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ABSTRACT
New advancements for the detection of synthetic images are critical
for fighting disinformation, as the capabilities of generative AI mod-
els continuously evolve and can lead to hyper-realistic synthetic
imagery at unprecedented scale and speed. In this paper, we focus
on the challenge of generalizing across different concept classes,
e.g., when training a detector on human faces and testing on syn-
thetic animal images – highlighting the ineffectiveness of existing
approaches that randomly sample generated images to train their
models. By contrast, we propose an approach based on the premise
that the robustness of the detector can be enhanced by training it
on realistic synthetic images that are selected based on their quality
scores according to a probabilistic quality estimation model. We
demonstrate the effectiveness of the proposed approach by conduct-
ing experiments with generated images from two seminal architec-
tures, StyleGAN2 and Latent Diffusion, and using three different
concepts for each, so as to measure the cross-concept generalization
ability. Our results show that our quality-based sampling method
leads to higher detection performance for nearly all concepts, im-
proving the overall effectiveness of the synthetic image detectors.
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Figure 1: Overview of two generalization evaluation settings:
Cross-architecture (top), where training and testing are per-
formed on images generated by different generative mod-
els, Cross-concept (bottom), where training and testing are
performed on images of different concepts generated by the
same generative model.

1 INTRODUCTION
Generative AI models constitute a rapidly growing area, and have
already found their place in a wide range of applications [28]. Ad-
vances have been driven in part by the development of new algo-
rithms and techniques, such as Generative Adversarial Networks
(GANs) [11, 19–22] and recently Diffusion Models [7, 16, 29, 32],
which have made it possible to generate increasingly realistic and
high-quality synthetic data, reaching unprecedented levels of pho-
torealism. At the same time, generative models can potentially be
used by malicious users that spread disinformation across several
social platforms. Also, a major concern is that recognizing whether
an image is real or fake becomes increasingly challenging [9].
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Distinguishing between generated and authentic images has at-
tracted the interest of numerous researchers in the field of multime-
dia forensics [12, 36]. The most widely used approach for detecting
generated images involves training a neural network on a binary
classification task (real vs fake) using a large corpus of labelled
images. A key component in this development process is the appli-
cation of a set of carefully selected image augmentations during
the training phase, as demonstrated in prior work [12, 36]. Our
proposed approach relies on this supervised learning setup.

Additionally, the generalization of the detectors are mostly stud-
ied with respect to the different generative architectures [12, 35].
The main goal is to create a detector that is effective in detecting
fake images from different architectures.However, herein we take
a different avenue and define generalization as the ability to detect
synthesized images that depict different concept classes, not neces-
sarily generated from a different architecture (Figure 1). We refer to
this capability as generalization in cross-concept settings, which is of-
ten referred to as Domain Generalization in literature [34]. We study
the behavior of the detector in such a way that it could be trained
in one concept class of real and fake images, e.g., human faces, and
can then be used to distinguish between real and fake images also
in other concepts, e.g., animal faces. We empirically find that using
standard practices from the literature to train our detectors is not
effective enough to generalize on cross-concept scenarios.

In this paper, we tackle the cross-concept generalization chal-
lenge of synthetic image detectors by proposing a sampling strat-
egy for the selection of generated images used for training. Prior
work [12, 35] relies on generating a large number of images that
are used for training. This is equivalent to random sampling, as
no criterion for the selection of the generated images is applied.
Instead, we assess the quality of the images based on a probabilistic
method that provides a Quality Calculation (QC) score. Hence, we
rank a large pool of generated images according to their scores
and then select the top-k images in terms of quality to train our
detectors. This is under the assumption that high quality images
will lead the network to focus less on the artifacts of the generative
process and more on the characteristics that are invariant to the
image content. In that way, we should be able to build more robust
detectors in the cross-concept scenario. We evaluate our method
using fake images generated by StyleGAN2 [20] and the uncondi-
tional module of the recently introduced Latent Diffusion [29]. We
also evaluate on three concept classes for each generative architec-
ture to evaluate cross-concept generalization. When training with
the proposed sampling strategy, the performance is considerably
improved compared to random selection.

