrieval (DSVR) task where only videos anno-
tated with ND and DS are considered relevant, b) the Complementary Scene Video
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Retrieval (CSVR) task which accepts only the videos annotated with ND, DS or CS
as relevant, and c) Incident Scene Video Retrieval (ISVR) task where all labels (with
the exception of DI) are considered relevant.

(a) CC WEB VIDEO
Label Transformation

E Exactly duplicate
S Similar video
V Different version
M Major change
L Long version
X Dissimilar video

(b) FIVR-200K
Label Definition

ND Near-duplicate
DS Duplicate scene
CS Complementary scene
IS Incident scene
DI Distractor

Table 4.5: Annotation labels of CC WEB VIDEO and FIVR-200K datasets.

4.4.1.2 Development dataset

For generating triplets to train the supervised DML approach, we leverage the
VCDB dataset [21]. This dataset is composed of videos from popular video plat-
forms (YouTube and Metacafe) and has been compiled and annotated as a bench-
mark for the partial copy detection task, which is highly related to the NDVR prob-
lem setting. VCDB contains two subsets, the core Cc and the distractor subset Cd .
Subset Cc contains discrete sets of videos composed by 528 query videos and over
9,000 pairs of partial copies. Each video set has been annotated and the chunks of
the video copies extracted. Subset Cd is a corpus of approximately 100,000 distrac-
tor videos that is used to make the video copy detection problem more challenging.

For the triplet generation, we retrieve all video pairs annotated as partial copies.
We define an overlap criterion to decide whether to use a pair for the triplet gen-
eration: if the duration of the overlap content is greater than a certain threshold
t compared to the total duration of each video, then the pair is retained, otherwise
discarded. Each video of a given pair can be used once as query and once as positive
video. Therefore, the set of query-positive pairs P is generated based on:

P = {(q, p)∪ (p,q)|q, p ∈ Cc,o(q, p)> t} (4.14)

where o(·, ·) determines the video overlap. We found empirically that the selec-
tion of the threshold t has considerable impact on the quality of the resulting DML
model. Subset Cd is used as the set N of negatives. To generate hard triplets, the
negative videos are selected based on Equation 4.13.
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4.4.1.3 Evaluation metrics

To evaluate retrieval performance, we build upon the evaluation scheme described
in [55]. We first employ the interpolated Precision-Recall (PR) curve. Precision is
determined as the fraction of retrieved videos that are relevant to the query, and
Recall as the fraction of the total relevant videos that are retrieved:

Precision =
T P

T P+FP
, Recall =

T P
T P+FN

(4.15)

where T P, FP and FN are the true positives (correctly retrieved), false positives
(incorrectly retrieved) and false negatives (missed matches) respectively. The inter-
polated PR-curve derives from the averaging of the Precision scores over all queries
for given Recall ranges. The maximum Precision score is selected as the representa-
tive value for each Recall range. We further use mean Average Precision (mAP) as
defined in [55] to evaluate the quality of video ranking. For each query, the Average
Precision (AP) is calculated based on:

AP =
1
n

n

∑
i=0

i
ri

(4.16)

where n is the number of relevant videos to the query video, and ri is the rank of the
i-th retrieved relevant video. The mAP is computed from the averaging of the AP
across all queries.

4.4.1.4 Implementation details

We experiment with three deep network architectures: AlexNet [30], VGGNet [43]
and GoogLeNet [47]. The AlexNet is an 8-layer network that consists of five convo-
lutional/pooling layers, two fully-connected layers and one softmax layer. VGGNet
has the same number of fully-connected layers, although the number of convolu-
tional layers may vary. In this paper, the version with 16-layers is employed as it
gives similar performance to the 19-layer version. Finally, GoogLeNet is composed
of 22 layers in total. In this architecture, multiple convolutions are combined in an
intersection module called “inception”. There are nine inception modules in total
that are sequentially connected, followed by an average pooling and a softmax layer
at the end. All three architectures receive as input images of size 224×224. For all
the experiments, the input frames are resized to fit these dimensions, even though
this step is not mandatory. Table 4.6 depicts the employed CNN architectures and
the number of channels in the respective convolutional layers.

