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1 Introduction 

 
The goal of this deliverable is the aggregation of multimedia content produced by the HELIOS 
users and its semantic spatio-temporal analysis with the goal to identify matching users in terms 
of interests and enrich the Heterogeneous Social Graph (HSG), described in the D4.2. 
 
Each user leverages the Contextual Ego Network (CEN), as the local view of a node in the 
HSG, in order to store information concerning their contexts and relationships with others. The 
current CEN is able to store information concerning the relationships, such as the strength of a 
tie. We are interested in analyzing HELIOS user nodes in order to enrich the CEN with personal 
interest information extracted from the consumed and exchanged content. In this deliverable, 
we present methods for creating a user profile primarily based on personal photo collections 
stored on device. Special care has been taken so that all computations run locally on the 
device, thus eliminating the need for the users’ data to ever be transferred to an external server 
in accordance with the HELIOS strict privacy policies and decentralized nature described in 
deliverables D3.1 and D3.2. The outcome of this deliverable is an extension module to the 
HELIOS ecosystem that aims to enable content awareness to other HELIOS modules and 
services by embedding the constructed user profiles in the Contextual Ego Network. In this 
deliverable we will, also, discuss one such service, namely user matching, but the profiles could 
also be leveraged by the Social Graph Mining Module for interaction and friend 
recommendations, a topic relevant to Task 4.3 and further discussed in D4.3. 
 
This deliverable expands on the HELIOS sources of user information beyond the social graph’s 
structure and the social activity patterns to the users’ multimedia content. A significant amount 
of work has been done in the research community involving the topics of user profiling and 
matching through visual content which we will review on Section 2 and in the following sections 
we discuss the less explored area of designing such methods for on-device execution, 
presenting two different avenues of approaching the user profiling task, one through interest 
concepts and one through the notion of user similarity, while also touching upon methods based 
on analyzing the textual content extracted from images. 
 
Another topic of interest to HELIOS is that of contexts and mainly spatio-temporal contexts, as 
described in D4.1. The HELIOS core operates on multiple contexts and the users maintain 
different ego networks for each one. In this way the user’s social network becomes a 
multidimensional entity to better reflect the real life social network of the user. Content 
awareness could be multidimensional too, matching the various contexts the user already has, 
this is further discussed in Section 6.1, where we build a user profile conditioned on spatio-
temporal restrictions. 
 
After this introduction, in Section 2 we discuss the main research challenges that we faced, 
provide an overview of the literature for different profiling schemes and finally present some 
preliminaries on the evaluation metrics used later in the deliverable as well as two brief 
overviews, one on the subject of Deep Metric Learning and one on the subject of executing 
deep learning models on mobile devices. 
 
In Section 3 we present our proposed method for user profiling through predefined interest 
categories. We start with a discussion of how we collected the data from the Pinterest platform 
and move on to analyze the hierarchical classifier that we developed. Then we evaluate our 
model on a separate, manually labeled dataset of Pinterest users and finally we conclude the 
section with a discussion of user matching techniques. 
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An alternative method of user profiling that does not depend on predefined categories but rather 
learns a user representation through data is presented in Section 4. We use a subset of the 
YFCC100m [1] dataset and annotate it with user similarity data based on externally provided 
autotags1. The model is based on Deep Metric Learning and learns to represent similar users 
closely while pulling dissimilar ones further apart. We conclude by presenting some 
implementation details. 
 
The focus of Section 5 is the textual content present in images for the purpose of constructing 
the user profiles. We first extract the text from the images using the open source Tesseract 
OCR engine. Then the extracted text is pre-processed - stop words are removed, the text is 
lemmatized and stemmed. Finally, bag-of-words and LDA approaches are used to infer user 
profiles and interest. 
 
In Section 6 we introduce conditional content aware profiling and matching that can operate on 
different spatio-temporal contexts, described in D4.1. We also evaluate user matching using a 
dataset of Pinterest users annotated with follower-followee relationships. 
 
In Section 7 we discuss an integration of profiling in social graph mining, in which the structure 
of the social graph capturing user actions can help improve their profiles by modeling that users 
engaging in social actions influence each other towards similar interests. In that section we also 
analyse how interest- and preference- related information can be combined to match users 
based on both their content and social behavior.  
 
Then, in Section 8 we discuss some practical aspects about the mobile deployment of the 
developed models as well as some privacy considerations. 
 
Finally, in Section 9 we conclude the deliverable with some final remarks and briefly discuss 
some opportunities for future work. 
 
 

                                                
 
1 Autotags are categories generated automatically for each image, following a deep learning scheme. 
Those tags serve as descriptors of the visual concepts that are present in each photo. Autotags along 
with the related exploitation strategy, are presented in more depth in Section 4.2. 
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2 Research Challenges and Related Work 

In this section we provide research challenges and related work towards profiling approaches. 
These can be broadly categorized in two classes, the ones that depend on some predefined 
categories and through those construct the user profiles and the ones that can adapt the user 
representations usually with some form of unsupervised or self-supervised method. In the 
following we discuss the literature involving both as well as some hybrid approaches. 

2.1 Research Challenges 

Defining the Scope and Form of User Profiles 

Developing a content-aware social graph requires reasoning about the high level semantic 
meaning of the users’ multimedia content. Understanding a user's images at the level of 
recognizing simple objects and scenes is not enough to provide an assessment of the user’s 
profile. However, these are the tasks that the research community has mostly focused on, 
providing large datasets and optimized CNN architectures, and as such no off-the-shelf 
solutions are suitable for eliciting interest user profiles from visual content. 
 
To create content aware profiles, we firstly need to define the nature of a user’s content. In 
general, it would be a vector that somehow captures the semantic content of the user’s images 
relevant to some concepts. These concepts can be predefined as we do in Section 3 through 
the notion of interest categories or can be left to be discovered by the model, allowing it to freely 
mold the user representation space. The latter approach is the subject of Section 4, where we 
construct a similarity measure from their image auto tags and employ deep metric learning 
(DML) to learn the user representations that best reflect the given similarities. 

Obtaining Proper Datasets 

While appropriately defining the nature of user profiles is essential, there is a need for proper 
datasets to train new deep learning models (Convolutional Neural Networks - CNNs in our 
case). In fact, this turned out to be a big challenge and we inevitably had to compromise as our 
need for large, high quality datasets of user images annotated with relevant information for the 
task of semantic profiling could not be accommodated with today’s publicly available resources.  
 
These circumstances led us to create our own dataset2 for the training and evaluation purposes 
of this deliverable. The dataset can be thought to contain four parts; the first one was created 
from Pinterest based on the interest categories defined in Section 3.2 and aims to facilitate the 
training of interest classifiers. The second consists of 12 randomly selected, hand-labeled 
Pinterest users and serves as a test for the model developed on the previous part. The third one 
is based on a subset of the YFCC100m dataset [1] where the images were grouped by user and 
each user was labeled with a feature vector calculated from the auto tags of their images, as 
described in Section 4.2. Last but not least, for the purpose of evaluating the quality of matching 
as well as a comparison for the different profiling techniques, we collected the images of 422 
Pinterest users annotated with follower-followee relationships. 

                                                
 
2 The dataset is published in Zenodo under the name PIPD2020 - Pinterest Interests Profiling Dataset 
2020. https://zenodo.org/record/3895162#.XvMmTpZRUrg 

https://zenodo.org/record/3895162#.XvMmTpZRUrg
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On-device Execution 

Another issue that significantly complicates matters is the requirement of the HELIOS app to be 
executed exclusively on the users’ devices and without communication with any external 
servers. Even though computer vision has one of the most active research communities and is 
evolving at a staggering rate, unfortunately, the mobile and embedded device deep learning 
ecosystem has yet to enter a mature state. As matters stand now, we have to be considerate of 
the devices’ limited memory and computational resources as well as be aware that deep 
learning frameworks have only a subset of their operations supported for mobile inference. For 
our model to be successful, it is imperative to be designed from the start around these 
restrictions. This is the reason that throughout the deliverable we have opted for simple but 
efficient models with straightforward execution order as well as computationally efficient 
versions of performant but otherwise bulky CNNs. On the positive side, things are rapidly 
progressing with more operations becoming supported and many challenges being alleviated. 

2.2 Profiling with Predefined Categories 

Using predefined categories to construct user profiles is the most straightforward way that has 
the benefits of simplicity and interpretability. The user profiles in this case hold a specific 
meaning that is humanly intuitive and can be used to develop insights to how the algorithm 
works which could be beneficial not only for the developers but also for the end users. App 
users tend to distrust obscure features that they have no intuition about how they work. An 
interpretable model can help demystify the provided services and alleviate adoption problems. 
There are many possible ways to choose these fixed categories and we will discuss some of 
them in the next subsections. 

Object and Scene Categories 

One of the simplest predefined categories are those that are used for object and scene 
recognition tasks. Object recognition is a well-defined and heavily researched task with large 
publicly available datasets3 as well as pretrained models4 and the same is also true for scene 
recognition5. It is, therefore, reasonable to take advantage of these sophisticated and well 
performant models to capture a user’s profile based on the detected objects and recognized 
scenes in their photo collection. 
 
Indeed, a recent paper [2] combined object and scene recognition models to summarize a 
user’s images with a merged counter of the corresponding categories detected in their images 
as well as their videos. This counter served as the user’s profile. The paper is also concerned 
about mobile execution and the models that they used were chosen according to their trade-off 
of efficiency and performance. The authors, however, go even a step further and propose a 
hybrid application that would conditionally send some images to be processed by more accurate 
and power hungry server models. Although this is an interesting idea, it is not applicable in the 
context of HELIOS because of the strict data privacy policy demanding on-device execution. 
 
Another paper [3] also used object detection to produce user profiles, but interestingly it did so 
only as an intermediate step. The actual profiles were also based on predefined categories, but 
this time the authors chose to use the 34 different domains encapsulated by the BabelNet6 
synset. After crawling images of Flickr users along with their tags, the authors fed these tags to 

                                                
 
3
 Common Objects in COntext (COCO) http://cocodataset.org 

4
 https://github.com/tensorflow/models/tree/master/research/object_detection 

5
 http://places2.csail.mit.edu/ 

6
 https://babelnet.org/ 

http://cocodataset.org/
https://github.com/tensorflow/models/tree/master/research/object_detection
http://places2.csail.mit.edu/
https://babelnet.org/
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BabelNet in order to annotate these images according to the output category. From these 
annotations the ground truth user profile was created for each user. The image based user 
profile was then created by running the object detection model on the user’s images and then 
matching the objects with the appropriate BabelNet categories. 
 
An important issue of the object detection oriented strategies is whether identifying common 
objects is enough to provide an adequate semantic description of an image, the aggregation of 
which should translate to a user profile that captures the users’ characteristics. Unfortunately, 
the works mentioned previously do not provide strong enough evidence that this is the case and 
this matches our intuition as well; we believe that even though object recognition is nowadays 
streamlined and easy to apply, it would be more meaningful to try and find more meaningful 
descriptions that represent higher-level semantic information. 

Event Categories 

Profiling users based on the detected events in their images was among the first fields that we 
explored. Given the lack of a formal event definition, we resort to a definition by example; by 
events we refer to happenings like a wedding or a funeral, a concert, a sports competition, a 
family reunion or a picnic. These carry higher semantic meaning than any single object or scene 
detected and have the potential to be more relevant to the construction of user profiles. In 
addition, some research concerning the event recognition problem has been made, but none to 
the best of our knowledge used such events to construct user profiles and thus seemed an 
interesting research opportunity. 
 
Reviewing the event recognition literature, we found that one of the most commonly used 
datasets is WIDER7, which consists of approximately 60,000 images spanning 61 different event 
categories and was produced by Xiong et. al. [4]. In their paper, the authors proposed the 
combination of object, human and face detection techniques in a custom deep architecture, but 
the results were not that encouraging as their best model achieved only 42.4% classification 
accuracy. 
 
However, several papers have been published since then, proposing new techniques and 
improving the model’s accuracy. In 2017, Wang et. al. [5] proposed the use of two networks 
running in parallel, one initialized from an object detection task and one from scene recognition 
and experimented with various configurations for computing the loss function. However, for 
inference their input pipeline involved 54 crops of a single image which would entail 108 forward 
passes, which is computationally intensive and not suitable in the context of the HELIOS mobile 
app. 
 
Also in 2017, Ahmad et. al. [6] proposed a technique based on detecting saliency regions of 
images. Their training pipeline consisted of first extracting candidate regions from an image, 
selecting the most salient ones by crowdsourcing, extracting features with a CNN and creating a 
bag of features whose label would be the same as the original image’s label. They would then 
proceed to do multiple instance learning. The obvious drawback is the need for crowdsourcing 
during training which seems to be an integral part of the process. However, the reported 55% 
accuracy on the WIDER dataset seems quite a step up from the original WIDER paper. 
 
In 2019, Lakhdar et. al. [7] took a quite different approach by using probabilistic topic models for 
the event recognition task. Probabilistic topic models are frequently used in the field of Natural 

                                                
 
7 Web Image Dataset for Event Recognition (WIDER) http://yjxiong.me/event_recog/WIDER/ 

http://yjxiong.me/event_recog/WIDER/
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Language Processing (NLP) and have been developed quite extensively. Perhaps the simplest 
probabilistic topic model is Latent Dirichlet Allocation introduced by Blei et. al. [8]. LDA 
hypothesizes the existence of a generative process from which all the documents are produced. 
This generative process involves first, for each document the selection of a distribution of 
possible topics and then the selection of each word in the document according to the per-topic 
word distributions. This process can be encoded concisely with a probabilistic graph model. 
They report a classification accuracy score of 58.1% on the WIDER dataset marking the state of 
the art value. However, inference with probabilistic topic models is not straightforward and does 
not correspond to a simple forward pass, but rather to an iterative optimization procedure. This 
made us wary about its potential in an environment where execution is time constrained and 
computational resources are limited. This concludes our brief review of the available event 
recognition models, but there is yet another issue that needs to further discussed, that is how 
suitable event categories are to describe user profiles. 
 
To make matters more concrete we present in Table 1 the 61 WIDER event categories. We 
have highlighted some of the categories in red, as we feel these do not contribute much to 
describing a person and they do not fit well in the context of user profiling. This fact along with 
the lack of fit of the most successful event recognition models with the HELIOS requirements 
and some not so promising initial experiments, led us to further investigate strategies for user 
profiling and in particular interest-based profiling, which is the subject of the next section. 
 

Table 1. WIDER dataset categories, the highlighted categories are emphasized because they do not fit 

well in the context of user profiling. 

Parade Gymnastics Baseball Soldier Firing Worker Laborer Celebration Or Party 

Handshaking Swimming Ceremony Soldier Patrol Award Ceremony Sports Coach Trainer 

Football Greeting Concerts Soldier Drilling Stock Market 
Parachutist 
Paratrooper 

Riot Meeting Couple Tennis Basketball Students Schoolkids 

Dancing Group Soccer Sports Fan Demonstration People Driving Car 

Car Accident Interview Festival Car Racing Family Group People Marching 

Funeral Traffic Picnic Surgeons Waiter Waitress Election Campain 

Cheering Running Shoppers Spa Ice Skating Matador Bullfighter 

Voter Angler Hockey Row Boat Street Battle Press Conference 

Dresses Rescue Raid Aerobics Balloonist Photographers 

Jockey      

Interest Categories 

Compared to the previously discussed object, scene and event categories, interests is the 
concept that is semantically closest to the users and thus a promising alternative. In fact this is 
the method we opted out for and the specifics of our interest-based model will be fleshed out in 
Section 3.3.  In this section we are going to present the similar work of Quanzeng et al. [9]. 
 
Quanzeng et al. trained a model for user interests profiling based on data scraped from 
Pinterest. The data consisted of approximately 1.6 million images from 748 users, labeled with 
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one of the 32 interest categories as defined by Pinterest as well as an extra “other” category. 
The categories appear on Table 2. 

Table 2. 32 Pinterest categories. 

Animals and pets Films, Music & Books Home decor Quotes 

Architecture Food and drink Humor Science and nature 

Art Gardening Illustrations and posters Sports 

Cars and motorcycles Geek Kids and parenting Tattoos 

Celebrities Hair and beauty Men’s fashion Technology 

Design Health and fitness Outdoors Travel 

DIY and crafts History Photography Weddings 

Education Holidays and events Products Women’s fashion 

 
Pinterest’s model is presented in Section 3.2 but summarizing briefly, Pinterest organizes 
images, called pins, in pinboards. The labels of the images in the dataset were inherited from 
the user assigned label of the pinboard they belonged to. Unfortunately, however, nowadays, 
this information seems to not be available and this methodology cannot be applied anymore. 
 