Our contribution can be summarized in the following:
• We demonstrate the lack of generalization of state-of-the-art
detectors in the cross-concept scenario.

• We propose a sampling strategy that considers image quality
scoring for sampling training data.

• We demonstrate improved performance using the proposed
approach in the cross-concept settings of three concept classes
for two generative architectures.

• We provide our code publicly available to facilitate future
research on the field1.

1https://github.com/dogoulis/qc-sgid

2 RELATEDWORK
Detecting synthetically generated images has become an increas-
ingly important task due to the widespread use of numerous gen-
erative models to create fake images. In recent years, the research
community has proposed various methods for detecting such im-
ages. In this section, we discuss the two main categories of meth-
ods that have been proposed in the literature: feature-based and
frequency-based. Moreover, we analyze two recent works that also
consider generated images based on diffusion models.

2.1 Feature-based methods
Feature-based methods for detecting synthetic images focus on
extracting visual features from the images and using them to train
a classifier. One of the most well-known methods in this category
is the use of Convolutional Neural Networks (CNNs) trained on a
large dataset of real and fake images [35]. In this work, Wang et
al. show that a simple ResNet-50 classifier trained with a strong
augmentation scheme can generalize to different generative archi-
tectures with high scores. Furthermore, Gragnaniello et al. [12]
propose some modifications to the network architecture and pre-
processing pipeline to improve the performance of the ResNet-50
classifier. The relation between augmentations during training and
detection performance is also analyzed in [25]. Moreover, Chai et al.
[2] propose using a patch-based CNN that focuses on local regions
for improved performance. Du et al. [8] follow a similar local-based
approach, training an autoencoder architecture that produces more
generalizable results. Similarly, Ju et al. [18] achieve good general-
ization by analyzing both local (patch-based feature selection) and
global features (spatial information). An alternative approach is in-
troduced in [40], where the authors construct a novel loss function
under an unsupervised learning framework to boost the general-
ization of the detector. Specifically, they propose a contrastive loss
function that encourages the network to learn discriminative fea-
tures for real and fake images using a small number of unlabeled
images from the target domain.

2.2 Frequency-based methods
Frequency-based methods for detecting synthetic images focus on
analyzing the color and frequency characteristics of the images.
Initial approaches establish the presence of artifacts that are both
related to the generative model as well as its specific parameters
[26, 38]. One common approach is to extract co-occurrence matrices
in both the spatial and frequency domains and feed them as input to
CNN models [1, 27]. Both of these works report good results with
respect to the generalization of the detector across different gener-
ative architectures. Zhang et al. [41] propose detecting artifacts in
the spectrum space and use them as input to a ResNet34 network.
Similarly, in [10], the authors show that upsampling operations
create artifacts in the frequency domain and optimize a simple
classifier to detect synthetically generated images. A different ap-
proach is followed in [23], where the authors observe the existence
of geometric grids in the magnitude and phase spectrograms of the
generated images and use them for the detection of fake images.

https://github.com/dogoulis/qc-sgid


Improving Synthetically Generated Image Detection in Cross-Concept Settings MAD ’23, June 12, 2023, Thessaloniki, Greece

Generated Images

Selected subset

top-k
selection

Real Images
R
e
s
N
e
t5
0

Ranked

images Real/Fake

QC(·)

Figure 2: Overview of the proposed approach. The synthetically generated images (in the pink ellipsis) are evaluated based on
a quality assessment model (𝑄𝐶 (·)) trained on real images (in the green ellipsis). The top-𝑘 generated images are then selected
and provided, along with real images, as input to a ResNet-50 model, which is trained to discriminate between real and fake
images.