For feature extraction, we use the Caffe framework [19], which provides pre-
trained models on ImageNet for both employed CNN networks5. Regarding the
unsupervised approach, the visual codebooks are generated based on scalable K-

5 https://github.com/BVLC/caffe/wiki/Model-Zoo
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(a) AlexNet
Layer L l cl-dim

conv1 96
conv2 256
conv3 384
conv4 384
conv5 256

total 1376

(b) VGGNet
Layer L l cl-dim

conv2 1 128
conv2 2 128
conv3 1 256
conv3 2 256
conv3 3 256
conv4 1 512
conv4 2 512
conv4 3 512
conv5 1 512
conv5 2 512
conv5 3 512

total 4096

(c) GoogleNet
Layer L l cl-dim

inception 3a 256
inception 3b 480
inception 4a 512
inception 4b 512
inception 4c 512
inception 4d 528
inception 4e 832
inception 5a 832
inception 5b 1024

total 5488

Table 4.6: Deep CNN architectures and total number of channels per layer used in
the proposed approach.

Means++ [2] – the Apache Spark6 implementation of the algorithm is used for ef-
ficiency and scalability – in both aggregation schemes a sample of 100K randomly
selected video frames are used for training. The implementation of the supervised
deep model is built on Theano [49]. We use [800, 400, 250], [2000, 1000, 500]
and [2500, 1000, 500] neurons for the three hidden layers for AlexNet, VGGNet
and GoogleNet respectively. Adam optimization [25] is employed with learning
rate l = 10−5. For the triplet generation, we set t = 0.8 which generates approxi-
mately 2k pairs in P and 7M, 4M and 5M triplets in T , for AlexNet, VGGNet and
GoogleNet, respectively. Other parameters are set to γ = 1 and λ = 10−5.

4.4.1.5 State-of-the-art approaches

We compare the proposed approach with five widely used content-based NDVR
approaches. Three of those were developed based on frames of videos sampled from
the evaluation set. These are the following:

Auto Color Correlograms (ACC) - Cai et al. [6] use uniform sampling to extract
one frame per second for the input video. The auto-color correlograms [14] of each
frame are computed and aggregated based on a visual codebook generated from
a training set of video frames. The retrieval of near-duplicate videos is performed
using tf-idf weighted cosine similarity over the visual word histograms of a query
and a dataset video.

Pattern-based approach (PPT) - Chou et al. [9] build a pattern-based indexing
tree (PI-tree) based on a sequence of symbols encoded from keyframes, which facil-
itates the efficient retrieval of candidate videos. They use m-pattern-based dynamic

6 http://spark.apache.org
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programming (mPDP) and time-shift m-pattern similarity (TPS) to determine video
similarity.

Stochastic Multi-view Hashing (SMVH) - Hao et al. [12] combine multi-
ple keyframe features to learn a group of mapping functions that project video
keyframes into the Hamming space. The combination of keyframe hash codes gen-
erates a video signature that constitutes the final video representation. A composite
Kullback-Leibler (KL) divergence measure is used to compute similarity scores.

The remaining two, which are based on the work of Wu et al. [55], are not built
based on any development dataset:

Color Histograms (CH) - This is a global video representation based on the
color histograms of keyframes. The color histogram is a concatenation of 18 bins for
Hue, 3 bins for Saturation, and 3 bins for Value, resulting in a 24-dimensional vector
representation for every keyframe. The global video signature is the normalized
color histogram over all keyframes in the video.

Local Structure (LS) - Global signatures and local features are combined us-
ing a hierarchical approach. Color signatures are employed to detect near-duplicate
videos with high confidence and to filter out very dissimilar videos. For the reduced
set of candidate videos, a local feature based method was developed, which com-
pares the keyframes in a sliding window using their local features (PCA-SIFT [24]).