For their model, they initially trained a CNN on the classification task achieving 43% accuracy. 
However, motivated by the fact that their final goal is to predict a user-level distribution of 
interests instead of a per image prediction, they used a second label propagation step. The 
label propagation algorithm was run on the graph induced by the similarity of the extracted 
images’ features and guided by the similarity of the different interest categories. Although the 
algorithm did not help improve significantly the classification accuracy, it did increase the mean 
Normalized Discounted Cumulative Gain (NDCG) from 0.69 to 0.83, as Figure 1 shows. NDCG 
is a metric for the evaluation of ranked retrieval tasks, that is in our case the ranking of user 
interests, that we will describe in Section 2.3. 
 

 

Figure 1. Evaluation of the baseline CNN model along with the proposed Label Propagation (LP) and 

Group constrained Label Propagation (GLP) models from [9]. The table on the left shows the mean and 

standard deviation of the NDCG scores for the test set users, while the table on the right, the 

classification accuracy. 

Some of our issues against this work is that we believe that including all the Pinterest categories 
is not appropriate as some of them, marked with red in Table 2, make only sense in the context 
of Pinterest and are not useful for the task of user profiling. For example, although illustrations 
and posters are pleasant and tempting for people to click, they do not define a meaningful 
interest category and including it can potentially do more harm than good. The same applies to 
other categories such as products, while some others are too broad to be included in the set 
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such as education and celebrities or inappropriate for semantic image analysis, for example 
quotes. It is also the case that the classification accuracy is rather low and the fact that it is not 
improved through the label propagation algorithm is worrisome, especially considering the 
complications of it running on mobile devices. 

Profiling with Machine Discovered Representations 

While profiling with predefined categories has the benefits of being more straightforward and 
interpretable, the semantics that it can capture are inevitably limited by the fixed nature of the 
categories. Although the initial categories we define make intuitive sense and seem relevant to 
the task, it is very likely that there are even more discriminating dimensions that would lead to 
more nuanced user profiles. Finding those dimensions is not an easy task, but we will present 
our proposal in Section 4, while in the remainder of this section we will review some of the 
relevant literature. 
 
The HKUST-NIE Social Media Lab8 of the Hong Kong university of science and technology has 
been actively researching the topic of connection discovery in social networks at least since 
2015. Connection discovery is meant in a similar way to what we refer to as user matching, but 
in most cases in order to find matches or connections a user representation is first constructed, 
which can serve the purpose of a user profile, and a measure of similarity is then calculated, 
typically being cosine similarity.  
 
Cheung et. al. [10] proposed a Bag of Features Tagging (BoFT) method that would generate 
user representations based on tagging the users’ images with labels produced from the BoFT 
approach. Specifically, their pipeline included first a feature extraction step using traditional 
computer vision method, namely a Harris Affine detector, a Maximally Stable Extremal Regions 
detector and a Kadir Brady saliency detector, followed by the creation of a visual codebook. The 
visual codewords were then clustered and the image labels were calculated from the cluster 
distribution of its extracted codewords. Although the employed feature extraction techniques are 
nowadays much less popular, the idea of creating representations based on an unsupervised 
clustering method is interesting and we will see it again later on. Finally, the connections 
between the users were calculated with the cosine similarity of the user profiles, but a 
probabilistic method for user recommendation was also explored. 
 
A variation of the above method was proposed in [11]. The clustering and tagging of the images 
remained the same but instead of computing codewords they clustered directly the extracted 
features, but again did not use any of the powerful CNN extractors but rather more traditional 
algorithms, namely Scale Invariant Feature Transform (SIFT), GIST and Color Transformation. 
This time no mention to the probabilistic recommendation scheme was made but rather only 
cosine similarity was used. 
 
A more novel paper was written around the same time in Li et. al. [11] where they proposed the 
use of topic modeling to discover user connections. They trained their model on 200k images 
crawled from Flickr and annotated with follower-followee relationships according to the following 
generative procedure; first, for each user the topic distribution is sampled and according to 
those for each image a topic assignment is sampled. Then an image is sampled from a 
Gaussian distribution whose parameters depend on the assigned topics and last, for a pair of 
users a binary link indicator is sampled. There are many ways to estimate the unknown 
parameters of a probabilistic topic model, all of which require the appropriate formulation of the 

                                                
 
8
 http://smedia.ust.hk/ 

http://smedia.ust.hk/
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probabilistic equations. Although an interesting approach, for reasons analysed previously in 
this section, probabilistic topic models are not the best fit for HELIOS requirements and 
unfortunately, this method does not produce the intermediate user profiles we are interested in. 
 
The last and most recent paper [12] is the most similar to our proposed model in Section 4. 
Utilizing an impressive amount of social media data collected over the years, this time the 
feature extraction process was driven by Deep Metric Learning (DML) techniques. A brief 
overview of DML is presented in Section 2.4, but the main idea is that a CNN is trained with a 
loss that motivates related users to become closer in the feature space while dissimilar users 
are driven apart. After this model has been trained the approach the authors follow is very 
similar to their previous works. Unfortunately, however, our attempts to contact them were 
fruitless and their website9 that claims to hold data form millions of images seems to not be 
maintained as of the time of this writing. 

User Profiling through Post Textual Analysis and Topic Detection 

Using text analysis to detect user profiles has been an active area of research in the past few 
years. To represent user interests, previous work either used bag-of-words, Topic Models or 
bag-of-concepts approaches [13]. However, it is difficult to directly estimate the interests of 
social media users from social media data because their posts do not contain any category 
information. To mitigate the problem, a variety of approaches have been proposed, including 
mapping the content of texts in social media into categories of a news corpus. This is 
advantageous since news media contain additional category information which is being 
organised by experts into predefined categories. This is effective when categorisation of posts 
can be identified by distinguishable keywords. However, data sparseness caused by short 
posts, abbreviations, and infrequently used topical terms in social media still needs to be 
addressed to accurately capture users’ interests. But for terms that occur infrequently, one 
cannot utilize categorisation information. To mitigate this, external knowledge bases can be 
used, contributing to an increase in accuracy for estimating users’ interests. Such approaches 
are unsupervised. A supervised approach combining convolutional neural networks and 
recurrent neural networks to classify text messages of social media into predefined categories, 
in which data manually labeled by annotators are utilized in a training process has shown some 
promising results, but it requires manual annotation, as well as significant compute resources 
[14]. User interests across multiple online social networks (Twitter and Pinterest) was studied in 
Ottoni et al [15], where in Pinterest user interests are identified by the images a user pins and 
repins, while in Twitter, user interest topics are identified from tweets of the users. While most of 
the existing works have focused on extracting explicit interests, there are certain works that 
focus on inferring implicit interests of the users.  
 
Since users in social networks can freely publish posts without any restriction, their posts are 
usually unstructured and include a nearly unlimited set of terms. Thus, a user profile can be 
modeled as a bag-of-words feature vector generated from the user’s posts with term frequency–
inverse term frequency (TF-IDF). Combination of TF-IDF with bag-of-words approach improves 
categorisation of posts and finding user interests, but unfortunately, the distances between 
posts about the same topic might be large if the posts contain different words. Therefore Topic 
modeling approaches such as Latent Dirichlet Allocation (LDA) have been used for user 
profiling.  
 

                                                
 
9
 http://smedia.ust.hk/connections/index.html 

http://smedia.ust.hk/connections/index.html
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Topic modeling based on social media analytics facilitates understanding the reactions and 
conversations between people in online communities. Topic models are a prominent way to find 
hidden structures in massive information streams. Generally combining TF-IDF, LDA, with 
shallow word-embedding learning techniques can improve user profiling through textual 
analysis. 

2.3 Evaluation Metrics 

A work cannot be complete without proper evaluation of its results, as it is the evaluation 
process that will highlight the strong points of a model and at the same time reveal its 
weaknesses. It is thus important to select the proper evaluation metrics that will provide us with 
valuable insights about the model behavior. Different tasks require different metrics and so we 
will describe each metric in the context of the task that it was used for. 
 
The user profiles that we will later create are based on the classification of the users’ images in 
interest categories. The classification task is one of the most well studied ones and for our 
purposes the accuracy metric is well suited to assess the model’s success. The accuracy of a 
model is defined as the percentage of the correctly classified images and typically comes in two 
flavours, top-1 accuracy and top-5 accuracy. Top-1 accuracy refers to the percentage of the 
images for which our model assigned the most probability to the correct class, whereas the top-
5 accuracy is a more relaxed measure that counts an image as correctly classified if its true 
label is according to our model within the 5 most probable categories. 
 
While the evaluation of the classification task is a straightforward process, the situation is quite 
different for the evaluation of the created user profiles. The user profiles that we will construct 
will at their core be probability distributions over interest categories and as such a naive metric 
could be based on distance of the probability distributions. The problem of calculating the 
distance between two probability distributions is a fundamental one and a lot of metrics have 
been proposed, the most common one being the Kullback-Leibler (KL) divergence. However, 
we could argue that a metric like this would be too punishing for our model. The user profiles we 
have at our disposal are mere approximations that we have devised and absolute numbers by 
themselves do not carry that much meaning; saying for instance that one’s interests are 60 
percent sports will always be somewhat arbitrary no matter how it is calculated. What is more 
important and we can measure with greater confidence is the relative ordering of one’s 
interests; claiming that someone is 60 percent into sports and 25 into fashion does seem 
questionable in an absolute sense but the statement that this person is more interested in sports 
than fashion can be more confidently supported. Therefore, we argue that the ranking of the 
users’ interests is what we should be mostly concerned with and not give too much of a 
meaning to the exact shape of the probability distribution. Therefore, our internal evaluation 
process could first  focus on the question of whether we identified correctly the most prominent 
interest of the user, then on whether we also managed to identify the second one and so on.  
 
Given that for our evaluation purposes we consider ranking as the most important aspect, we 
turn to the information retrieval literature. Generally, information retrieval is the activity of 
obtaining information, usually pertaining to a specific query, from a collection of resources. The 
results of the information retrieval process can be considered either ranked or unranked based 
on whether their order matters. In our case the query would be a user’s interests, the 
information pool would be the available interests categories and we would consider our output 
ranked as it is critical for our application to retrieve the user’s interests in order of preference. 
 
Fortunately, a lot of evaluation methods have been proposed for this information retrieval task 
and we will briefly review some of them. Fundamental metrics for the unranked retrieval task are 
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the True Positive, True Negative, False Positive and False Negative Rates, which are defined 
as 
 

 
 
where FN is the number of relevant but not retrieved entities, TP is the number of relevant 
entities that have been retrieved, FP is the number of non-relevant retrieved entities and TN is 
the non-relevant entities that have not been retrieved. These quantities are visually 
demonstrated in Figure 2. 
 

 
 

Figure 2. The relation between False Negatives, True Positives, False Positives and True Negatives. The 

green square corresponds to the relevant documents, the circle to the retrieved and the red square to the 

non-relevant. 

 
TPR is also called sensitivity or Recall (R) and is commonly used in combination with Precision 
(P) which is defined as 
 

 
 
Precision describes the percentage of the retrieved documents that are relevant, whereas recall 
refers to the percentage of the relevant documents that are retrieved. Since it is trivial to 
maximize each of these two metrics on their own, for example by retrieving not and all entities 
respectively, only their joint maximization can indicate a successful model. This can be achieved 
with, the F-measure, which performs a harmonic averaging between the “degree of soundness” 
(precision) and the “degree of completeness” (recall), 
 

 
 
A common shortcoming of precision, recall and the F-measure, are set based measures and 
thus suitable only for evaluating unranked retrieval. To introduce the concept of ranking we 
could plot the precision and recall values relative to each rank position forming the precision-
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recall curve. Precision or recall at rank 𝑘 means that we calculate the corresponding measure 
considering only the set of the 𝑘 first results. Having drawn the precision-recall curve, we can 
measure the area under its curve through a measure called average Precision10 (AP) as 
 

 
 
The higher (i.e. closer to 1) the average precision is, the better our model’s response to the 
query. Averaging over a set of queries Q lets us define the mean average precision (MAP) as 
 

 
 
which is a measure of the overall performance of our model at the ranked retrieval task. 
 
Another commonly used measure for the evaluation of ranked retrieval stems from the 
Receiver-Operating-Characteristic (ROC) curve. The ROC curve is shaped by plotting TPR 
against FPR. The area under the ROC curve (AUC) is also a measure of the performance of the 
model. 
 
Discounted Cumulative Gain (DCG)11 is yet another measure of ranking quality, which uses a 
graded relevance scale of the results. The idea is that one rewards retrieved results according 
to their relevance to the query, but also discounts the reward based on how far down the 
retrieved list they are. So, naturally, the first step is to define the relevance of each result, which 
generally is dependent on the problem at hand. In the user profiling case, for example, we will 
consider as a measure of relevance the probability of the interest category in the ground truth 
profile, that is 
 

𝑟𝑒𝑙𝑒𝑣𝑎𝑛𝑐𝑒(𝑖)  = 𝑝𝑔𝑡(𝑖) 

 
where 𝑝𝑔𝑡 is the ground truth user profile. Next the discounting formula needs to be also 

defined; a reasonable choice is  
 

 
 
where 𝑘 is the number of included results. Having defined the relevance and the discount of the 
results, the DCG is given by 
 

 
 
Nevertheless, the length of the results for each query may vary and to make the measure 
comparable across different queries it is commonly normalized. The Normalized Discounted 

                                                
 
10

 https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision 
11

 https://en.wikipedia.org/wiki/Discounted_cumulative_gain 

https://en.wikipedia.org/wiki/Evaluation_measures_(information_retrieval)#Average_precision
https://en.wikipedia.org/wiki/Discounted_cumulative_gain
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Cumulative Gain (NDCG) is computed by dividing the DCG by the Ideal DCG (IDCG) which is 
equal to the DCG corresponding to the ideal response, 
 

 

2.4 Deep Metric Learning 

Problem Setting 

Metric Learning is the research field that focuses on learning a distance function to measure the 
similarity between data samples. Early works attempt to learn a Mahalanobis distance metric 
through a convex optimization problem [16]. However, recent works combine Metric with Deep 
Learning for the learning of a distance function through the training of a Deep Neural Network 
(DNN). The main objective of such works is to approximate an embedding function that maps 
samples in a feature space where relevant samples are closer than irrelevant ones. Relevance 
between samples may be determined based on any arbitrary semantic relation, e.g., two images 
of the same concept. A DNN can approximate such an embedding function through a training 
scheme that penalizes the violation of the samples' ordering. More precisely, to formulate this 
process, a similarity between two arbitrary samples 𝑥, 𝑦 ∈ ℜ𝑛 has to be defined. The most 
prevalent measure used to quantify similarity between samples is Euclidean distance in the 
embedding space, which is defined as: 
 

𝐷(𝑥, 𝑦) = ||𝑓𝜃(𝑥) − 𝑓𝜃(𝑦)||
2

 

 

where 𝑓𝜃: ℜ𝑛 → ℜ𝑑 is the embedding function that maps a sample 𝑥 ∈ ℜ𝑛 to a point in a feature 

space ℜ𝑑 and is modeled through a DNN with 𝜃 parameters, and 𝐷(⋅,⋅) is the Euclidean 
distance in this space. Any deep learning architecture can be selected for the implementation of 
the DNN, which is usually adapted based on the underlying problem. The ultimate goal is the 
training of a DNN network that generates embedding representations which result in small 
distances between relevant samples and large distances between irrelevant ones.  
 
Training setup and loss function 
Several DML setups have been proposed in the literature for the training of the DNN. The main 
differences between the training schemes concern the employed loss function, which dictates 
the number of data samples used for the loss calculation. A common practice in the DML 
applications is the use of Siamese Networks (SNs) combined with the contrastive loss functions 
[17]. SNs consist of two identical networks that share weights. The contrastive loss functions 
utilize two data samples and their pairwise label to calculate the loss. It minimizes the distance 
between relevant sample pairs and maximizes the distance between irrelevant ones. Another 
popular setup employs Triplet Networks (TNs), composed of three networks that share weights, 
similar to the SN. They are usually combined with the triplet loss function [18] that considers the 
relative distance between data points in order to compute the loss; or the angular loss [19] that 
takes into account the angles of the triplet triangles formed based on the data samples. Other 
recent works employ more than three samples to calculate the loss. Quadruplet [20] and N-pair 
loss [21] extents TNs by applying the core idea of relative distances to more than three samples 
at a time. Finally, lifted structural loss [22] exploit the pairwise distances between all samples in 
a training batch, which are commonly used for neural network training.  
 