2.3 Detection of diffusion generated images
Recently, the advent of diffusion models has stimulated the need
for new methods to detect the corresponding synthetic images.
Corvi et al. [4] conduct a comparative study of state-of-the-art
detectors for GAN-generated images, evaluating their performance
on the recently introduced diffusion-based generative methods.
They show that current detectors cannot generalize to diffusion-
based generative architectures. Similarly, Sha et al. [31] perform
a comparative analysis of current state-of-the-art detectors and
conclude that they are not effective in detecting images generated
by recent GAN models. They also propose a multimodal detector
that uses images and text prompts as input and show that this
technique can improve detection performance.

Overall, while there have been many proposed methods for de-
tecting synthetic images, the task remains challenging, and new
techniques are needed to keep up with the rapidly evolving land-
scape of generative models. However, none of these works address
the problem of generalization across different concepts.

3 PROPOSED APPROACH
Our method can be split into two main parts. The first part is the
sampling strategy, where the quality of the generated images is
quantified and the best of them are selected to compose the training
set. The second part is the training phase, where we use a CNN
network and a pre-processing pipeline following the one proposed
by two seminal works in the literature [12, 35]. The use of quality
quantification for composing the training set is arguably the most
important part of our contribution. This builds on the intuitive
assumption that if a network is trained on fake images of high
perceptual quality, then it will focus on less obvious details and ar-
tifacts of the generative process. Hence, it will learn characteristics

that are invariant to the content of the image and, as a result, boost
the ability to detect fake images from different concepts.

3.1 Quantifying quality in generated images
There are different ways to assess the quality of AI-generated im-
ages automatically. The most well-known such metrics are Frechet
Inception Distance (FID) [15] and the Inception Score (IS) [30]. The
first measures the distance between the distributions of real and
generated images in the feature space. The second measures the
quality and diversity of generated images by looking at how well
they are classified by a pre-trained Inception network [33]. This
metric is generally more sensitive to changes in image quality than
the FID. However, both methods measure the similarity between
distributions of real and fake images, so they do not fit our needs.
In this work, we use a metric that has been proposed in [13], and
we refer to it as Quality Calculation (QC). The intuition behind this
approach is similar to the one behind the FID and IS. The quality
of generated images is quantified based on their similarity to a
pre-defined real image distribution. First, a feature extractor 𝑓 (·) is
used to extract features from the real images. Then, the real image
distribution is approximated by a Gaussian Mixture Model (GMM),
which is a weighted sum of Gaussian distributions with parameters
𝝁𝑖 and 𝚺

𝑖 . Hence, the quality of the input image is calculated using
the trained GMM. More formally, for an input image 𝐼 , the quality
score of the image is calculated based on:

𝑝 (x|𝜆) =
𝑀∑︁
𝑖=1

w𝑖𝑔(x|𝝁𝑖 , 𝚺𝑖 ) (1)

where 𝒙 = 𝑓 (𝐼 ) and w𝑖 are the weights of the mixture model
that satisfy the constraint

∑𝑀
𝑖=1w

𝑖 = 1. The function 𝑔(·) repre-
sents the Gaussian density components of the model parameter-
ized by the mean vector 𝝁𝑖 and the covariance matrix 𝚺

𝑖 . In a
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more general form, the parameters of this model can be denoted
as 𝝀 = {𝒘𝑖 , 𝝁𝑖 , 𝚺𝑖 }. The estimation of 𝜆 is given by the Expecta-
tion–Maximization (EM) algorithm [5]. Then, for each generated
image 𝐼𝑔 , its quality score 𝑄𝐶 (𝐼𝑔) is given by:

𝑄𝐶 (𝐼𝑔) = 𝑝 (𝑓 (𝐼𝑔) |𝝀) (2)

The advantage of using the QCmethod when calculating the quality
of the generated images is that it can produce a final ranking of
images. Contrary to the FID score, which produces a single scalar
that denotes the quality of a set of generated images, QC ranks the
generated images from highest to lowest quality.