4.4.2 Experimental results

4.4.2.1 Comparison of global feature descriptors

In this section, we benchmark the proposed intermediate CNN features with a num-
ber of global frame descriptors used in NDVR literature. The compared descrip-
tors are divided in two groups: handcrafted and learned features7. The handcrafted
features include RGB histograms, HSV histograms, Local Binary Patterns (LBP),
Auto Colour Correlograms (ACC) and Histogram of Oriented Gradients (HOG).
For the learned features, we extract the intermediate CNN features, as described in
Section 4.3.1.1, and concatenate the layer vectors to generate a single descriptor.
Additionally, we experiment with the global features derived from the activations of
the first fully connected layer after the convolutional layers, for each architecture.
To compare the NDVR performance, a standard bag-of-word scheme with vector
aggregation (Section 4.3.1.2) is built based on each global feature descriptor.

Table 4.7 presents the mAP of each model built on a different global descriptor
for two different values of K. The intermediate features of GoogleNet and VGGNet
achieved the best results with 0.958 and 0.886 for K = 1,000 and K = 10,000, re-
spectively. In general, learned features lead to considerably better performance than
handcrafted ones in both setups. Furthermore, intermediate CNN features outper-

7 The features have been learned on the ImageNet dataset, since pre-trained networks are utilized.
However, ImageNet is a comprehensive dataset, so the learned features can be used in other com-
puter vision tasks (i.e. NDVR) without the need of retraining.
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Descriptor/ layers dimensions K
Network 1,000 10,000

RGB - 64 0.857 0.813
HSV - 162 0.902 0.792
LBP - 256 0.803 0.683
ACC - 256 0.936 0.826
HOG - 1764 0.940 0.831

AlexNet conv 1376 0.951 0.879
fc 4096 0.953 0.875

VGGNet conv 4096 0.937 0.886
fc 4096 0.936 0.854

GoogleNet inc 5488 0.958 0.857
fc 1000 0.941 0.849

Table 4.7: mAP and dimensionality of 11 global frame descriptors.

formed the ones derived from the fully connected layers in almost all cases. One
may notice that there is a correlation between the dimensions of the descriptors and
the performance of the model. Hence, due to the considerable performance differ-
ence, we focused our research on the exploration of the potential of intermediate
CNN features.

4.4.2.2 Evaluation of BoW approach

In this section, we study the impact of the feature aggregation scheme, the underly-
ing CNN architecture and the size of the visual vocabulary on the BoW approach.
Regarding the first aspect, we benchmark the three CNN architectures with both
aggregation schemes using K = 1,000 words.

Figure 4.6 depicts the PR curves of the different CNN architectures with the two
aggregation schemes. For every CNN architecture, layer-based aggregation schemes
outperform vector-based ones. GoogleNet achieves the best vector-based results
with a precision close to 100% up to a 70% recall. In terms of recall, all three
architectures have similar results in the value range 80%-100%. All three bench-
marked architectures have almost perfect performance up to 75% recall when the
layer-based aggregation scheme is employed.

As presented in Table 4.8, similar results are obtained in terms of mAP for the
CNN architectures and the aggregation schemes. In the case of vector-based aggre-
gation, the results are the same as in Table 4.7, hence GoogleNet outperforms the
other two architectures with a mAP of 0.958, and VGGNet reports the worst perfor-
mance with 0.937 mAP. However, when the layer-based aggregation is employed,
VGGNet achieves the best results with a mAP score of 0.976. The lowest, yet com-
petitive results in the case of layer-based aggregation, are obtained for AlexNet with
0.969 mAP.
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Fig. 4.5: Precision-Recall curve of the proposed approach based on three CNN ar-
chitectures and for the two aggregation schemes.

Method K AlexNet VGGNet GoogleNet

Vector aggr. 1000 0.951 0.937 0.958
10,000 0.879 0.886 0.857

Layer aggr. 1000 0.969 0.976 0.974
10,000 0.948 0.959 0.958

Table 4.8: mAP per CNN architecture and aggregation scheme.