In this section, we discuss in detail the training setup based on the triplet loss, since this is the 
one employed for image-based user profiling. We selected this training scheme because it is the 
most widely-used and has been successfully applied to a wide range of multimedia problems. 
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For the calculation of triplet loss function, three data samples are involved. More precisely, 
given a sample 𝑥 along with a relevant sample 𝑥+ and an irrelevant sample 𝑥−, we want to learn 

an embedding space where the distance between 𝑥 and 𝑥+ is smaller than the one between 𝑥 
and 𝑥−, i.e., 𝐷(𝑥, 𝑥+) < 𝐷(𝑥, 𝑥−). To this end, the training collection may be organized in the 

form of triplets 𝑇 = {𝑥, 𝑥+, 𝑥−}, where the 𝑥, 𝑥+, 𝑥− are considered the anchor, the positive 
(relevant), and the negative (irrelevant) samples. A triplet expresses a relative similarity order 

among three samples, i.e., 𝑥 is more similar to 𝑥+ in contrast to 𝑥−. The DNN is trained in a way 
to respect this ordering based on the following triplet loss function [18]: 
 

𝐿𝑡𝑟 = 𝑚𝑎𝑥(0, 𝐷(𝑥, 𝑥+) − 𝐷(𝑥, 𝑥−) + 𝑚) 
 

where 𝑚 > 0 is a margin parameter to ensure a sufficiently large difference between the anchor-
positive and anchor-negative distances. Since triplet loss function is a hinge loss, if the network 

correctly assigns distances between samples within margin 𝑚, then it will not be penalised. 
Otherwise, the loss measures the degree of violation of the desired distance between the video 
pairs. 
 
Figure 3 illustrates some visual examples of training samples in the feature space during the 
training of the DML network. The blue, green and red colour circles correspond to the anchor, 
positive and negative samples. Initially, some negatives are closer to the anchor than the 
positives considering a margin, which is penalized by the triplet loss function. Hence, gradients 
are generated that “pull” the positives closer to the anchor, while “push” the negatives away until 
they are beyond the safety margin. The loss is zero when there are no negative samples closer 
to the anchor than the positives considering the safety margin. 
 

 

Figure 3. Illustration of samples in the feature space during training of the DML network. The triplet loss 

function generates gradients that “pull” positives closer to the anchor and “push” the negatives away until 

they are beyond the safety margin 

Sampling Strategy 

A critical step of the DML process is the organization of the data samples in the form required 
by the loss function and the composition of a representative training set. For instance, in the 
case of the triplet loss function, data samples have to be organized in the form of triplets. The 
total number of triplets that can be generated equals the total number of 3-combinations over 

the size N of the corpus, i.e., 
𝑁⋅(𝑁−1)⋅(𝑁−2)

6
. Usually, only a tiny portion of pairs of samples in a 

training corpus can be considered as anchor-positives, which significantly narrow down the total 
amount of possible combinations. Therefore, the research community has invested considerable 
effort into sampling strategies of negative (irrelevant) samples, which increases the performance 
of the networks and reduces the required training time. Early works [17] relied on the random 
sampling of training samples without specific criteria. However, random selection was 
empirically found to be inefficient due to a large number of training samples that generate zero 
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loss. In the case of the triplet loss, triplets with negatives whose distance to the anchor is 
greater than the anchor-positive distance plus the margin would not generate any loss to update 
the network. Such examples are considered easy negatives. To overcome this issue, the 
authors in [23] focused on the mining of hard negative examples, which are negative samples 
that are closer to the anchors than the positives in the feature space, and thus would generate 
loss during network training. This practice led to significant performance increase and reduction 
of the total time required for network training. Additionally, in [18], the authors proposed a semi-
hard negative mining scheme. Along with the hard negatives, they considered all negative 
samples that are further away from the anchor than the positive example, but still closer than 
the anchor-positive distance plus the margin. This approach offers a softer transition between 
positive and negative samples. The three categories of negatives are displayed in Figure 3. 
Negative samples inside the gray ring can be viewed as the hard negatives. Negatives that are 
further than positive samples in comparison to the anchor, but still on the gray ring, are 
considered semi-hard negatives. Finally, all negative samples outside the gray ring are the easy 
negatives. 

2.5 Mobile Device Execution of Deep Learning Models 

Research Approaches 

Deep learning models have nowadays become very widespread and a lot of consumer 
applications are being developed. The integration of these applications with mobile devices, 
commonly smartphones and tablets, is significant to application developers as it directly affects 
the user experience. However, deep learning models are computationally heavy and not 
designed to run on restricted resources, which is a major hindrance for fully utilizing what deep 
learning has to offer. To overcome these difficulties academia and industry have joined forces 
with the former focusing on making the deep models more efficient, and the latter producing 
highly optimized libraries for mobile execution and at the same constantly improving the 
hardware of the devices. We will discuss both of these approaches, focusing first on the 
academic front. 
 
Broadly speaking, most research efforts at improving the efficiency of deep models can be split 
in three main categories: a) modifying the architecture of the models to reduce the model’s size, 
the computations needed for inference and the model’s memory footprint, b) quantizing the 
weights as well as the activations of the models and c) pruning models to remove unnecessary 
branches. None of these categories achieve a lossless compression of the model, but rather 
attempt to achieve a good trade-off between the model’s accuracy and the resources it 
demands. 
 
a) Modifying the model’s architecture 
Starting with modifications to the model architecture, one of the most highly cited papers in the 
deep learning literature describing the now most commonly used mobile network was written by 
researchers at Google in 2017 [24]. Their approach was simple, but very effective: they 
proposed to split the convolutional layers into two pieces coining the term depthwise separable 
convolutions. Their novelty was that instead of using multiple filters at each convolutional layer, 
they would use at the first step a single kernel and convolve it depthwise with the layers input 

and at the second step they would perform a 1 × 1convolution. In this way, the computations are 

reduced by a factor of approximately 𝐷2, where D is the size of the convolutional kernels, 
meaning that 3 × 3 depthwise separable convolutions use between 8 to 9 times less 
computations than standard convolutions. This is impressive, especially considering the fact that 
the model’s accuracy is not significantly impacted, as shown in Table 3. 
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Table 3. MobileNet comparison to popular models, source: [24]. 

 
 
In a follow-up work [25] Sandler et. al. further improved the MobileNet architecture introducing 
residual connections and linear bottlenecks. This was the architecture that we chose to use in 
this deliverable to construct deep networks suitable for mobile deployment. 
 
However, as discussed earlier, modifying the model’s architecture is not the only way we can 
achieve significant savings on the resources consumed. 
 
b) Quantizing model weights and activations 
Quantization is perhaps the easiest and most effective way to reduce the model’s size and 
memory footprint. We will only discuss post training quantization but quantization aware training 
is also possible. A good resource for the subject of model quantization is [26], a whitepaper from 
Google. 
 
The first flavor of post processing quantization is quantizing the model weights. Typically the 
floating model is quantized to 8-bit precision, representing a 4-fold reduction over the common 
32 bit floating point arithmetic. There are different quantization schemes that can be used, such 
as symmetric or asymmetric and per-layer or per-channel. Table 4 taken from [26] illustrates 
some experimental results.  
 

Table 4. Top-1 accuracy on ImageNet for different models and post training weighs-only quantization. 

The last column refers to the accuracy achieved without any quantization. 

 
 
We can push the concept of quantization even further by quantizing the outputs of the 
activations, but for this to work we need to provide our model with some experimental data to 
measure the range of the activations’ outputs. Table 5, again from [26], shows some 
experimental results. 
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Table 5. Top-1 accuracy on ImageNet for different models and post training weights and activations 

quantization. The last column refers to the accuracy achieved without any quantization. 

 
 
c) Pruning the network 
Another technique for improving efficiency is model pruning, which is overviewed by Blalock et. 
al. [27]. The main idea of pruning methods is that there is redundancy in the network’s 
connections and it is possible to sever a portion of them with small impact on the network’s 
performance. While the idea is straightforward, it can be implemented in a lot of different ways 
and no comparative study was available at the time of writing this report. 

Industry-Driven Methods 

On the other side of the spectrum, highly optimized mobile frameworks and APIs in combination 
with powerful mobile GPUs are essential to the success of the mobile deployments of deep 
learning models. An overview of the current landscape is provided by [28] with the collaboration 
of the smartphone industry leaders, namely Samsung, Huawei, Qualcomm, MediaTek and 
Unisoc. 
 
In summary, there has been a lot of effort in providing the right interfaces between the hardware 
and the mobile operating systems and especially the Android Neural Network API as well as 
improvements to the ways developers can access those new capabilities. As of the time of this 
writing, TensorFlowLite12 (TFLite) is at the leading framework for the development of mobile 
deep learning applications, while the PyTorch ecosystem recently launched its own support for 
mobile13, but is still considered an early experimental release14. 

2.6 Homophily in Social Graphs 

An important aspect that often characterizes users of social media is that they tend to form 
relations with others of similar properties, a behavior known as homophily [29], [30]. Common 
properties that pertain to forming relations may be gender, ethnicity, age and education, but 
more recent studies have revealed that users exhibit homophily on grounds of common 
interests too. In particular, homophily has been corroborated by numerous social media studies 
show that similar interests frequently pertain to forming relations, such as friendship [31], for 
example when those interests pertain to moral [32] and political [33] values. 
 

                                                
 
12

 https://www.tensorflow.org/lite 
13

 https://pytorch.org/blog/pytorch-1-dot-3-adds-mobile-privacy-quantization-and-named-tensors/ 
14

 https://pytorch.org/mobile/home/ 

https://www.tensorflow.org/lite
https://pytorch.org/blog/pytorch-1-dot-3-adds-mobile-privacy-quantization-and-named-tensors/
https://pytorch.org/mobile/home/
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To relate homophily to content-related interests, in [34] authors propose an analysis of 
homophily in Last.fm by analysing on-line interaction, shared interests and location. Users 
connect to online friends but also they reveal their real-life by listing a set of events they co-
attended. In [35], authors propose an analysis of ego networks in Twitter to find homophily by 
considering different user attributes. They show that different types of homophily hold for 
different types of users. Analysis shows that there is a consistently high homophily. For 
example, normal users with roughly the same number of followers and followed have location 
and sentiment homophily. In [36], authors propose an analysis of similarity of social profiles in 
terms of movie preferences. Results show that homophily is indeed exhibited by users and that 
it is further correlated with how close users actually are (e.g. how frequently they interact). 
Another work [37], proposed on Facebook, has demonstrated that with a little amount of 
information, it is possible to infer user attributes. Authors show that users are often friends with 
others who share their attributes. Finally, authors of [38] show that homophily can be discovered 
by evaluating temporal information of social media, in particular of Facebook.  
 
Given the above works and that their results can be applicable to HELIOS applications 
developing online social networks, in this deliverable we consider the approach of assuming 
homophily between HELIOS users and improving profile estimations by taking into account that 
these should also be similar to the profiles of neighbors.  



  
HELIOS D4.8 

Page 27  
 

 
 

 

3 Image based Profiling through User Interests 

3.1 Motivation and Contribution 

As we explained in Section 2.2 one approach to user profiling is through predefined categories 
and we went on to discuss some of the options. In particular, we introduced the concept of 
interest categories. These are semantically close to the user characteristics that we intuitively 
expect to be relevant to the profiles we would want to construct in a social network context. 
Therefore, we chose to build a model based on those and since there are not any suitable 
publicly available datasets, we created one from scratch. 
 
The platform we chose for the data collection process was Pinterest given that it is a popular 
social network where users post content that reflects their interests. The Pinterest API was not 
sufficient for our data collection purposes, so we had to implement custom crawlers to extract 
the necessary data. We specifically constructed two datasets, one for training our hierarchical 
classifier and another one for testing purposes. The first one consists of approximately 60,000 
images drawn from 15 coarse interest categories, 4 of which are further divided into 
subcategories. The latter consists of 12 randomly selected users with hand-labeled user profiles 
for the purpose of testing our proposed model. 
 
To the best of our knowledge our model is the first one to provide a hierarchical representation 
of the user profiles being able to provide both coarse and fine descriptions of the users. Care 
has also been taken to choose categories that are distinct and meaningfully resonate to our goal 
of user profiling and matching. 
 
The remainder of this section is structured as follows; Section 3.2 describes the dataset we 
used, Section 3.3 presents our hierarchical classification model and Section 3.4 discusses the 
results on the test dataset. Finally, Section 3.5 presents some options to use the constructed 
profiles for user matching. 

3.2 Constructing a User Interest Dataset from Pinterest Data 

Pinterest Model 

For the benefit of the reader who is unfamiliar with Pinterest we will proceed with a description 
of how Pinterest is organized. Following a bottom up approach, Pinterest’s most basic element 
is called a pin and corresponds to a single image. Pins might include comments about the photo 
and links to the original appearance of the photo. Pins are organized in Pinboards that usually 
have a specific theme that could be either broad like sports, or specific like a particular 
basketball team. Pinboards are created by Pinterest users and a collection of Pinboards 
constitutes the user profile. Each user chooses to create and organize their Pinboard in very 
different ways which can convey important information about the user’s interests and it is this 
structure that we aim to capture with our model. In general, Pinboards are populated with Pins 
from all over the Web as it is easy for the users to save any image they encounter and captures 
their attention as a Pin. Of course, this also includes other users’ Pins. In this way Pinterest 
creates a diverse wealth of images loosely organized in categories according to their Pinboards. 
We describe the organization as loose because there are not fixed categories as every new 
Pinboard could possibly correspond to a new category and it is common for Pins to belong to 
multiple Pinboards. Even though the taxonomy is not perfect, the structure is still rich enough for 
us to explore and extract useful information for our task. 
 
Pinterest also defines 32 broad interest categories, as shown in Table 2. 32 Pinterest 
categories., that users can choose to assign to their Pinboard. Earlier work [9] took advantage 
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of this mechanism to classify the Pinboards according to the label assigned to it by the user, 
but, unfortunately, nowadays it seems that Pinterest hides this information from the public. 
Ideally, we would like to collect a large number of users and classify their images according to 
the label of the Pinboard they belong to. We would then split the dataset into training and test 
sets and assign user profiles according to the distribution of the categories of their images. 
However, since it is not possible to extract the labels of the users’ Pinboards, we have to resort 
to different methods of constructing the dataset. 

Pinterest Classification Dataset 

Initially, we identify the most relevant categories for our purpose of profiling user interests and 
exclude categories such as Products, Illustrations and Posters, Education, Videos that make 
sense in the virtual world of Pinterest but do not translate well to our needs. The final set of 
chosen broad categories are shown in the first column of Table 6. 
 
Our goal now is to build an image classifier that can effectively distinguish among these 
categories, which means that we need to collect images that are representative of each 
category. Since the labels of users’ Pinboards are hidden, to collect these images we take 
advantage of Pinterest’s search service. Pinterest offers its users the ability to retrieve images 
based on a search query, but also enforces certain limitations as far as the number of images 
returned and the rate of requests. We were cautious of these limitations to ensure that the 
collection of images runs smoothly without disrupting the Pinterest service model, as this could 
potentially lead to temporary or permanent restrictions. Furthermore, we also note that the 
number of retrieved images can vary unpredictably and depends on the given query. Table 6 
shows the search queries that were used to collect the images of the dataset and how many 
images were collected for each category. 
 

Table 6. The number of images for each category collected by submitting the queries shown to Pinterest. 