3.2 Synthetically generated image detection
Figure 2 displays an overview of the proposed approach. First, we
train the QC models [13] for each of the different concepts based on
the corresponding datasets of real images. Then, we select the top-𝑘
generated images with the highest quality and the same amount
of real images in order to form the training dataset. The next step
is to train a classifier network to distinguish between real and fake
images. The classifier network and the training process are based on
the methodology proposed in [35]. A ResNet-50 [14] model is initial-
ized with the weights of ImageNet [6] and trained using the dataset
compiled in the previous step. Additionally, during training, we
apply a set of augmentations including several geometric augmen-
tations (i.e., random crop and resize), Gaussian blurring, and JPEG
compression. The network minimizes the binary cross-entropy loss.

4 EVALUATION SETUP
In this section, we discuss the evaluation pipeline for our experi-
ments. Specifically, we present the datasets, evaluation methodol-
ogy, and implementation details used.

4.1 Datasets
We obtain real images from publicly available datasets, including
FFHQ [21], AFHQ [3], and LSUN [37]. The FFHQ dataset contains
images of human faces, the AFHQ dataset contains images of dogs,
cats, and a general class of wildlife, while the LSUN dataset contains
nearly one million images of 10 scene categories and twenty object
classes. Then, we employ pretrained diffusion and GAN models
to generate artificially generated images for different classes to
evaluate the cross-concept scenario. More specifically, we use the
StyleGAN2 [22] model to generate images from pretrained net-
works in FFHQ, AFHQ and LSUN-churches, while we also use the
Latent Diffusion [29] model to generate images from pretrained
networks in FFHQ, LSUN-bedrooms, and LSUN-churches. We de-
note each dataset as X + X𝐴 , where X is the set of real images of
a specific concept class and X𝐴 is the corresponding set of fake
images generated with architecture 𝐴, which takes values either 𝐺
for StyleGAN2 or 𝐷 for Latent Diffusion. Regarding the different
concepts, we use H for human, A for animal, C for church, and B
for bedroom datasets.

4.2 Evaluation methodology and metric
We assess the detection performance of our model on each concept
class by utilizing the AUC metric. This particular scoring method
does not rely on any predetermined threshold, making it suitable for

assessing the robustness and generalization of the detector models.
For each concept, we perform three training sessions and report
the mean AUC and its standard deviation. For comparison, we train
the ResNet-50 classifier following the same training process but
with random sampling for fake images instead, i.e., without using
the proposed sampling strategy.

4.3 Implementation details
For our sampling strategy, we initially generate 20K total images for
each concept and architecture, and then select the top 10K images
based on their QC score. The test set consists of 2K images for
each concept and it is randomly selected before the QC selection.
We sampled the same number of real images in order to form the
training and test datasets. The GMM model that was implemented,
used the Inception model [33] as a feature extractor. Moreover, we
used 50 Gaussian components and a batch size of 50 instances.

For preprocessing, during training, we implement the augmenta-
tions from Section 3.2 with an output size of 224× 224 pixels. While
during testing, we only resize images to 224 × 224.

For our detector, we use a ResNet-50 [14] pretrained on Ima-
geNet [6]. The model is trained using the AdamW optimizer [24].
The learning rate was equal to 10−3, and a step scheduler with
5 epochs was used. Weight decay is also applied with a factor of
5 ·10−5. Additionally, a drop path [17] rate of 0.1 is employed to pre-
vent overfitting, which randomly drops entire paths (i.e., sequences
of layers) in the model during training. All training and evaluation
processes were carried out on a server with one NVIDIA GeForce
RTX 3060 GPU.

5 EXPERIMENTS
In this section, we present the experimental results of the proposed
method and demonstrate the generalization improvements of the
models when trained with it. Our primary interest lies in the cross-
concept scenario, where a network is trained on instances of a
specific concept class and evaluated on unseen instances from a
different concept class. This evaluation serves as a measure of the
model’s ability to generalize beyond its training domain and is a
critical aspect of assessing the effectiveness of the proposed method
in terms of cross-concept generalization.