The two schemes are compared with K = 1,000 and K = 10,000 (Table 4.9)
in order to test the impact of vocabulary size. Results reveal that the performance
of vector-based aggregation for K = 10,000 is lower compared to the case when
K = 1,000 words are used. It appears that the vector-based aggregation suffers con-
siderably more from the increase of K compared to the layer-based aggregation,
which appears to be less sensitive to this parameter. Due to this fact, we did not
consider to use the same amount of visual words for the vector-based and the layer-
based aggregation, since the performance gap between the two types of aggregation
with the same number of visual words would be much more pronounced.

4.4.2.3 Evaluation of DML approach

In this section, we study the performance of the supervised DML approach in the
evaluation dataset in relation to the underlying CNN architecture and the different
fusion schemes. The three CNN architectures are benchmarked. For each of them,
three configurations are tested: i) baseline: all frame descriptors are averaged to a
single vector which is used for retrieval without any transformation, ii) early fusion:
all frame descriptors are averaged to a single vector which is then transformed by
applying the learned embedding function to generate the video descriptor, iii) late
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Fig. 4.6: Precision-Recall curve of the baseline and two DML fusion schemes for
the three benchmarked CNN architectures.

fusion: all frame descriptors are transformed by applying the learned embedding
function and the generated embeddings are then averaged.

Architecture baseline early fusion late fusion

AlexNet 0.948 0.964 0.964
VGGNet 0.956 0.970 0.971
GoogleNet 0.952 0.968 0.969

Table 4.9: mAP of the baseline and two DML fusion schemes for the three bench-
marked CNN architectures.

Figure 4.6 and Table 4.9 presents the PR curves and the mAP, respectively, of
the three CNN architectures with the three fusion setups. Late fusion schemes con-
sistently outperform the other two fusion schemes for all CNN architectures. VG-
GNet achieves the best results for all three settings with a small margin compared to
the GoogleNet, with precision more than 97% up to 80% recall and mAP scores of
0.970 and 0.971 for early and late fusion respectively. Performance clearly increases
in both trained fusion schemes compared to the baseline for all three architectures.
The early and late fusion schemes achieve almost identical results, which is an indi-
cation that the choice of the fusion scheme is not critical.

4.4.2.4 Comparison against state-of-the-art NDVR approaches

For comparing the performance of the two approaches with the five NDVR ap-
proaches from the literature, we select the setup using VGGNet features with layer
aggregation for the BoW approach, denoted as LBoW, and the setup using VGGNet
features with late fusion for the DML approach, denoted as DMLvcdb, since they
achieved the best results in each case. We separate the compared approaches in two
groups based on the developed dataset, i.e. whether the evaluation dataset is used
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Fig. 4.7: Precision-Recall curve comparison between the two developed approaches
against five state-of-the-art methods. The approaches are divided based on the
dataset used for development.

for development or not. For the sake of comparison and completeness, the results
of the DML method trained on a triplet set derived from both VCDB (similar to
DMLvcdb) and also videos sampled from CC WEB VIDEO are denoted as DMLcc.
This simulates the situation where the DML-based approach has access to a portion
of the evaluation corpus, similar to the setting used by the competing approaches.

In Table 4.10, the mAP scores of the competing methods are reported. The DML
approach outperforms all methods in each group with a clear margin. A similar
conclusion is reached from comparing the PR curves illustrated in Fig. 4.7, with
the light blue line (DML approach) lying upon all others up to 90% recall in both
cases. The DML approach trained on VCDB dataset outperforms four out of five
state-of-the-art methods. It achieves similar results to the SMVH, even though the
latter has been developed with access to the evaluation dataset during training. The
LBoW approach is in the second place consistently outperforming all five competing
approaches by a considerable margin.