Category Search queries Images 

Fashion “mens fashion”, “womens fashion”, “fashion hair”, “fashion hair men”, 
“fashion bags”, “fashion jewellery”, “fashion nails”, “fashion makeup”, 
“fashion shoes” 

8279 

Entertainment “entertainment”, “music”, “entertainment music”, “movies”, “cartoon”, 
“anime”, “series”, “video games”, “books” 

7897 

Art “art”, “doodle art”, “art photography”, “paintings”, “sculptures” 6362 

Sports “basketball”, “soccer”, “football”, “gymnastics”, “tennis”, “swimming” 5263 

Animals “animals”, “pets”, “wild animals”, “birds”, ?”fish” 4649 

Vehicles “cars”, “motorcycles”, “trucks”, “planes”, “boats”, “ships” 4454 

Food-Drinks “food”, “drink”, “sweets”, “junk food” 4370 

Home decor “home decor”, “modern home decor”, “cozy home decor” 3892 

Tattoos “tattoos”, “tattoos sketches” 3424 

Health-Fitness “health fitness”, “yoga”, “fitness”, “workout” 3238 

Architecture “architecture” 1876 
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Technology “technology”, “tech gadgets” 1783 

Travel “travel” 1685 

Plants-Flowers “plants”, “flowers” 1653 

Kids-Babies “kids”, “babies” 1641 

Total  61,993 

 
We collected a total of about 62,000 images, but as we can see from Table 6 as well as Figure 
4, the number of collected images varies a lot per category. 
 

 

Figure 4. Τhe distribution of the images in the defined categories. Excluding art, the 4 largest ones will be 

further divided in subcategories. 

The amount and diversity of images in each category is affected both by its popularity in the 
Pinterest platform and by how narrow or broad it is. For example, fashion is both very popular 
among Pinterest users and includes a lot of subcategories like clothes, shoes, hair and 
accessories. On the other end of the spectrum, the kids and babies category is very specific and 
targets mostly parents with young kids.  
 
The existence of broad categories with a lot of images is an indication that it would be 
interesting to further split these categories to subcategories. Pursuing this direction, we selected 
the fashion, entertainment, vehicles and sports categories as they had the most images, were 
popular and a subdivision of neither too specific nor too ambiguous subcategories was possible. 
As far as the art category is concerned, it does have more images than both vehicles and 
sports, but it is also more ambiguous carrying a lot of different meanings and defining 
subcategories is not a straightforward task. The way we divided the four previously mentioned 
categories is shown in Figure 5. 
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Figure 5. Four of the five largest categories were divided into subcategories as depicted in the figure. 

To collect the images, the search queries, displayed on Table 6, were matched trivially to the 
appropriate subcategories. We note that the subcategories did not replace the parent 
categories, but instead added another depth level to the dataset that will be exploited to build a 
hierarchical classifier. The hierarchical classification scheme will be presented and analyzed in 
Section 3.3. 
 
Looking more closely to the sports category, it probably is the one with the most clear 
subdivisions. We have included some of the most popular sports as subcategories, such as 
soccer and basketball, but inevitably these are only a very small portion of the existing sports. 
Fortunately, however, this is not the first attempt of recognizing various sports activities. Li et. al. 
[39] in 2007 collected a sports event dataset, which is publicly available and consists of 8 sport 
events for a total of 1579 images. The included sport events are not the most common ones, but 
it would be potentially beneficial to incorporate them in our dataset. Example images from each 
category are shown in Figure 6 and Figure 7 for our dataset and the UIUC Sports Event Dataset 
respectively. 
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Figure 6. These are some sample images from the Pinterest dataset we constructed, organized in 15 

coarse interest categories. 
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Figure 7. The image is taken from the UIUC Sports Event Dataset’s website
15

 and depicts some sample 

images of the dataset divided into 8 sports categories. 

Pinterest Profiles Evaluation Dataset 

To evaluate the generated user profiles we need a set of users for whom we have some ground 
truth profiles. Unfortunately, as there is no means of automatically obtaining these labels for 
Pinterest users, we have to resort to manual labeling. Although manual labeling is time 
consuming and not scalable, it is still valuable because it can provide us with a sense of how 
well our algorithm is performing. We need, of course, to keep in mind that results produced from 
small sample sizes are inherently infested with high variance. 
 
Knowing these limitations, we randomly selected 12 Pinterest users and downloaded their 
Pinboards’ images while maintaining an upper limit of 100 images per Pinboard. Then, to the 
best of our ability we assigned to each Pinboard a label from the predefined interest categories 
according to their image content. However, this was not always possible as some Pinboards did 
not correspond to any of the categories, while others were an indistinguishable mix of the 
predefined categories. An example of the former would be humour related Pinboards; humor is 
a very broad theme and in fact, many humoristic pins really make sense only if the text 
embedded in them is taken into account, which cannot possibly be understood from just an 
image recognition framework. An example of the latter, that is an indistinguishable mix of the 
predefined categories, on the other hand, would be a Pinboard named “Things I love”. Although 
the pins included in such a Pinboard would probably be highly informative, because we label 
images at the granularity of Pinboards we would not be able to properly make use of them. 
 
Therefore, as far as the first category is concerned, we decided to include all of those images to 
the users’ data, but not take them into account for the calculation of the ground truth profile. This 

                                                
 
15

 vision.stanford.edu/lijiali/event_dataset/ 

http://vision.stanford.edu/lijiali/event_dataset/
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way, these images can be perceived as noise that do not contribute any significant information 
for the profile we want to construct, but they exist as they are expected to in a real user image 
collection. For the images of the latter category, that do convey significant information of the 
user’s profile, but, unfortunately, cannot be taken into account when creating the ground truth 
labels, we decided to not include them in the dataset as they could influence the user’s profile 
without it being reflected in the ground truth labels. 
 
Finally, to construct the ground truth profiles each image inherited the label of the Pinboard it 
belonged to and the label distribution of a user’s images determined their profile; an example for 
a hypothetical user is shown Table 7. 
 

Table 7. This table offers an example calculation of the interest profile of a hypothetical user. 

Pinboard Name Images Category Profile 

Cocktails 15 Food-Drinks 0.3 

Gorgeous Dresses 20 Fashion 0.4 

Puppies 10 Animals 0.2 

Workouts   5 Health-Fitness 0.1 

 
Some statistics of the collected dataset are shown in Figure 8 and Figure 9. 
 

 

Figure 8. The figure shows the total number of Pinboards per user in the test set, along with a visual cue 

about how many of those were included in the calculation of the user’s ground truth profile. The number 

above the bars indicates the total number of images per user. We note that all of these images were 

included in the user’s image set regardless of whether the corresponding pinboard was included in the 

calculation of the ground truth profile. 
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Figure 9. Distribution of Pinboards in the interest categories. Each color represents a different user and 

the width of the bar is proportional to the number of Pinboards classified in the corresponding interest 

category. 

3.3 Hierarchical Classification of User Interests using CNNs 

To construct content aware user profiles our idea is to classify the images in interest categories 
and interpret the interest distribution of a user’s images as the user’s profile. To train and test 
our model we will use the dataset we created and described in Section 3.2, consisting of 
approximately 62,000 images. The classification strategy will employ a hierarchical scheme that 
will be used to construct user profiles at both a coarse and a fine detail level. The coarse level 
will correspond to the 15 categories displayed in Table 6. Upon request a finer profile will be 
computed that will attempt to identify more specific interests that could be useful for more 
accurate user matching. 

CNN Architecture 

The first step of this process will be a CNN, which is hardly surprising considering their 
widespread deployment and success. Nowadays, there are a great many different CNN 
architectures that have been proposed and none of them has been able to dominate as the best 
one. There is always a trade-off among the CNN characteristics and the right balance depends 
on the specific application; depth and width are at odds with efficiency and memory and power 
consumption, but also the CNN structure where its fully connected, residual or inception-like can 
be significant aspects. We will compare the performance of a deep network based on residual 
connections with the architecture of a mobile network designed specifically to be lightweight, 
preserving compute and memory resources. Furthermore, we will observe the impact on 
accuracy of applying quantization and transforming the model to a form suitable for execution 
on the Android platform. Specifically, we chose to use ΕfficientNet-B3 [40], a state of the art 
CNN superior in both accuracy and size as Figure 13 later in this chapter shows, and to meet 
the mobile requirements, the second version of the MobileNet architecture, overviewed in 
Section 2.5. Both networks were pretrained on ImageNet and we fine-tuned them for the 
classification task.  

Hierarchical Classification 

Instead of training a flat model for the classification task we opted for a hierarchical one 
because it can provide better flexibility and accuracy. The classification categories as presented 
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in Section 3.2 naturally fit a hierarchical tree with two levels. The images of a branch share a lot 
of similarities and can be difficult to identify the correct subcategories. For example, clothes and 
bags are two subcategories of fashion, but an image of a woman holding a bag can be 
misleading about what is at the center of interest. So, it makes sense to recognise first the 
general category and then proceed to a finer granularity. To be more specific, for each of the 
categories fashion, entertainment, sports and vehicles that are analyzed in subcategories we 
are going to build a local classifier. Although this increases the number of models and thus the 
storage and computational requirements, it does make the task of the coarse classifier easier 
and provides the opportunity for more accurate results in the finer categories. The local 
classifiers will be based on the same CNNs as the coarse classifier, pretrained on ImageNet. 

Thresholding 

Another issue that we should take into account as we design our model is the fact that we do 
not expect all the available images for a user to be informative. It is quite possible that some of 
them will not convey any information about the interests of a user, the most obvious example 
being photos that were taken by accident as well as blurry and distorted photos. To simulate this 
possibility in our experiment we have included as described in Section 3.2, images that do not fit 
the categories we have defined and thus do not contain useful information for our model. To 
provide some robustness against such noisy pictures we make use of a filtering mechanism that 
rejects the images that our model classifies as not informative enough. A non-informative image 
in our case would correspond to an image that the model cannot sufficiently discriminate 
against. From an information theory perspective, the uninformative images would be those that 
maximize the Entropy [41] of the outputted probability distribution , which occurs when the latter 
are close to the uniform distribution. In this case, the output probability distribution would not 
have any distinct peak and the model would not confidently predict a category. Therefore, when 
our model outputs a probability distribution entirely below a predefined threshold, it would be 
reasonable to discard the corresponding images. The most suitable threshold is a 
hyperparameter that can only be empirically determined. 
 

 

Figure 10. The coarse classification pipeline. Firstly, the user images pass through a CNN based coarse 

classifier to extract the per image category distributions. If it is the case that an image is not classified 

confidently enough, it is discarded. The remaining distributions are then averaged to produce the user’s 

coarse profile. 

Formal Definition 

The concrete calculations of the coarse and fine grained user profiles are as follows; assuming 
that a user has N available images 𝐼𝑖, 𝑖 = 1, . . . , 𝑁 in his collection, we feed them first to the 

coarse classifier 𝑐𝑐𝑜𝑎𝑟𝑠𝑒 to produce the per image coarse categories distributions 𝑑𝑖
𝑐𝑜𝑎𝑟𝑠𝑒, 
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Then, to calculate the user’s coarse profile 𝑝𝑐𝑜𝑎𝑟𝑠𝑒we would discard the images with distribution 
below the threshold t and take the mean of the rest, as is visualized in Figure 10. 

Mathematically, let the set 𝐷𝑡 be defined as 
 

 
 
then the user’s coarse profile would be 

 

 

(3.1) 

 
On the other hand, to calculate the fine-grained profile we would need to pass the images also 
from the local classifiers 𝑐𝑓𝑎𝑠ℎ𝑖𝑜𝑛, 𝑐𝑒𝑛𝑡𝑒𝑟𝑡𝑎𝑖𝑛𝑚𝑒𝑛𝑡 , 𝑐𝑣𝑒ℎ𝑖𝑐𝑙𝑒𝑠, 𝑐𝑠𝑝𝑜𝑟𝑡𝑠, corresponding to the fashion, 

entertainment, sports and vehicles categories respectively. We could pass all the user’s images 
from each local classifier, but that would be a waste of resources, as for example an image of a 
bedroom would not produce a meaningful distribution when fed to the fashion classifier. 
Therefore, it is reasonable for the local classifiers to only take as input images of the same 
category as the one they were trained on and for the rest to assume that the output is 
approximately uniform. The final probabilities for the subcategories are calculated by weighting 
the output probabilities of the local classifiers by the probability of the parent category. 
 

 

Figure 11. The output of the coarse classifier, displayed with single subscript, is combined with the output 

of the local classifier, displayed with double subscripts, to produce the final output of the fine classification 

pipeline. The calculation is based on distributing the probability of the parent category according to 

probability distribution of the subcategories. 

Formally, let us assume that 𝑖𝑓𝑎𝑠ℎ𝑖𝑜𝑛 is the index of the fashion category and define an 

intermediate variable 
 

 
 

where 𝐹is the number of fashion subcategories. We will also define the output distribution of the 
fashion classifier as 
 

 
 
The final distribution for the fine-grained classification scheme can be obtained from the coarse 
distribution by substituting the coarse probabilities of the parent categories with the previously 

defined 𝑑𝑖
𝑝𝑎𝑟𝑒𝑛𝑡 𝑐𝑎𝑡𝑒𝑔𝑜𝑟𝑦. Doing the substitution for only the fashion category, the fine distribution 

would be 
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where F is the number of fashion subcategories, C is the number of coarse categories and 

𝑑𝑖
𝑓𝑎𝑠ℎ𝑖𝑜𝑛[0] was inserted at the 𝑖𝑓𝑎𝑠ℎ𝑖𝑜𝑛 index. Similarly, we would insert at the appropriate 

indices the distributions corresponding to the other categories that have subcategories. Finally, 
the fine grained user profile would be 

 

 

(3.2) 

 
A visual representation of the process is shown in Figure 12. 
 
 

 

Figure 12. The fine classification pipeline. The user images first pass through the coarse classifier and if 

an image is confidently classified in one of the four parent categories, that is the probability exceeds the 

predefined threshold, it is also passed from a second, local classifier, specifically trained on the 

subcategories of the parent category. The two distributions are then appropriately combined, as in Figure 

10, to produce the final category distribution of the image. Finally, as in the case of the coarse 

classification, although not explicitly shown, the user profile will be calculated by averaging the 

distributions of their images. 

Implementation Details 

The model was implemented using the Keras and Tensorflow frameworks as well as TFLite for 
the model’s mobile version. The dataset was first split in training and validation sets with 
proportions 4 to 1. In all cases the CNN was pretrained on ImageNet and we fine-tuned the 

network for 10 epochs with empirically determined initial learning rates 10−3 for coarse and 10−4 
for local classifiers. For best results on coarse classifiers their learning rate was further reduced 
at epochs 5 and 8 by a factor of 10, while for the local ones it was reduced only on epoch 8 by 
the same factor. All models were trained on a single GTX 1070 card and no model required 
more than 4 hours of training. 
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To create the mobile versions of the models, we used the TFLite framework and converted the 
corresponding MobileNetV2 based models to TFLite binaries using the default optimizations, 
which most importantly include the quantization of the weight parameters. These binaries are 
suitable for execution in an Android environment and are compatible with a Java based project. 

Hierarchical Classification Results 

The classification accuracy of our models on a left-out validation set is presented in Table 8. We 
aim to compare the accuracy we can achieve in the Pinterest Interests Dataset using a 
performant, but computationally intensive server side CNN model with more lightweight models 
that can be used in a mobile setting. 
 
The server side model is based on the EfficientNet-B3 CNN [40] pretrained on ImageNet and 
fine-tuned for our purposes. Tan et. al. propose a family of models, which they name 
EfficientNet, ranging from the EfficientNet-B0 to the EfficinentNet-B7. Higher B numbers 
correspond to larger, but more accurate models and the exact relationship as well as a 
comparison among other popular CNNs is shown in Figure 13, replicated from the original 
paper. As the EfficientNet family seems to be the best performing CNN, we chose to use the 
EfficientNet-B3, that represents a good trade-off between accuracy and size, in our experiments 
for the server side model. 
 

 

Figure 13. Model Size vs ImageNet accuracy, source: [40] 

 
The second model is based on the MobileNetV2 CNN, presented in section 2.5, and it is most 
suitable for mobile execution. It is a compact model and well established in the deep learning 
field, capable of fast inference time without sacrificing much of the accuracy. The third model is 
a weights-only quantized version of the previous one, created with the TFLite framework and 
the default optimization parameters.  
 
The results are shown in Table 8 and measure the classification accuracy in 5 tasks. The first 
one, labeled coarse, refers to the task of classifying the images in 15 coarse categories as 
shown in Table 6. The other four, labeled as fashion, entertainment, sports and vehicles, refer to 
the local classifiers trained only on the corresponding coarse category with the subcategories as 
shown in Figure 5. For the coarse classification task we provide both top-1 and top-5 
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accuracies, but for the local classifiers the top-5 accuracy is not relevant as the number of 
subcategories is small. 
 