5.1 Cross-concept evaluation
Table 1 presents the AUC scores of the detectors trained with ran-
dom sampling and the proposed method, for generated images
based on StyleGAN2 and Latent Diffusion. To ensure the validity
and reliability of our findings, we run three training sessions for
each concept and report the mean and standard deviation of AUC.

We first analyse the results of our intra-class experiments, where
we train and evaluate a detector in the same concept class. The
corresponding runs are coloured in gray in Table 1. Our findings
indicate that there is no significant difference in the performance of
the detector when using images of higher quality, due to the perfect
performance in almost all cases (with the exception of the Bedroom
concept in Latent Diffusion). This result is consistent with previous
studies that have shown that a robust augmentation scheme is
sufficient to train very accurate detectors within the same domain
[12, 35]. In our study, we used the same augmentation scheme for
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test

training sampling H+H𝐺 A+A𝐺 C+C𝐺

H+H𝐺 random 100.0±0.0 89.1±1.00 77.5±3.42
QC (ours) 100.0±0.0 94.8±1.22 83.5±0.94

A+A𝐺 random 61.8±1.36 100.0±0.0 89.1±0.71
QC (ours) 66.4±1.08 100.0±0.0 86.5±0.15

C+C𝐺 random 53.7±0.22 58.6±3.51 100.0±0.0
QC (ours) 59.4±0.19 67.1±0.16 100.0±0.0

(a) StyleGAN2

test

training sampling H+H𝐷 B+B𝐷 C+C𝐷

H+H𝐷 random 100.0±0.0 64.4±2.31 66.7±0.88
QC (ours) 100.0±0.0 74.1±0.68 77.5±0.03

B+B𝐷 random 52.1±1.47 96.3±0.79 99.7±0.03
QC (ours) 56.2±5.13 99.6±0.02 99.4±0.02

C+C𝐷 random 54.2±4.08 96.3±1.19 100.0±0.0
QC (ours) 58.5±1.52 98.9±0.58 100.0±0.0

(b) Latent Diffusion
Table 1: AUC of detection model trained on randomly selected samples or based on the proposed QC score for each concept
and generativemodel. Mean and standard deviation of three training sessions with different seeds are reported. Bold indicates
the best performance between the proposed and the random baseline. Gray colour indicates intra-concept evaluation.

quality quartile ↓
training test set 0-25% 25-50% 50-75% 75-100%

H+H𝐺 A+A𝐺 93.4±0.98 92.8±1.32 93.2±1.17 89.8±0.89
C+C𝐺 83.0±1.07 79.2±1.03 80.9±0.83 77.8±0.92

A+A𝐺 H+H𝐺 66.8±1.02 66.2±1.15 63.9±0.97 62.7±0.98
C+C𝐺 84.1±0.32 84.9±0.17 90.3±0.11 94.0±0.13

C+C𝐺 H+H𝐺 56.1±0.19 59.9±0.18 59.5±0.21 58.8±0.17
A+A𝐺 62.2±0.13 64.1±0.17 67.1 ±0.14 69.8±0.24

(A) StyleGAN2

quality quartile ↓
training test set 0-25% 25-50% 50-75% 75-100%

H+H𝐷 B+B𝐷 70.1±0.72 73.6±0.67 74.8±0.68 72.5±0.69
C+C𝐷 74.1±0.05 73.2±0.04 78.6±0.07 77.4±0.02

B+B𝐷 H+H𝐷 52.1±5.42 56.9±5.34 55.3±5.22 57.7±4.88
C+C𝐷 99.2±0.02 98.3±0.07 99.4±0.04 99.4±0.02

C+C𝐷 H+H𝐷 55.7±1.55 56.4±1.52 57.8±1.48 57.3±1.42
B+B𝐷 98.2±0.64 98.4±0.72 98.4±0.58 99.3±0.71

(b) Latent Diffusion
Table 2: AUC of detection model for test subsets grouped based on their QC score for the two generative models. Mean and
standard deviation of three training sessions with different seeds are reported.

both randomly selected and quality-based selected subsets, which
explains the lack of notable difference in the detector’s performance
between the two subsets.