Same dataset No/Different dataset
Method ACC PPT SMVH LBoW DMLcc CH LS DMLvcdb

mAP 0.944 0.958 0.971 0.976 0.982 0.892 0.954 0.971

Table 4.10: mAP comparison between the two developed approaches against five
state-of-the-art methods. The approaches are divided based on the dataset used for
development.
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4.4.2.5 In-depth comparison of the two approaches

In this section, we compare the two implemented NDVR approaches in two eval-
uation settings. To this end, in addition to the existing experiments, we implement
the BoW approach with VGGNet features and layer aggregation based on informa-
tion derived from the VCDB dataset, i.e. we build the layer codebooks from a set
of video frames sampled from the aforementioned dataset. We then test two vari-
ations, the LBoWcc that was developed on the CC WEB VIDEO dataset (same as
Section 4.4.2.2) and the LBoWvcdb developed on the VCDB dataset. For each of
the 24 queries of CC WEB VIDEO, only the videos contained in its subset (the
dataset is organized in 24 subsets, one per query) are considered as candidate and
used for the calculation of retrieval performance. To emulate a more challenging
setting, we created CC WEB VIDEO* in the following way: for every query in
CC WEB VIDEO, the set of candidate videos is the entire dataset instead of only
the query subset.

CC WEB VIDEO CC WEB VIDEO*

LBoWvcdb 0.957 0.906
DMLvcdb 0.971 0.936

LBoWcc 0.976 0.960
DMLcc 0.982 0.969

Table 4.11: mAP comparison of the two developed approaches on two different
dataset setups.

Figure 4.8 depicts the PR curves of the four runs and the two setups. There is
a clear difference between the performance of the two variants of the LBoW ap-
proach, for both dataset setups. The DML approach outperforms the LBoW ap-
proach for all runs and setups at any recall point by a large margin. Similar con-
clusions can be drawn from the mAP scores of Table 4.11. The performance of
LBoW drops by more than 0.02 and 0.062 when the codebook is learned on VCDB,
for each setup respectively. Again, there is a considerable drop in performance in
CC WEB VIDEO* setup for both approaches, with the DML being more resilient
to the setup change. As a result, it has been demonstrated to be highly competitive
and possible to transfer to different datasets with relatively lower performance loss.

In addition, the developed approaches are also benchmarked on the FIVR-200K
[26] dataset. As described in Section 4.2.3 it includes three tasks that accept differ-
ent type of video results as relevant. To compare the two methods, we implemented
them with frame features derived from the VGGNet and built them with videos from
the VCDB dataset. Table 4.12 present the mAP of the two developed approaches on
the FIVR-200K dataset. It is evident that the DML approach achieves noticeably
better performance in comparison to the LBoW, when they are both developed on
a different dataset other than the evaluation. For the DSVR task, the two methods
achieve 0.4 and 0.378 mAP for DML and LBoW, respectively. The performance of
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Fig. 4.8: Precision-Recall curve comparison of the two developed approaches on
two dataset setups.

both approaches marginally drops for the CSVR task in comparison to DSVR with
a reduction of about 0.02 in terms of mAP. On the ISVR task, both runs have a
considerable drop in their performance, with 0.312 and 0.297 mAP for DML and
LBoW, respectively. Hence, the performance of both methods is significantly re-
duced in comparison to CC WEB VIDEO dataset, revealing that the FIVR-200K
dataset is much more challenging. The main reason is that the vast majority of pos-
itive video pairs are partially related, i.e. the videos are not related in their entirety
but in particular segments. The competing approaches from the NDVR literature
lead to even lower performance, since they are based on video-level schemes that
employ handcrafted frame descriptors with limited representation capability.

task DSVR CSVR ISVR

LBoW 0.378 0.361 0.297
DML 0.398 0.378 0.309

Table 4.12: mAP of the two developed approaches on the FIVR-200K dataset.