The performance of the models is ranked as expected with the computationally intensive 
EfficientNet-B3 being first in all tasks and the MobileNetV2 naturally outperforming its 
compressed and quantized TFLite version. The EfficientNet-B3 achieves 70.7% top-1 accuracy 
in the coarse classification task which is reasonable, while the fashion, sports and vehicles 
classifiers perform even better achieving 92.8, 81.6 and 90.3 respectively. The entertainment 
classifier seems to be the one lagging behind, but this is understandable as its subcategories, 
namely music, books, movies-series-anime, video-games and another general one, are the 
most varied in terms of visual appearance. 
 
The accuracy of the MobileNetV2 based model is less than that of the EfficientNet based one, 
but the drop is no more than 4% for the coarse, fashion, entertainment and vehicles classifiers, 
but 5.4% for the sports category. The story is pretty similar for the quantized TFLite model as far 
as the coarse, fashion and vehicles classifiers are concerned, but there is a significant drop of 
10.7% and 11.7% in the case of the entertainment and sports classifiers which is unfortunate 
and for that reason we consider not quantizing the models in these two categories. 
 

Table 8. Classification results of 3 different models for the coarse classifier as well as the local ones on 

the left out validation set. 

 Coarse Fashion Entertainment Sports Vehicles 

Models top-1 top-5 top-1 top-1 top-1 top-1 

EffientNet-B3 70.7 94.4 92.8 67.7 81.6 90.3 

MobileNetV2 66.7 93.7 91.8 64.7 76.2 87.3 

Quantized 
TFLite 

62.9 88.3 86.8 54.0 64.5 87.0 

 

3.4 Profiling Evaluation 

The classification results of Table 8 show that our models can achieve reasonable accuracy, but 
for our purposes, classification is only used as a means for constructing user interest profiles. 
As such, it would be beneficial to have a way to directly evaluate the accuracy of the profiles 
instead of the intermediate classification results and this was the motivation for the test set we 
constructed and presented in Section 3.2. To briefly summarize, the test set consists of 12 
randomly selected Pinterest users whose images have been downloaded and organized 
according to their Pinboards. A ground truth profile is calculated for each user by manually 
labelling their Pinboards excluding some that cannot be properly labeled. 
 
To evaluate the profiles we use the metrics presented in Section 2.3 treating the problem similar 
to a ranked information retrieval task. These metrics are the Area Under the Curve (AUC), Mean 
Average Precision (MAP) and Normalized Discounted Cumulative Gain (NDCG). We calculate 
these metrics per user and then average them to produce the final scores per model and 
granularity, which are shown in Table 9 and  
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Table 10. 
 
However, our proposed method of calculating the interest profiles involved an additional 
hyperparameter, the confidence threshold 𝑡. For the calculation of the profiles we take into 
account only the images that have an output interest distribution with a peak higher than the 
threshold. The effect of 𝑡 for the three metrics and the different models and granularities is 

shown in Figure 14. We see that the 𝑡 value does indeed influence the output and it seems that 
a value of 𝑡 = 0.9 produces better results than lower thresholds and is more consistent than 
higher ones. Therefore, this was the value of choice for the results of Table 9 and  
 
Table 10. 
 

 
 

 

Figure 14. AUC, MAP and NDCG at different threshold values for each model and granularity. 

Table 9. AUC, MAP and NDCG at the 0.9 threshold, chosen based on the results of Figure 14, for the 

different models at coarse granularity. The means and standard deviations are taken over the users. 

Coarse AUC MAP NDCG 

Models Mean Std Mean Std Mean Std 

EffientNet-B3 93.3 4.45 87.6 8.76 93.0 7.00 

MobileNetV2 94.4 4.82 89.8 6.57 94.3 5.25 

Quantized TFLite 93.6 4.86 88.5 7.42 92.5 6.30 
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Table 10. AUC, MAP and NDCG at the 0.9 threshold, chosen based on the results of Figure 14, for the 

different models at fine granularity. The means and standard deviations are taken over the users. 

Fine AUC MAP NDCG 

Models Mean Std Mean Std Mean Std 

EffientNet-B3 95.4 5.13 87.0 11.1 92.8 6.87 

MobileNetV2 95.0 6.73 87.3 11.4 91.6 7.66 

Quantized TFLite 91.4 5.94 74.3 15.92 82.9 16.79 

 
The fine-grained model has more categories and thus constructing the fine profile is a more 
challenging task, but it could in return provide better matching suggestions as it captures more 
information about the user. In  
 
Table 10 we can see that in general fine profiles are performing close to the corresponding 
coarse ones except for the TFLite fine model that shows a significant drop in the MAP metric as 
compared to the TFLite coarse model. 
 
It is, also, interesting that the coarse case MobilenetV2 seems to outperform the corresponding 
EfficientNetB3 models, even though the latter has higher classification accuracy as shown in 
Table 8. The difference, however, is not large and taking into account the high standard 
deviations, it should not be treated as statistically significant. The high standard deviations are 
to be expected as 12 users is a small sample size and, therefore, the results, in this section are 
not to be interpreted as conclusive, but rather as providing an indicative view of the model’s 
performance at the task of interest retrieval. Increasing the sample size is very time consuming 
at this stage as the labelling is done manually and is left as an issue for further work. 

3.5 User Matching 

Aside from constructing the users’ profiles, this deliverable also aims to demonstrate their 
usefulness in the context of user matching. User matching is a common denominator in most of 
the social media platforms as it aligns with the core idea of social media, that is a place where 
users can find and connect with other users, extend beyond physical boundaries and have 
novel interactions. However, predicting meaningful user matches can be as daunting and 
complicated as predicting human behaviour and thus we will only be able to approximate this 
problem based on the inferred users’ interests. 
 
The user profiles we have constructed so far, if stripped from any semantic meaning, are merely 
n-dimensional real coordinate vectors, where 𝑛 is the number of interest categories, and whose 

coordinates sum up to one. These vectors can be embedded in ℜ𝑛, the real n-dimensional 
vector space with addition and scalar multiplication defined as usual. If we also define an inner 

product on ℜ𝑛, we will have a normed vector space structure with the induced norm, 
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where ||·|| and <·,·> stand for the norm and inner product respectively. A normed vector space 
also has an induced metric d defined as 
 

 
 

The metric 𝑑 and the inner product are relevant for our purposes because they respectively 
correspond to the notions of distance and similarity between two vectors. We could therefore 
match the users based on how close or how similar they are. In the special case that the vectors 
are normalized, meaning they have the same norm, the two measures coincide in the sense 
that 
 

 
 
that is if 𝑥 is closer to 𝑦 than 𝑧, then 𝑥 is more similar to 𝑦 than 𝑧. 
 
The usual inner product in ℜ𝑛 is defined as 
 

 
 
but this is not the only possible definition; it can be easily shown that if A is a positive definite 
matrix, then 

  
(3.3) 

is a valid inner product definition. The difference is that while the usual definition assumes that 
each dimension is equally important and orthogonal to each other, the more general definition 
above makes no such assumption. This distinction is important in our case because the 
dimensions are indeed correlated; for example, an interest in health and fitness could be an 
indicator of an interest in sports. Therefore, if we pick a positive definite matrix A that suitably 
reflects the similarity between the categories, the calculation of the similarity between vectors 
could be improved which would lead to a better matching algorithm. In the following we will 
explore some of the ways to pick such a matrix, but before that we will state without proof a 
useful theorem16 bounding the eigenvalues of a matrix inside disks, which will prove useful later 
on to ensure that the eigenvalues are positive, thus providing a criterion for positive 
definiteness. 
 

Theorem (Gershgorin circle theorem). Let a complex 𝑛 × 𝑛 matrix have entries 𝑎𝑖𝑗. For 

𝑖 ∈ {1, . . . 𝑛} let 𝑅𝑖 = ∑_𝑗≠𝑖 |𝑎𝑖𝑗| be the sum of the absolute values of the non-diagonal 

entries of the 𝑖-th row and 𝐷(𝑎𝑖𝑖, 𝑅𝑖) ⊆C be a closed disc centered at 𝑎𝑖𝑖 with radius 𝑅𝑖. 
Then, every eigenvalue of the matrix lies within one of those discs. 

 
Intuitively, the theorem states that the eigenvalues of a matrix cannot be too far from its 
diagonal elements as long as the off-diagonal elements are small enough. This is a handy result 
that can be used to assert that all the eigenvalues of a matrix are positive and therefore that the 
matrix is positive definite. 
 

                                                
 
16

 https://en.wikipedia.org/wiki/Gershgorin_circle_theorem 

https://en.wikipedia.org/wiki/Gershgorin_circle_theorem
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One way to approximate the correlation between the different categories is the Jaccard index, 
also known as Jaccard similarity coefficient17. The Jaccard index is defined over sets as the 
intersection over union, that is, 
 

 
 
where, in our case, 𝑈𝑖 is the set of users with images from category 𝑖. Intuitively, this quantity 
expresses the ratio of users that have images in both 𝑖 and 𝑗 categories to the users that have 
images in either 𝑖 or 𝑗. This ratio reflects the measure of correlation between the categories as 
when it is close to 1 the presence of images from category i implies with high probability the 
presence of images from category 𝑗, while 𝐽𝑖𝑗 close to 0 implies the opposite. We could, 

therefore, use the Jaccard index to define an inner product, but simply setting 𝐴𝑖𝑗 = 𝐽𝑖𝑗 does not 

guarantee that A is positive definite. However, 𝐽𝑖𝑖 = 1 for every 𝑖 and so if the sum of the off-
diagonal elements of each row is restricted to be less than 1, then according to Gershgorin’s 
theorem all the eigenvalues would be positive and the matrix 𝐴 would indeed be positive 
definite. A simple way to enforce this restriction would be to normalize the off-diagonal elements 
to sum to a number 𝑠 < 1in case the sum exceeds 1. This way we can define the similarity of 
two users’ profiles through the inner product or their distance through the norm of their 
difference. In general, however, these two ways will not lead to the same ordering because 𝐴 is 
not guaranteed to be an isometry and as such the new norm of the users’ profiles could be 
different. The problem, however, with this technique is that to accurately calculate the 𝐽𝑖𝑗 

elements we need a lot of user profiles as training data. Unfortunately, in our case the training 
data are restricted to the interest classification problem and only the testing data contain hand-
labeled user profiles. 
 
A different approach is to approximate the 𝐽𝑖𝑗 elements with the semantic similarity of the 

categories, which can be obtained with the commonly used word2vec embedding, and leave the 
rest of the process of calculating the matrix A unchanged. The drawback, however, in this case 
is that the categories can be correlated in a more complex way and not merely through 
semantic similarity of their labels. For example, it could be possible that the users who like 
sports are more probable to also be interested in cars, which cannot be explained through 
semantic similarity of sports and cars as they are not semantically related, but it could be 
attributed to the more complex behavioral patterns of humans. 
 
The third option is more indirect and aims to take advantage of Pinterest’s suggestions. For 
each topic explored, Pinterest suggests other topics related to that one. Following this path 
recursively one can build a graph of various topics. The idea is to then calculate the similarity 
between the root nodes based on the constructed graph. One measure of such similarity is the 
commute time distance [42] which is defined as the average number of steps a random walker, 
starting from node i, takes before entering node 𝑗 for the first time and returning to. Without a 
loss of generality, we will consider commute time to span two step units when 𝑖 = 𝑗. The 
commute time distance is symmetric and can be computed in closed form from the Laplacian 
matrix of the graph. However, for our purposes we need to scale the computed similarity 
between 0 and 1. To do this, we propose to define the similarity 𝑠(𝑖, 𝑗) as 
 

𝑠(𝑖, 𝑗) = 𝑐𝑑−𝑎(𝑖, 𝑗)  

𝑐 = 2𝑎 

                                                
 
17

 https://en.wikipedia.org/wiki/Jaccard_index 

https://en.wikipedia.org/wiki/Jaccard_index
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where 𝑑(𝑖, 𝑗) is the commute time distance between nodes i and j and 𝛼 is a positive constant 

that controls how fast the similarity decays. 𝑐 is a normalization constant to make sure that the 
similarity is equal to 1 when then distance is 2. After these calculations we can proceed to the 

definition of the matrix 𝐴 as originally described. 
 
The success of this option clearly depends on the constructed graph’s structure, which in turn 
depends on how interconnected the suggested related topics are. The worst case scenario 
would be that the graph has as many connected components as the number of categories, in 

which case no useful information can be extracted and 𝐴 would be equal to the identity matrix 
corresponding to the usual definition of the inner product. A parameter that directly influences 
the graph’s structure is the depth of our search. Depth equal to 1 would correspond to only 
considering the root node’s related topics, depth equal to 2 would also consider the related 
topics of the related topics and so on. Another issue is that this technique depends on 
Pinterest’s opaque algorithm for suggesting related topics, but we expect that the algorithm 
would be based on the users’ behaviour patterns, thus revealing useful information. However, 
early experiments showed that the constructed graph was indeed too sparse with many 
disconnected components and, therefore, we decided to not pursue this method further. 
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4 Image based Profiling through User Similarity 

4.1 Motivation and Contribution 

In Section 3 we proposed profiling the users through a hierarchical classification scheme that 
involved some predefined interest categories. This approach is reasonable and has the benefit 
that the constructed profiles correspond to meaningful human concepts, namely distributions 
over interest categories. Each user profile can be interpreted in this way and so can the user 
matchings. This is a very desirable property as it paves the way for user profile and matching 
introspection features. 
 
However, it also comes at a cost, the categories as previously mentioned are predefined and as 
such the semantic variability that we are able to capture is inherently limited. This is to be 
expected as it is often the case that model expressivity is at odds with model interpretability. 
Tipping the scale towards the expressivity side, in this section we propose a method that in 
principle is able to capture significantly more semantic nuances, while sacrificing some of the 
model’s interpretability. This, however, cannot be achieved with just some small modifications to 
the interest categories model described in Section 3, but rather requires a different approach. 
To achieve a more expressive model, we have to turn away from predefined concepts and 
instead approach our goal of user profiling more indirectly. We propose to do this by exploiting 
user similarity data to construct a latent user representation that retains as much of the original 
similarity structure as possible. Learning from similarity data closely resonates with the field of 
Deep Metric Learning (DML) and as such we propose the use of the triplet loss during training. 
Triplet loss requires batches of triplets that consist of an “anchor” user (reference user) along 
with a similar and a dissimilar user. This way the model learns to build user representations that 
reflect the original user similarity structure and can effectively be interpreted for our purposes as 
user profiles. Because the user representations are not trained directly on manually specified 
concepts, the model has the capacity to discover through the available data the most suitable 
way to represent the users. 
 
Unfortunately, however, the Pinterest dataset we used to train the interest profiling model of 
Section 3 does not even have embedded the notion of users, let alone a similarity measure 
between them. To realize our plan of using the triplet loss to train suitable user representations, 
we resorted to a new data source that contains users along with their photo collections and we 
annotated it with user similarity data. The construction of such a dataset is the subject of the 
following section. 

4.2 Constructing a User Similarity Dataset from YFCC100m 

In order to overcome the shortcomings of the aforementioned Pinterest dataset, we decided to 
leverage information from the YFCC100m dataset18. This dataset is one of the largest publicly 
available multimedia collections, which contains over 99 million Creative Commons-licensed 
photos and videos annotated with user related data (user id and user nickname), geolocation 
data (longitude and latitude) as well as user and device generated tags. 
 
One way to derive similarity metrics among users, would be to estimate the similarity between 
the sets of the machine19 and/or user tags20 of their photos among them. The downside of this 

                                                
 
18

 https://multimediacommons.wordpress.com/yfcc100m-core-dataset/ 
19 A set of labels automatically assigned to a photo by the device that it was shot. 

https://multimediacommons.wordpress.com/yfcc100m-core-dataset/
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approach is that the machine tags associated with each photo, usually contain information 
regarding the device used to shoot the photo, whereas the user tags associated with each 
photo, are tags that are written by users themselves, and sometimes contain words or 
pseudowords that have no meaning and/or might not be related with the objects that the photos 
are depicting. Both of the above features constitute a dataset with noisy data and extracting 
user similarity based on those tags would likely lead to inconsistent results. 
 