Next, we discuss the results of our proposed methodology in
the case where a detector is trained on generated and real images
from a concept class and is evaluated on images of a different class.
Regarding the experiments on StyleGAN2 sets, it is evident that our
proposed method clearly improves the robustness of the detector
in almost all cases except in the case when training on Animals
(A+A𝐺 ) and testing on Churches (C+C𝐺 ). In all other cases, our
proposed approach outperforms the baseline by more than 5% in
terms of mean AUC, reaching up to 8.5%. Furthermore, the standard
deviation of the runs with the proposed QC sampling strategy is
relatively low, being less than 1.5% in all cases, and often signifi-
cantly lower compared with the runs where random sampling was
used. This implies that using our strategy leads to more consistent
and reliable models. Similar conclusions can be drawn from the
experiments on Latent Diffusion sets. Specifically, our method sur-
passes the baseline in all but one case, i.e., training on Bedrooms
(B+B𝐷 ) and testing on Churches (C+C𝐷 ), where the difference is
marginal. The AUC score is improved by almost 10% in some cases.
Also, the standard deviation is generally low, except for one case.

In summary, our experimental comparison provides compelling
evidence of the effectiveness of the proposed method in improving
the generalization performance across different concepts.

5.2 Results when test image quality varies
We also evaluate our model in the case of selecting different test
set composition in terms of image quality. Specifically, the aim is to
evaluate whether images of better quality are more difficult to de-
tect or not. Hence, we split the test sets into four quartiles denoted
as 0-25% (lowest quality), 25-50%, 50-75%, and 75-100% (highest
quality) based on their QC score. We observe that in several cases
of StyleGAN2 generated images, the detector achieves better AUC
scores for low- or medium-quality images. This means that a test set
would benefit from an automatic selection step where higher qual-
ity images are retained, since it would be more challenging. Instead,
in the case of images generated using the Latent Diffusion model,
there is no apparent association between the test set composition
in terms of image quality and the detection performance.

5.3 Results when the detector is trained with
many classes and architectures

In this section, we evaluate the performance of the model when
trained based on QC sampling in three different datasets:

• G: Dataset consists of images from all concepts, generated
by StyleGAN2, and the corresponding sets of real images.

• D: Dataset consists of images from all concepts, generated by
Latent Diffusion, and the corresponding sets of real images.

• G + D: Combination of the other two datasets.
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Human (H𝐺 ) Animal (A𝐺 ) Church (C𝐺 )

(a) StyleGAN2

Human (H𝐷 ) Bedroom (B𝐷 ) Church (C𝐷 )

(b) Latent Diffusion

Figure 3: Visualization of the magnitude spectrograms for the different classes of the two generative architectures using the
denoising network proposed in [39].

test

training G D G + D
G 99.9±0.00 60.5±1.53 77.3±0.88
D 59.2±0.29 99.9±0.00 74.6±1.07

G + D 99.9±0.00 99.9±0.01 99.9±0.00
Table 3: AUC of detection model when trained on all the dif-
ferent classes and architectures. Mean and standard devia-
tion of three sessions with different seeds are reported.

The findings are presented in Table 3. Our analysis reveals that
the performance of the detector significantly improves when it
is trained on a diverse set of generated images, including those
produced by StyleGAN2 and Latent Diffusionmodels, and evaluated
on a range of test sets. Conversely, we observe that detectors trained
solely on images generated by a single architecture demonstrate
limited generalization ability when tested on images generated by
other architectures [4, 31]. Furthermore, our investigation indicates
that the semantic content of each dataset is a crucial factor affecting
the detection of generated images, and the detector’s efficacy is
significantly enhanced with the exploitation of a greater variety of
classes during training.