Both presented approaches are limited in similar ways which leads to similar er-
rors in the retrieval process. The major issue of both approaches is that they do not
function effectively when the near-duplicate segment between two videos is small
relative to their total size. As revealed from the evaluation in FIVR-200K dataset,
video-level solutions suffer in such setups. Even the LBoW approach where the
video-level representation contains frame-level information fails to retrieve relevant
videos, especially when it has been built on different dataset than the evaluation.
Another category of videos that the proposed schemes fail is when heavy trans-
formations have been applied on the source video. Typically, the extracted frame
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descriptors are not close enough, so as such videos to be retrieved and ranked with
high similarity score. Even the DML scheme that should learn to handle such case
fails to recognize this kind of duplicate pairs, especially when heavy edits or over-
lays have been applied. A solution to this issue is the use of frame descriptors that
better capture local information within frames. This can be achieved with end-to-
end training of the CNN models and/or use of another aggregation function (other
than MAC) that better preserves local information.

Finally, we compare the two approaches in terms of processing time on the large-
scale FIVR-200K dataset. The results have been measured using the open source
library Scikit-learn [53] in Python, on a Linux PC with a 4-core i7-4770K and 32GB
of RAM. The DML approach is significantly faster than the LBoW approach. It
needs 333 ms to perform retrieval for one query on FIVR-200K dataset, compared to
1,155 ms needed for the LBoW approach. However, both methods are significantly
faster than common frame-level approaches, which usually need several minutes to
process all videos in the dataset.

4.5 Conclusions and future work

In this chapter, we focused on the problem of Near-Duplicate Video Retrieval
(NDVR). First we presented a review of NDVR definitions, approaches and datasets
existing in the literature. The state-of-the art methods were grouped in three major
categories based on the level of video matching they perform: video-level, frame-
level and filter-and-refine matching. Moreover, we proposed two different video-
level approaches (an unsupervised and a supervised) based on deep neural networks.
For both methods, we used CNN features extracted from the intermediate convolu-
tional layers by applying Maximum Activations of Convolutions (MAC). We found
that this setup led to the best results among many other features, both hand-crafted
and learned.

The first approach is an unsupervised scheme that relies on a Bag-of-Word
(BoW) video representation. A layer-based aggregation scheme was introduced in
order to generate the global video representation, and then store it in an inverted
file index for fast indexing and retrieval. To quantify video similarity, we calculated
the cosine similarity on tf-idf weighted versions of the extracted vectors and ranked
the results in descending order. However, we found that there are several limitations
regarding the BoW approach, i.e. it is a dataset-specific solution and is hard to be
re-trained on new data. To address these issues, we developed a second supervised
approach based on DML. This method approximates an embedding function that
transforms input frame descriptors and leads to more accurate computation of the
distance between two candidate videos. For each video in the dataset, we sampled
one frame per second and extracted its CNN features to generate a global video vec-
tor. The global video vectors are then transformed based on the embedding function
to the learned feature space. The video retrieval is performed based on the Euclidean
distance of the video embeddings.
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We conducted extensive evaluations with different experimental setups, testing
the performance of the developed approaches under various settings. Through the
evaluation process, it was evident that the developed approaches exceed the perfor-
mance of five established state-of-the-art NDVR approaches. Finally, we empirically
determined that the DML approach overcomes the limitations imposed by the BoW
approach, i.e. it achieves better performance even without access to the evaluation
dataset (even though further improvements are possible if such access is possible).

In the future, we will focus on the improvement of the retrieval performance
of the developed system. Initially, we are going to put effort on the design of so-
phisticated similarity calculation functions that take into account the spatial struc-
ture of video frames and, at the same time, the temporal relations within frame se-
quences, in order to precisely compute the similarity between two compared videos.
To achieve these goals, we will modify the developed DML approach to perform
frame-level matching, e.g. by considering more effective fusion schemes (compared
to early and late fusion), so as to capture the temporal relations between videos.
To capture the spatial structure of video frames during the similarity calculation
process, we are going to devise a solution that computes similarity at region level.
Moreover, we plan to exploit the spatio-temporal information contained in consec-
utive video frames by employing 3D and/or two-steam CNN network architectures
to extract video features. These networks are able to encode the depicted actions
in videos to compact feature representations. We anticipate that such features will
have considerable impact on the performance of the systems, especially in more
general retrieval tasks such as ISVR. Finally, we will assess the performance of the
developed approach on the problem of Partial Duplicate Video Retrieval (PDVR).
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