To address the previous challenge, we exploited one of the several released expansion packs21 
of the same dataset, which provides additional information regarding different visual concepts 
(such as architecture, food, animals) that are present in each photo. Each of these concepts is 
called an autotag and has a value ranging from 0 to 1 assigned. Those autotags, and the 
corresponding assigned values for each of the photos, were generated following a deep 
learning scheme. More specifically, binary Support Vector Machine (SVM) classifiers were 
trained on features from the AlexNet, proposed in [43]. The training set of the SVM consisted of 
15 million crowd labeled Flickr images. Each trained classifier provides a confidence score 
between 0.5 and 1, whereas if the score was below 0.5, the concept was not considered to be 
present in the photo. Those annotations constitute the autotags information which we leveraged, 
and the total count of the concepts was 1570. Therefore, each photo could be represented as a 
vector of 1570 dimensions (one dimension per autotag).  
 
Due to the sheer size of the initial dataset (>99 million photos), we opted for one of its 
subdatasets. Specifically, we used the dataset available for the placing task of the MediaEval 
2016 Benchmark22. This subset of the dataset contains in total 5,016,634 photos from 171,850 
users. 
 
 

 

Figure 15. User vector calculation scheme. The vector representation of each user arises from the 

addition of the autotags vectors of all the photos of the user. U1 ,U2,... ,UN represent the vectors for each 

user, while vp corresponds to the vectors of each photo. P1, P2, ...,PN refer to the sets of photos of 

different users 

In order to extract a user profile from the above vectors, we performed vector addition over all 
the photos of a user, and we did the same for all users. This scheme created a vector of 1570 
dimensions for each user, in which each dimension represents the amount of presence of the 

                                                                                                                                                       
 
20 A set of labels manually assigned to a photo by the user. 
21

 https://multimediacommons.wordpress.com/yfcc100m-expansion-packs/ 
22

 http://www.multimediaeval.org/mediaeval2016/placing/index.html 

https://multimediacommons.wordpress.com/yfcc100m-expansion-packs/
http://www.multimediaeval.org/mediaeval2016/placing/index.html
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corresponding visual concept in the photos of that user. This procedure is better illustrated in 
Figure 15. 
 
The last step was to estimate the similarity among the user vectors, so that we can derive a 
NxN user similarity matrix, where N denotes the number of users. To do so, we calculated the 
cosine similarity for each pair of users, according to 
 

𝑆(𝑈𝑘 , 𝑈𝑗)  =  
∑𝑎 𝑈𝑘(𝑎)𝑈𝑗(𝑎)

√∑𝑎 𝑈𝑘
2(𝑎)√∑𝑎 𝑈𝑗

2(𝑎)

, 

 
where 𝑈𝑘, 𝑈𝑗 denote k-th and j-th users respectively and 𝑎 denotes each one of the 1570 

autotags. 
 
It is worth noting that with the above formula, we get a symmetric metric for the user similarity 
task, meaning that the produced similarity matrix will have the same value at cell [i, j] and [j, i]. 
This process is represented in Figure 16: 
 

 

Figure 16. Generation of the symmetric user similarity matrix, based on the user autotags vectors. 

4.3 User Profiling Training with Deep Metric Learning (DML) and Triplet 
Loss 

As discussed in Section 2.4, Deep Metric Learning (DML) is focused on learning a distance 
function to measure the similarity between data samples. It does that by approximating an 
embedding function that maps samples in a feature space where relevant samples are closer 
than irrelevant ones. In our case the samples correspond to the users and the embedding 
function will map the users to their learned profiles. The user similarity labels we calculated from 
the autotags expansion pack of the YFCC100m dataset, as described in the previous section, 
will serve the purpose of revealing the relevant as well as the irrelevant users with respect to an 
anchor user. 
 
An anchor user along with a similar user, referred to as the positive sample, and the dissimilar 
user, referred to as the negative sample, constitute a triplet. These triplets are the input to our 
model at each training step and as such they are pivotal to our discussion; in particular we will 
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delve into how to define an appropriate loss on them, which we will call the triplet loss and what 
mining strategies to use. 
 
Denoting the anchor, positive and negative samples as 𝑥, 𝑥+ and 𝑥−, intuitively an appropriate 

loss function would take high values when 𝑥− is closer to 𝑥 than 𝑥+ is  and low values when the 
opposite happens, ideally with a reasonable margin separating the two. A formulation that 
reflects this idea is 

 𝐿𝑡𝑟 = 𝑚𝑎𝑥(0, 𝐷(𝑥, 𝑥+) − 𝐷(𝑥, 𝑥−) + 𝑚) (4.1) 

where 𝐷 is the distance function we approximate with our model and m > 0 is a margin 
parameter to ensure a sufficiently large difference between the anchor-positive and anchor-
negative distances. This loss function is known as the triplet loss. 
 
Having settled on the triplet loss as our loss function, we need next to consider an appropriate 
sampling strategy or in other words how we will generate the triplets at each iteration of the 
training process. This is a less straightforward matter as there are a lot of reasonable solutions 
that are hard to objectively evaluate and thus more than one can be used at occasion. First, let 

us point out that training on all the possible triplets, which is of order 𝑁3, is infeasible and thus 
we have to be more selective. The triplets we want the most are the ones that do not trivially 
satisfy the loss constraint, but rather violate it and thus provide valuable feedback to the training 
process. We specifically chose to user semi-hard triplets, which are the triplets (𝑥, 𝑥+, 𝑥−) that 
produce 

 0 < 𝐿𝑡𝑟(𝑥, 𝑥+, 𝑥−) < 𝑚 (semi-hard rule) (4.2) 

that is, samples that do satisfy 𝐷(𝑥, 𝑥+) < 𝐷(𝑥, 𝑥−), as desirable but not within the appropriate 

margin 𝑚. 
 
The triplets are created online and so it is also important to ensure that each batch has enough 
semi-hard examples. For this reason, we use a large batch size of 512 and create the triplets by 
first selecting all the (𝑥, 𝑥+) pairs within the batch and then for each such anchor-positive pair 

we select a negative sample 𝑥− such that the semi-hard rule is satisfied. 
 
What we have left unspecified until now is how the positive pairs (𝑥, 𝑥+) and the negative pairs 
(𝑥, 𝑥−) are defined in our case. As we have explained, these stem from the user similarity 
labels, created based on each image’s autotags, but these labels only assign a similarity score 
between 0and 1 for each user pair. We then need to define a threshold to translate these scores 
to positive and negative examples. We heuristically chose to consider all the user pairs with 
similarity score above 0.8 as positive and those with similarity below 0.4 as negative. 
 
The last part we need to specify is the architecture of the model that will approximate the 
distance function 𝐷 between the users and is shown in Figure 17. The primary input to our 
model is each user’s images, from which we will extract features with a pretrained CNN. So, 
each user will be associated with a number of vectors which we will need to summarize by 
taking their mean in order to minimize the computational overhead. This is the first part of the 
network, which we will not train specifically for the task, which although possible, the expected 
benefit seems to not be high enough as the number of users in our dataset, approximately 
60,000, is not large. The trainable part of the network is the fully connected network that follows 
and consists of three linear layers with ReLU activations in between. The output of this network 
is the user embeddings, which we will use at inference as the user profiles, and the distance 
between the embeddings is defined by taking the usual Euclidean distance. 
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Figure 17. The training pipeline of our Deep Metric Learning model. We first construct triplets based on 

an anchor user, a positive similar user and a negative dissimilar user. We pass their images through the 

model, construct their profiles and compute the triplet loss which motivates the model to represent similar 

users close in the profile space and push dissimilar users apart. 

The model was implemented using the PyTorch23 framework and trained on a single GTX 1070 
card. The features from the images were computed offline using the EfficientNet-B3 pre-trained 
CNN model and averaged for each user. The fully connected module takes as input these 

features and consists of a linear 1536 × 512 layers followed by a ReLU activation, another linear 
512 × 256 layers followed by a ReLU and a final 256 × 256 linear layer. The model is trained for 

12 epochs with 10−3 learning rate. 

4.4 Results 

In Figure 18 the training and validation curves for the average non-zero triplets are displayed. 
This metric measures how many triplets on average in each batch are associated with a positive 
loss. These triplets have an anchor-positive distance that is larger than the anchor-negative 
distance minus the margin, thus violating the desirable state. During the training the model 
learns to construct more appropriate embeddings and thus the non-zero triplets are decreasing. 
Because we use a large batch size of 512 samples, we expect the number of non-zero triplets 
to be high in absolute value as there are a lot of triplets being generated. 
 

                                                
 
23

 https://pytorch.org/ 

https://pytorch.org/
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Figure 18. Average Non-Zero Triplets after each training epoch. 

To provide some further insight to our algorithm, we devised an additional evaluation scheme. 
From the left out validation set we collected the 1,000 most common tags and created a bag of 
words representation of each user. This time we did not use the machine generated tags, but 
rather the user defined tags that accompanied the images. Based on these tags we calculate 
the Jaccard similarity between two users as the ratio of the size of the intersection to the size of 
the union of the tags of a user pair. We are interested in measuring the Jaccard similarity, as 
previously defined, between each user and the k-th most similar user according to our model as 
this is calculated from the euclidean distance between the user embeddings. We expect that the 
Jaccard similarity will have a decreasing trend as k increases as the users become more 
dissimilar and this is also reflected in their tags. Our hypothesis is indeed validated in Figure 19. 
 

 

Figure 19. Jaccard similarity averaged over all users and their k-th most similar user pair according to the 

MobileNetV2 coarse interests model. 
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5 Text based Profiling through Text Extraction from 

User Images 

5.1 Motivation and Contribution 

Up until now, our focus was on profiling users based on the semantic cues present in their 
images. However, there is still a valuable source of information that both previously mentioned 
methods fail to capture; that is textual data. It is not uncommon for user images to contain 
textual information and while CNNs have shown remarkable ability to extract semantic 
information from images, it is unreasonable to expect that a network trained on a more general 
purpose image dataset would be able to sufficiently respond to textual cues.  
 
In general, text can be found both in natural scenes, for example in inscriptions and signs, and 
document images. On the one hand, analyzing text in natural scenes could on one hand reveal 
some user preferences concerning clothing, food and entertainment or even the user’s job, 
however, it is a considerably more challenging task that in many cases would not yield useful 
results [44]. On the other hand, document images are easier to analyze and optical character 
recognition systems enjoy high success rates. They are also quite common on the Internet and 
therefore possible to end up in a user’s image collection if we broadly include in this category 
text excerpts or quotes, guides and information brochures or even media posts and 
advertisements. As such, exploiting textual content in these kinds of images could be beneficial 
to the construction of a more nuanced user profile and worthy of our study. 
 
We use FastText - developed by Facebook, a frequently used library for text classification. It is 
specifically developed for fast processing on a variety of devices, including mobile. The library 
also provides pre-built models which can be supervised on unsupervised. It allows 
hyperparameter autotuning which automatically determines the best hyperparameters for the 
data. One of the disadvantages of methods such as word2vec and GloVe is that while they 
provide viable representations for words observed during training, they fail to yield embeddings 
for out-of-vocabulary (OOV) words — words that were unseen at training time. To do this, we 
use the package Misspelling Oblivious Embeddings24 based on fasttext with a supervised task 
that embeds misspellings close to their correct variants. With this misspellings on text from 
images, as well as acronyms and others can be vectorized and learned in space.  

5.2 Text Extraction from User Images 

In this section, we will describe the method we used to extract text from user images. The 
images we are concerned with do not include natural scenes but are rather limited to posters, 
infographics, quotes or document images. This problem is generally known as Optical Character 
Recognition (OCR) and it is an old topic that has received a lot of attention through the years 
and still does as better tools and techniques emerge. 
 
For the purposes of our task we are going to use the open source Tesseract OCR engine25, 
which is well established with almost 35k GitHub stars and a rich history as it was open source 

                                                
 
24

 https://github.com/facebookresearch/moe 
25

 https://github.com/tesseract-ocr/tesseract 

https://github.com/facebookresearch/moe
https://github.com/tesseract-ocr/tesseract
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in 2005 by HP and since 2006 is developed by Google. There have been 4 major releases, the 
latest of which is based on LSTM networks. 
 
Figure 20 shows the processing pipeline; first, we binarize the input image to increase the 
contrast and make the OCR task easier and then we feed the binarized images in the Tesseract 
OCR engine. The output of the engine is a text file with the recognized words ordered as 
detected including new line separations. Sometimes, the engine fails to properly recognize 
some words as it does in the given example for the site’s name, calligraphically printed, at the 
bottom of the image. In general, we can feed any kind of image to the OCR engine, but for 
images with no clear text the output will be blank or gibberish that we can easily filter out with a 
dictionary. 
 
 
 

 

Figure 20. Example of the text extraction procedure. First the image is binarized and then passed to the 

Tesseract LSTM based OCR engine. It is possible that the output includes incomprehensible words that 

we will need to clean up later. 

5.3 User Classification through Text Embeddings 

The extracted text from the images first needs to be pre-processed and all the stop words to be 
removed. Then, the text is stemmed and lemmatized. A simple frequency analysis of words 
based on the categories is performed.  
 
 

 

Figure 21. Top 20 most frequent words for the categories kids_babies (left) and health and fitness (right). 
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Figure 22. Top 20 most frequent words for the categories vehicles (left) and entertainment (right). 

Two users can be compared based on the 20 most common words of a particular category over 
a predefined period of time. With time we can compare word variations between users as time 
progresses.  
 
We can furthermore model users’ interests based on their inclination towards active topics 
(interests) representing the text as a bag-of-words and then apply cosine similarity to determine 
the similarity between the users in order to infer common interests. 
 
Latent Dirichlet Allocation (LDA) is one of the well-known unsupervised techniques used for 
identifying latent topics from a corpus of documents. However, being designed for regular 
documents, it may not perform so well on short, noisy and informal texts and might suffer from 
the sparsity problem. It is used for topic modeling, helping us to understand collective behavior 
and latent communication structures. Of particular interest is whether such analysis can 
elucidate the latent behavior of users. Generally, LDA detects related topics from associated 
and co-occurring elements within a collection of documents. Such latent topics have a 
probability distribution over words, and the underlying strategy is to assign each word to a topic 
in the corpus with a varying degree of membership. In other words, LDA can produce multiple 
topics for a single post and each topic is defined by a distribution over words, taking into 
account that ordering of words is ignored and that the words in each document are known. As 
highlighted by Cambria and White in [45] LDA "involves the use of machine-learning techniques 
to perform semantic analysis of a corpus by building structures that approximate concepts from 
a large set of documents'' without the need to rely on external knowledge bases. Essentially, the 
distribution of topics altogether, as well as the distribution of topics for each document is learned 
from the data. The topic distribution is then represented as a vector, which is used for 
computing the distance between the documents, which then provides information about their 
similarity. Stated differently, similar documents (posts) will contain similar topics distribution and 
thus be closer in the vector space, which can be used to identify the relationship between 
documents (posts). 
 
There are two specific measures to be considered with LDA modeling. The Alpha parameter 
represents document-topic density - if one uses a higher Alpha parameter it is assumed that a 
post is made of more topics and results in more specific topic distribution per document. The 
Beta parameter - represents topic-word density, higher Beta parameter means that topics are 
thought to have been made up from most of the words and therefore result in a more specific 
word distribution per topic. For the symmetric distribution, a high alpha-value means that each 
document is likely to contain a mixture of most of the topics, and not any single topic 
specifically. A low alpha value puts less such constraints on documents and means that it is 
more likely that a document may contain a mixture of just a few, or even only one, of the topics. 
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If, on the other hand, the distribution is asymmetric, a high alpha-value means that a specific 
topic distribution (depending on the base measure) is more likely for each document. Similarly, 
high beta-values means each topic is more likely to contain a specific word mix defined by the 
base measure. 
 
Topic Coherence. A single topic is measured for the degree of semantic similarity between high 
scoring words in the topic. This helps to distinguish between topics that are semantically 
interpretable topics and topics that are artifacts of statistical inference.  
 
To increase the performance of the model, tuning of the alpha, beta parameters, for all topics 
was performed and topic coherence was measured. Table 11 lists some of the results: 
     

Table 11. Topic coherence for different values of alpha and beta. 

Topics (N=20) Alpha Beta Coherence 

2 0.01 0.01 0.358735726296909 

2 0.01 0.31 0.349102749788402 

2 0.01 0.61 0.367154566595308 

2 0.01 0.91 0.39359050640169 

2 0.01 symmetric 0.312659448637189 

2 0.31 0.01 0.327571571648674 

2 0.31 0.31 0.366281616437541 

2 0.31 0.61 0.354291438472752 

2 0.31 0.91 0.34142737351088 

…………. …………. …….. ………….. 