5.4 Qualitative artifact analysis
In this section, we visualize the artifacts that are calculated using
the Fast Fourier Transform for different generated classes of the
same architecture. Following [4], we first randomly select 1000
generated images per concent and model architecture. Then using
the denoising function proposed in [39], we transform each image
𝑋 to its denoised version 𝑓 (𝑋 ) and then compute the residual
𝑅(𝑋 ) = 𝑋 − 𝑓 (𝑋 ). Next, we average the residuals and apply a 2D
Fast Fourier Transform in order to obtain the magnitude and phase
spectrograms. The magnitude spectrograms are a good indicator
for the analysis of the artifacts introduced by a generative model.

As seen in Figure 3, differences exist between the generated im-
ages of each concept. It is evident that generated images from mod-
els pretrained on datasets with similar structures present more com-
mon characteristics. For instance, FFHQ and AFHQ, which are used
for HumansH𝐺 and Animals A𝐺 , respectively, are high-quality
and high-resolution datasets consisting of images with centered
and aligned faces. This produces similar cloudy magnitude spectro-
grams for these two cases. Similar spectrograms also appear in the
case of the Bedrooms B𝐷 and Churches C𝐷 generated from the
models that were trained on the LSUN-Bedroom and LSUN-Church
datasets, which contain images of significantly lower resolution and
quality compared to FFHQ and AFHQ. Nevertheless, all images are
preprocessed in the same way in our experiments; hence, we expect
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(a) StyleGAN2
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Figure 4: Sampled image and magnitude spectrogram of the top 100%, 75%, 50%, 25%, 1% generated images ranked based on
their QC score and a real image from the same concept with its magnitude spectrogram.

such differences to be mitigated during our evaluations. This obser-
vation reinforces the main assumption of this work, which is that
images produced by generative architectures are class-dependent.
This means that the classification of real and fake images is affected
by the semantic image content [34, 35].

Moreover, Figure 4 illustrates five generated images for each
generation model and concept as well as one real image from the
same concept. Specifically, we rank the generated images from each
concept, and then we select the images ranked on 1%, 25%, 50%, 75%,
and 100% quartiles of the total image quality ranking. This means
that the image ranked in the 1% is the image with the best quality,
the image ranked in the 100% quartile has the worst quality, while
the images located within the 25%, 50%, and 75% quartiles denote
images of progressively lower quality as their respective quartile
rankings increase. It is noticeable that moving from the worst to
the best image ranked by the QC score, the perceptual quality is
significantly better. Furthermore, we provide the corresponding
magnitude spectrograms of each image in the second row of the
figure. Interestingly, we observe that the image with the best qual-
ity has a very similar spectrogram to the spectrogram of the real
image, while as we move to the image with the worst quality, the
spectrogram appears to be noisier. This finding supports our main
intuition that training with higher-quality images can facilitate the
learning of subtle and less distinguishable artifacts by the network.

6 CONCLUSION
In this work, we address the challenge of generalization for syn-
thetic image detection in the cross-concept scenario. We observe

that even state-of-the-art detectors that use strong augmentation
schemes to improve their robustness to different generative ar-
chitectures still lack the ability to generalize to unseen concept
classes. To address this, we propose a novel approach that uses a
probabilistic method to quantify the quality of generated images
and shows that training detectors with higher-quality images can
significantly improve their generalization ability. We evaluate our
method using fake images generated by two state-of-the-art gen-
erative models, StyleGAN2 and Latent Diffusion, and demonstrate
that our approach improves the detection performance when train-
ing with randomly selected generated images. Also, we enhance
the basic intuition by visualising the magnitude spectrograms of
quality-based selected generated images. Although our results are
promising, there is still considerable room for improvement in the
development of detectors that can generalize better across different
concept classes and generative models. To this end, we plan to
carry out more extensive experiments involving more concepts and
generative models, and investigating the potential of frequency-
based methods and ensembles of models to further increase the
robustness and accuracy of the detectors.
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