19 0.91 symmetric 0.437175319498444 

19 symmetric 0.01 0.416960021675226 

19 symmetric 0.31 0.54818077250476 
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19 symmetric 0.61 0.582774999765285 

19 symmetric 0.91 0.539397403985694 

19 symmetric symmetric 0.454346058715738 

19 asymmetric 0.01 0.406728813396778 

19 asymmetric 0.31 0.554312884824434 

19 asymmetric 0.61 0.536115094669246 

19 asymmetric 0.91 0.471435213631262 

19 asymmetric symmetric 0.465416835640429 

            
Figure 23. shows the results of the analysis on three categories.. The text from all categories 
was combined together and analysed without the Pinterest categories. A different strategy 
comprises selecting each category by itself and carrying out LDA analysis per category. This is 
useful in the presence of several subcategories, as is the case in category “entertainment”, 
“sports”, “fashion”, etc.   
 
The right hand side of the plots represent the relevance of a term (the 30 most used terms) to a 
topic, given a weight parameter, 0 ≤ 𝜆 ≤ 1, as 

𝜆 log(𝑝(𝑡𝑒𝑟𝑚|𝑡𝑜𝑝𝑖𝑐)) + (1 − 𝜆)log (
𝑝(𝑡𝑒𝑟𝑚|𝑡𝑜𝑝𝑖𝑐)

𝑝(𝑡𝑒𝑟𝑚)
) 

 
The red bars represent the frequency of a term in a given topic, (proportional to 𝑝(𝑡𝑒𝑟𝑚|𝑡𝑜𝑝𝑖𝑐)), 
and the blue bars represent a term's frequency across the entire corpus, (proportional to 

𝑝(𝑡𝑒𝑟𝑚)). The left hand side plot depicts the topics as circles in the two-dimensional plane 
whose centres are determined by computing the Jensen–Shannon divergence between topics. 
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(a) 

 
(b) 

 
(c) 

Figure 23. Results of LDA analysis on (a) topic 1, (b) topic 2, and (c) topic 3. 
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5.4 Combining Text-Based and Interest Profiling 

In this section, we described a mechanism that aims to match users based on common LDA 
topics of words extracted from their images. This process is similar to extracting user interest 
profiles in that it provides a conceptual understanding of user images. The main difference 
between LDA topics and user interest profiles is that the former allocate the general-purpose 
concepts pertaining of natural language terms into different learned topics, whereas the latter 
aim to learn embeddings that can be used to predict specific interests. 
These above two approaches effectively utilize complementary types of information match 
users. Hence, we consider an improved mechanism that combines them to achieve a multi-
faceted understanding of which users to match. To do so, we consider an aggregation 
mechanism between their matches features, in which the similarity between two users 𝐴 and 𝐵 
can be computed as a weighted aggregation of their topic and interest similarities: 
 

 𝑠𝑖𝑚(𝐴, 𝐵) = ∑ 𝑤𝐹𝑃(𝐹 ∈ 𝐴)𝑃(𝐹 ∈ 𝐵)

𝐹∈𝐿𝐷𝐴 𝑡𝑜𝑝𝑖𝑐𝑠

+ ∑ 𝑤𝐼𝑃(𝐼 ∈ 𝐴)𝑃(𝐼 ∈ 𝐵)

𝐼∈𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑠

 (5.1) 

 

where 𝑃(𝐹 ∈ 𝐴) = {
1

√|𝐹:𝐹∈𝐿𝐷𝐴 𝑡𝑜𝑝𝑖𝑐𝑠,𝐹∈𝐴|
 𝑖𝑓 𝐹 ∈ 𝐴, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} is the L2-normalized indicator 

function of whether a topic 𝐹 is assigned to user 𝐴,   
 

𝑃(𝐼 ∈ 𝐴) =    
𝑝𝐴 [𝑖]

√∑ 𝑝𝐴 [𝑖]𝑖 ∈𝑖𝑛𝑡𝑒𝑟𝑒𝑠𝑡𝑠

 

 
where 𝑝𝐴 is the profile of user A, is the same indicator function for interests 𝐼 and 𝑤𝐹 , 𝑤𝐼 are the 

weights placed on all topics 𝐹 and interests 𝐼 respectively. If 𝑤𝐹 = 0.5 for all topics 𝐹 and 
𝑤𝐼 = 0.5 the above equation is reduced to averaging the cosine similarity between topics and 
the cosine similarity of interests. 
Given this scheme, in the next period we aim to learning parameters 𝑤𝐹 and 𝑤𝐼 over a training 
dataset of matched users.  
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6 Context Aware User Profiling and Matching 

6.1 Spatio-Temporal Context Aware User Profiles 

An important feature of HELIOS is that it operates in multiple spatio-temporal contexts, as 
described in D4.1; users can switch between contexts in which they perform social actions. This 
enhances user experience in HELIOS applications by allowing them to respond to changes in 
their perceived environment. However, to claim such responsiveness, all the supporting 
HELIOS features should also be context aware and of course user profiling and matching is no 
exception. In this section, our goal is to discuss how spatio-temporal awareness can be 
incorporated into the user profiling models described in Sections 3, 4 and 5. 
 
While two users can be very different if all their photos are taken into account, conditionally on a 
specific spatio-temporal context they could be a lot more similar. An example of this case is 
illustrated in Figure 24. We have illustrated the images of two users from the YFCC100m 
dataset partitioned according to the place and the season, summer, autumn, winter or spring, 
that the image was taken. The first user predominantly has photos from Finland and most of 
them show an interest in music. This is especially true for autumn, winter and spring, but in 
summer there seems to be more variation with images taken also in Portugal, Spain and 
France. The theme of the images is also deviating from the rest of the photos as the ones from 
Spain and France show an interest in architecture and sightseeing, while the ones in Portugal 
are connected with the sun and the beach.  
 
On the other hand, the second user seems to be travelling throughout the year and not 
specifically in summer. Their images overall show an interest in architecture and sightseeing 
with also an occasional visit to Guadeloupe where the sea and the beach and the scenery seem 
to be appreciated. 
 
In general, their profiles are different and we would not consider these users similar, but there is 
a particular context where their interests seem to align, that is the spatio-temporal context that 
we could define as “summer in Paris”. It would be useful to be able to recognize this similarity 
and thus we propose the use of a straightforward attention mechanism over the images that 
prior to calculating the user similarities would weight the images according to the date and time 
taken and the currently active spatio-temporal context. There are many reasonable approaches 
to define the appropriate weights, but we propose a binary one26 where the spatial context 
would be defined as within a city range, approximately a radius of 25 km, from the current 
location and the temporal context would be multi-valued according to whether we distinguish 
between seasons, weekdays or times of the day, such as morning, afternoon and evening. In 
this way, conditioned on the current spatio-temporal context we would calculate multiple profiles 
corresponding to variations in the temporal context definition. 
 
Returning to the previous example, our MobileNetV2 coarse interests model would output if 
given all the images a cosine similarity between the users of approximately 0.05. However, if we 
set the current spatio-temporal context as summer in Paris and calculate the conditional user 

                                                
 
26

 We could also consider defining a smoother distribution that decays gradually the further away we are 
from the current location. The distribution could be Gaussian with an appropriate standard deviation 
controlling the cut-off point or even a von-Mishes Fischer that has some additional nice properties like 
symmetry when the data are spherical. 

https://en.wikipedia.org/wiki/Von_Mises%E2%80%93Fisher_distribution
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profiles, the cosine similarity would quadruple, reaching 0.2. We should note that we are 
interested in the ranking of the user similarities rather than the absolute numbers and thus the 
context could potentially have a big impact on user similarity. 
 

 

Figure 24. Illustration of two YFCC100m users’ photos as they are distributed over the time and place 

where they were taken. We partition the time in seasons and we depict most locations in a map of 

Europe. The first user’s photos are displayed on the right of the black dashed line as it is traced from right 

to left. The red dashed line emphasizes the spatio-temporal context Summer@Paris where they are most 

similar. 
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So far we have assumed that the spatio-temporal context was given by the platform, but it would 
be interesting if we could also discover such contexts without supervision. We are specifically 
interested in contexts that reveal similarities between the users that fade out when considering 
their whole photo collection. A way to discover such contexts is by maximizing the cosine 
similarity between the content aware profiles of two users with respect to the attention vector 
over the images. An attention vector that achieves a local maximum similarity can be 
considered as a context under which two users are particularly similar. Mining the places and 
dates of the attended images we can then attempt to produce a description of the context 
meaningful to humans. Although an intriguing idea, it is still in a preliminary research stage. In 
particular, carrying out the previously mentioned optimization problem in a decentralized way 
would require some form of communication and cooperation between the two nodes that would 
raise concerns about the convergence of the optimization algorithm and the computational cost 
of the process. 

6.2  Evaluation of User Matching 

In this section we will evaluate the proposed algorithms for the task of user matching. 

Dataset 

To evaluate the effectiveness of our user profiling algorithms at the task of user matching we 
need to have a dataset consisting of users along with their images and annotations of the 
connections between them. As we have already discussed, such datasets are not available and 
therefore we created one from Pinterest using a data extraction method. The users were chosen 
with a snowballing method from the following and follower links and based on those, the dataset 
was also annotated. The connections between the users were considered symmetrical meaning 
that both follower and followee relationships were treated identically. We note that a pair of 
users is flagged as connected if at least one of them follows the other and we make no 
distinction in the case that they follow each other.  
 

 

Figure 25. Histogram of user connections from the Pinterest matching evaluation dataset. 

We initially collected 500 users, but we removed 78 of them that had more than 10,000 images, 
as they would considerably increase the number of images needed for download and more 
importantly they frequently belonged to companies rather than individuals. So, the final dataset 
consisted of 422 users with approximately 210,000 images. However, these removals created a 
situation where more than 100 users were reported to have no connections at all, thus making 
the dataset challenging but considering that it is indeed possible that users are not connected 
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with any other user, we decided to retain them. A histogram of the user connections is shown in 
Figure 25. 

Experiments 

To evaluate the performance of both the interest categories based model and the Deep Metric 
Learning one we first calculated the profiles of the 422 users, who were completely new and not 
previously seen by any of the models, and then the similarity scores between all pairs using 
cosine similarity. The top-k matching recommendations for one user will then correspond to the 
k other users that have the highest similarity score with that user. At each k level we are 
interested in measuring the model’s recall@k, that is the proportion of the follower-followee 
relationships that we discover in the top k recommendations. This value lies in the range [0,1], 
where higher values indicate better recommendation capabilities. However, even small values 
(e.g. higher than 0.1) can show the matching to be of practical use, as a user looking at a 
recommendation list of length 10 would be expected to find at least one recommendation of 
interest. In this way, the recall@k curve is shaped and depicted in Figure 26 for k up to 20. We 
also included for comparison a random baseline that was calculated by assigning a random 
order to the user recommendations. 
 

 

Figure 26. Recall@k for the interest categories based models and the DML one. The black line 

represents the random baseline. 

As we can see all methods outperform the random baseline, but the one struggling the most for 

𝑘 < 10 is the DML model based on user similarities. We should, however, keep in mind that the 
Interest models were all trained on a dataset extracted from Pinterest, as was this particular 
connections dataset, while the DML model was trained based on a subset of the YFCC100m 
dataset which was created from Flickr data. Although both Pinterest and Flickr are popular 
image sharing platforms, the distributions of their hosted images significantly differ, making the 
comparison favourable for the interest categories based model. 
 

From the plot in Figure 26 we can see that for 𝑘 = 5 the MobileNetV2 implementation of the 
interests model achieves 5% recall, while the random baseline is 2.5%, and for 𝑘 = 10 the 
former achieves 8.6%, while the latter 4.6% This indicates that the proposed user matching 
approach does significantly better (87-100%) compared to the random baseline. 
 
Note also that the absolute recall values in the task should not be interpreted as realistic 
estimates of a real-world user recommendation module. This is due to the fact that the collected 
user profiles have very few connections among them (mostly just 1-2), thus recommending 5 or 
10 connections is surely going to end up with low recall values (e.g. for a user with one known 
connection, recommending 10 connections would lead to a top-10 recall of either 0 or 10%). 
This does not mean that the remaining recommendations are not relevant but that we do not 
have information to assess their relevance. 
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7 Integrating Profiling in Social Graph Mining 

 
In this deliverable, we have analysed mechanisms that help understand how user content 
pertains to profiles of interests. Those mechanisms can directly associate users with their 
interests and we have seen that they can also be adapted to match users of similar interests. 
 
An important aspect of user interest profiles is that they reside on devices that are effectively 
nodes of the Heterogeneous Social Graph described in Deliverable 4.2. Then, this graph can be 
enriched by considering its nodes to also hold the interest profiles extracted through the 
processes described in this deliverable. The outcome of this enrichment can be considered to 
be content- aware in that it captures the user interests pertaining to the textual or image content 
of each user. 
 

In Deliverables 4.2 and 4.3 social graphs were considered to comprise nodes 𝑉 and edges 
𝐸 ⊆ 𝑉 × 𝑉such that edges (𝑢, 𝑣) ∈ 𝐸 indicate relations between users 𝑢, 𝑣 ∈ 𝑉. Then, the 
content-aware enrichment can be thought of as a process that generates user interest profiles 
vectors 𝑈𝑣 for nodes 𝑣 through their on-device content, where vector elements 𝑈𝑣 [𝑖] correspond 

to how much each user 𝑣 is estimated to pertain to interest 𝑖. 
 
Under this formalization, user interest profiles are essentially a type of information that is 
accessible to graph nodes and, as such, can both be mined to reveal important structural 
organization of the graph and be the target of mining that aims to understand latent user 
preferences and how these pertain to user relations. These two types of analysis strongly relate 
to the social graph mining practices analysed and developed in Deliverable 4.3. Hence, our 
subsequent analysis builds upon the work of that deliverable. 

7.1 Propagating User Profiles through the Social Graph 

The first type of analysis we conduct relies on the notion of homophily described in Section 2.6 
which indicates that neighbors of social graphs often exhibit similar interests. Motivated by this 
observation, we consider mechanisms that propagate user interests to their neighbors and 
move the latter’s interests towards the propagated ones. This step can be performed multiple 
times across all user devices so that they all arrive at an unchanging understanding of user 
interests. In this case, each user’s interests are indirectly propagated through their neighbors to 
their neighbors-of-neighbors and so on, until they are diffused in the whole graph. 
 
This type of graph diffusion has already been investigated in Deliverable 4.3, but for the sake of 
completeness we will also present a formal description that better matches the understanding of 
this deliverable. 
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Graph Filters 

The core building block of our analysis is the notion of diffusing each user’s interests to their 
immediate neighbors. In the general domain of graph signal processing overviewed in the 
subsection 3.1 of Deliverable 4.3, we can write the operation of propagating a single vector 𝑠 
(also called a graph signal), whose elements 𝑠[𝑣] indicate the relatedness of all users 𝑣 to a 
given interest, to the immediate neighbors as: 
 

𝑟1 = 𝑊𝑠 ⇔ 𝑟1[𝑢]  = 𝛴𝑣∈𝑉 𝑊[𝑢, 𝑣]𝑠[𝑣] 
 
where 𝑊 is a square matrix whose elements 𝑊[𝑢, 𝑣] are proportional to how much 𝑢 is 

influenced by user 𝑣. This operation is equivalent to propagating the following relatedness to the 
examined interest to nodes 𝑢, but does not necessarily perform an aggregation with the 
relatedness of the latter. It can also be iterated to propagate the relatedness to interests to 

users 𝑘 hops away in the social graph: 

 𝑟𝑘 = 𝑊𝑘𝑠 (7.1) 

In this scheme, for 𝑘 = 0 we obtain the initial estimations of the non-propagated user interests 
𝑟0 = 𝑠. Then, all propagations can be aggregated with corresponding weights 𝑎𝑘 through a 
weighted averaging scheme: 

 𝑟 = 𝐻(𝑊)𝑠  where   𝐻(𝑊) = ∑∞
𝑘=0 𝑎𝑘𝑊𝑘 (7.2) 

The quantity 𝐻(𝑊) is called a graph filter on merit that it can effectively translate the graph’s 

propagation mechanism 𝑊 to the Taylor expansion of any matrix function. Two popular graph 

filters are personalized PageRank, which is obtained for 𝑎𝑘 = (1 − 𝑎)𝑎𝑘 where 𝑎 ∈ [0,1] is a 

diffusion constant and HeatKernels, which is obtained for 𝑎𝑘 = 𝑒−𝑡𝑡𝑘/𝑘! where 𝑟 = 1,2, . .. is a 
constant of how many hops away should be influenced more by the propagation. 
 
Besides the parameters of the graph filter, a computational aspect that affects the outcome of 

this graph signal processing mechanism is the choice of propagation weights 𝑊. These need to 

be selected so that propagations are performed towards graph neighbors and the values of 𝑊𝑘𝑠 

remain bounded for arbitrarily large 𝑘. Hence, the propagation mechanism is typically chosen as 
normalization of the adjacency matrix 𝑀 whose elements indicate whether the corresponding 
edge between nodes exists, i.e. 𝑀[𝑢, 𝑣]  = {1 𝑖𝑓 (𝑢, 𝑣) ∈ 𝐸, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒}. 
 
In particular, the normalization typically employed by personalized PageRank models is a 
Markov process randomly walking the graph, and hence satisfies𝛴𝑣∈𝑉𝑊[𝑢, 𝑣] = 1. If 𝐷 is the 

diagonal matrix of node degrees with diagonal elements 𝐷[𝑢, 𝑢] = 𝛴𝑣∈𝑉𝑀[𝑢, 𝑣] and zero 
everywhere else, thIS normalization can be obtained by the formula: 
 

𝑊 = 𝑀𝐷−1 ⇔ 𝑊[𝑢, 𝑣] = 𝑀[𝑢, 𝑣]/𝛴𝑘∈𝑉𝑀[𝑢, 𝑘] 
 
However, recent works on graph signal processing have moved to adopt a symmetric 
normalization that satisfies𝑊[𝑢, 𝑣] = 𝑊[𝑣, 𝑢] so as to relate to (the also normalized version of) 
the Laplacian operator, which is the graph equivalent to discrete derivation, by expressing the 

latter as 𝐿 = 𝐼 − 𝑊. This type of adjacency matrix normalization can be expressed as: 
 

𝑊 = 𝐷−1/2𝑀𝐷−1/2 ⇔ 𝑊[𝑢, 𝑣] = 𝑀[𝑢, 𝑣] / ( √𝛴𝑘∈𝑉𝑀[𝑢, 𝑘] √𝛴𝑘∈𝑉𝑀[𝑘, 𝑣] ) 
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Unsupervised Selection of Graph Filters 

Based on the understanding of graph filters, we now explain how user interests can be 
propagated throughout the graph to improve the interests of other neighbors. To do this, we 
consider a matrix 𝑈 whose rows  𝑈𝑣 correspond to the interests of users 𝑣. Then, applying a 
graph filter described by Equation (7.2) on each of those interests separately is equivalent to 
obtaining an updated version of user interest profiles 𝑈′ through the following equation: 

 𝑈′ = 𝐻(𝑊)𝑈 (7.3) 

As a first step to devising graph filters for diffusing interest profiles, we conducted research [46], 
[47] over how to select the best ones for a given graph, such as the social networks developed 
on the HELIOS platform. In particular, we tackle the problem of evaluating user profiles through 
unsupervised procedure when actual profiles are unknown. 
 
To this end, we argue that, since homophily frequently permeates many types of graphs, such 
as social networks, we can evaluate the quality of how much the relatedness between nodes of 
similar metadata attributes (i.e. in our case of common interests) can help reconstruct the 
graph’s edges. If we used the dot similarity -or cosine similarity if a graph filter that performs L2-
normalization is considered- to find the similarity of user interest profiles as 𝑠𝑖𝑚(𝑢, 𝑣) = 𝑈′𝑢𝑈′𝑣, 

we can express an estimation �̂� of the network’s adjacency matrix whose elements capture that 

similarity, i.e. �̂�[𝑢, 𝑣] = 𝑠𝑖𝑚(𝑢, 𝑣), as: 
 

�̂� = 𝑈′𝑈′𝑇 = 𝐻(𝑊)𝑈𝑈𝑇𝐻𝑇(𝑊) 
 

Since this is a quadratic form around the initial profile similarities 𝑈𝑈𝑇, requiring 𝑠𝑖𝑚(𝑢, 𝑣) to 
perform a high-quality prediction of the network’s edges after applying the graph filter is 
equivalent to performing a diffusion of the initial interest profile similarities throughout the 

graph’s edges. As a result, �̂� can closely approximate the adjacency matrix 𝑀 only if both the 
initial profiling process can correctly matches users based on interest similarities (although it is 
allowed to neglect matching users) and the filter 𝐻(𝑊) exhibits a good understanding of how 
interests need to be diffused throughout the social graph. 
 
Given this theorization, we propose measuring how well filters of the social graph can enhance 
the quality of extracted user interest profiles by the AUC of predicting the non-diagonal entries 

of 𝑀 using �̂�, where the latter is obtained by the cosine similarities between the filtered profiles 

of 𝑈′. In our published research, we call this measure LinkAUC and experimentally show that 
most of the time it yields more accurate assessment of which graph filter to use compared to 
unsupervised evaluation measures of structural community quality, compared to the ideal ones 
that would be obtained by AUC and NDCG if the interests were known. 
 
Hence, since the interests of social graph users are not known to facilitate supervised 
evaluation of graph filters, we resort to selecting the graph filters that maximize LinkAUC. This 
selection can be done offline on social networks with similar structure to HELIOS. However, our 
research has shown that sampling strategies of the graph’s adjacency matrix can also lead to a 
good selection of the best graph filters. Therefore, we aim to further investigate in future work if 
the graph filters used to propagate the initial user interest profiles can be selected so that they 
work on a per-user basis in the decentralized setting of HELIOS. Investigating and implementing 
these practices will be done in the next period. 

Applying Graph Filters to HELIOS 

Given that we select the best filters with which to propagate estimated user interests throughout 
the social graphs, the next step would be to deploy those on HELIOS applications. 
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In doing so, we expect a qualitative and quantitative improvement of user interest estimations. 
In particular, the updated estimations better match the true underlying user interests that pertain 
to homophilous behavior. At the same time, the propagation mechanism of graph filters can help 
discover relatedness to interests that may not be captured by the explicit content available on 
devices. For example, if users feel uncomfortable in allowing profiling of their content, an 
estimation of their interests can still be achieved through their structural positioning in the social 
graph with respect to other people that exhibit those interests. 
 
The challenge in implementing these practices lies in the decentralized nature of HELIOS 
platform, which hinders the direct implementation of Equation (7.3), as the initial user interest 
profiles are stored across different devices and there is no central organization to help gather 
and propagate them. As a result, it is necessary to follow decentralized adaptations that help 
approximate the outcome of graph filters. Previous research has proposed several methods in 
doing so for personalized PageRank [48]–[51], but requires on-demand or ongoing 
communication between user devices that may end taking a lot of bandwidth or fail as users go 
offline. In the next period we will also research adaptations of decentralized graph filters that 
can enhance interest profiles under this kind of dynamism, for example by adjusting the 
decentralized community detection protocol developed in Deliverable 4.3 or updating interest 
profile estimations based on those of only the interacting users. 

7.2 Combining Social Graph Mining and Profile Matching 

Besides the informativeness of discovering how much users pertain to interest profiles, in this 
deliverable we have also shown that such information can be used to match users so as to 
recommend social actions, such as relations. This recommendation relies on the similarity of 
user profiles, as this is calculated either through the cosine similarity of their vector 
representations or through a DML model of user similarity that outputs the euclidean distance 
between user embeddings. 

Combining Similarity Scores 

The above mechanism matches users based on their content. However, Deliverable 4.3 already 
defines similar recommendation mechanisms that consider the positional placement of users in 
the social graph to extract latent relational or interaction-related preferences with which to match 
them. Then, it is of interest to combine these two different approaches, that utilize different types 
of user data, so that more accurate user matching is achieved. In particular, the resulting 
matching mechanism would account for both the content-based interest preferences and the 
latent behavioral preferences of users. 
 
The simplest method to achieve this is by performing a trade-off between user similarity scores 
produced by these two mechanisms. For example, if 𝑠𝑖𝑚𝑖𝑛𝑡𝑒𝑟(𝑢, 𝑣)  and 

𝑠𝑖𝑚𝑝𝑟𝑒𝑓(𝑢, 𝑣) correspond to interest- and preference- based matching scores respectively, these 

could be transformed through a function 𝑓(⋅) into a space where they can be linearly 
aggregated, to produce the similarity: 

 𝑠𝑖𝑚(𝑢, 𝑣) = 𝑓−1( 𝑎𝑖𝑛𝑡𝑒𝑟𝑓(𝑠𝑖𝑚𝑖𝑛𝑡𝑒𝑟(𝑢, 𝑣) + 𝑎𝑝𝑟𝑒𝑓𝑓(𝑠𝑖𝑚𝑝𝑟𝑒𝑓(𝑢, 𝑣) ) (7.4) 

where 𝑎𝑖𝑛𝑡𝑒𝑟 + 𝑎𝑝𝑟𝑒𝑓 = 1. A clear advantage of this kind of approach is that the selection of the 

transformation function (e.g. 𝑓(𝑥) = 𝑥, 𝑓(𝑥) = 𝑙𝑛(𝑥)) and the aggregation weights 𝑎𝑖𝑛𝑡𝑒𝑟 , 𝑎𝑝𝑟𝑒𝑓 

can be chosen through offline training that needs not necessarily be aware of the fact that latent 
user preferences are different for different social graphs (e.g. between the graphs involved in 
selecting the aggregation parameters and the social graph of HELIOS) and between different 
experiments on the same graph. 
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Combining Similarity Features 

Although combining similarity scores can easily integrate both interests and latent preferences 
of users, it does not necessarily take into account that these two types of user characterization 
can work cumulatively to provide an improved latent understanding of content and behavioral 
and interest preferences. In practice, this means that there could exist a latent space of user 
attributes that encapsulates these two types of understanding of the user. Then, we expect that 
user matching performed in that space to yield even higher recommendation capabilities 
compared to the only combining similarity scores. 
 
An important shortcoming of this type of approach compared to other user matching 
mechanisms presented in this deliverable is that it heavily depends on the per-network 
extracted user preferences. Therefore, although additional neural layers can be used to 
combine the user latent preferences and interest profiles into a low-dimensional common 
understanding, these cannot be trained in an offline setting. 
 
A first take in this direction, which we aim to explore decentralized training schemes of neural 
networks that would allow us to deploy such a scheme over the social graphs of HELIOS. A 
promising approach in this regard is to organize such types of mechanisms as (potentially 
multilayer) graph neural networks, as those are described in Deliverable 4.3, which learn to 
recommend social actions based not only on the time-evolving structure of the graph but also 
the outcome of context mining. These could potentially involve the principles developed in that 
deliverable on how to train such architectures by exchanging information only during 
interactions and regularizing towards similar parameters between neighbors. 
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8 Practical Aspects and Considerations 

8.1 Mobile Deployment 

As the models we have presented in this deliverable are meant to be deployed in a mobile 
environment, in this section we will discuss some practical issues concerning this process. 
 
The framework we chose for the deployment of the deep learning models was TFLite. TFLite is 
part of the TensorFlow ecosystem and is geared towards packaging small and efficient models 
in a binary executable format. This binary can be executed from within Java code with the 
assistance of TFLite’s Java API. In this way it can be embedded into an Android app and 
incorporated into the app’s logic. 
 
Apart from creating the executable that will be called from within the app, TFLite offers some 
more conveniences regarding the optimization of the models to be deployed. In a mobile 
environment both memory and computation are limited and to provide a good user experience 
we have to reduce both the size of the model and the calculations needed for inference. As 
discussed in Section 2.5 the optimizations that can provide the most immediate benefit and are 
easy to apply are weight and activation quantization and pruning, both of which are provided 
within TFLite. For our models we opted for weights-only quantization, but in the event that this 
proves to not be enough there is room for further resource savings. It should be noted, however, 
that each of these transformations introduces an accuracy penalty and we should achieve the 
right trade-off. 
 
To be more precise, the models ready for mobile deployment are the interest-based ones 
described in Section 3. The DML model presented in Section 4 is currently developed only using 
as base the EfficientNet-B3 CNN, which is computationally demanding and not suitable for 
mobile deployment, but it is straightforward to convert to a more appropriate form as we would 
need to replace the EfficientNet-B3 with the MobileNetV2 CNN that we also used for the mobile 
versions of the interest-based models. 
 
To assess the performance of the TFLite interest-based model in a realistic mobile environment, 
we created a standalone Android application that would run the model in question 10 times on a 
demo image and would report the mean inference time. The TFLite model was added as an 
asset to the application and required only 2.3 MBytes and the RAM consumption of the whole 
application was less than 40 MBytes. The results of running the application on four different 
smartphones are shown in Table 12. 
 

Table 12. Average Inference Time for a single forward pass of the interests based TFLite model. 

Model Inference Time (ms) 

Xiaomi Mi 8 140 

Xiaomi Redmi 4 288 

Xiaomi Redmi Note 5 290 

Huawei Y7  400 

 
The smartphones are all considered to be on the low end spectrum with the Xiaomi Mi 8 
approaching the mid-range category and achieving 140ms mean inference time. So, in a 
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scenario that a user has 100 images in his collection 14s would be needed to extract his profile. 
However, each image needs to be processed only once through the TFLite model and once we 
save the output, the calculation of the profile is very fast. Storage limitations in this case are not 
a problem as the output of the interests based model is a 15 dimensional vector in the coarse 
case and less than 50 in the fine. In the case of the DML model the output for each image is 
256-dimensional which would require only 0.1 MBytes to be stored if we assume 32-bit floating 
point representation and 100 images. 
 
In a mobile environment, equally important to the execution speed, if not even more, is the 
energy consumption of the model. Deep learning models are known to be power intensive as in 
order to speed up the calculations, they require probably more than one CPU core and even the 
GPU present in most of the recent smartphones. However, as discussed earlier if we cache the 
model’s output, we do not need to run the TFLite model more than once on each photo and thus 
the required calculations could be scheduled in the background, preferably when the device is 
charging, and only for the newly added photos. This method works equally well for the context-
aware profiles discussed in Section 6, as the attention vector is to be applied after the CNN has 
finished processing the images. 

8.2 Privacy Considerations 

The HELIOS platform adopts the principles of privacy-by-design and security-by-design, which 
are the cornerstones of the system’s security. The decentralized nature of the platform makes 
accessing and collecting user data a challenging task. The data consumed by the Content-
Aware profiling module to produce meaningful user profiles are located in the respective user 
devices.  
 
To help protect user's privacy in the Content-Aware profiling module, all the analysis is carried 
out on the device and only a minimal amount of profiling data is shared with others. The module 
cannot directly expose the collection of images used to generate interest profiles or share 
profiling information with other peers, unless the user explicitly gives permissions. The Content-
Aware profiling module is going to further protect the confidentiality of shared data by leveraging 
the results of the work produced by Task 3.4 and the resulting HELIOS security module.  
 
At the application level, the user should be fully informed about the data that the Content-Aware 
profiling module processes and produces and should have control of whether these can be 
accessed, analysed and shared. Additionally, extracted user interests should be possible to edit 
and be approved by the user, and only be shared with others with whom a certain level of trust 
is established, as this is foreseen by the Trust Module that is currently being developed in Task 
4.5.  
  
Overall, given that the primary function of HELIOS is to enable social networking among people, 
sharing profile data between peers is inevitable. However, the design of HELIOS components 
accounts for the data privacy and security needs and aims at minimizing privacy risks that could 
arise in adversarial settings. 
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9 Conclusions and Future Work 

9.1 Conclusions 

This deliverable explored the problem of developing a content aware social graph. We proposed 
new techniques for adding content aware features on top of the on the Heterogeneous Social 
Graph (HSG). 
 
We started with content aware user profiling through predefined interest categories. This led us to 
the design of a deep learning model capable of inferring both coarse and fine grained user profiles 
based on their photo collections. We trained the model with a novel dataset we created and tested 
it on Pinterest users with manually labeled profiles achieving 93.6, 88.5 and 92.5 mean AUC, MAP 
and NDCG respectively, using a small, efficient TFLite model suitable for mobile deployment. 
Furthermore, the content aware user profiles created in this way are interpretable as they 
correspond to humanely meaningful concepts, an important feature when aiming to be transparent 
with the users about how the platform algorithms work. 
 
To address the disadvantage of relying only on predefined categories, we created an additional 
model with lower interpretability, but with the potential to capture more concepts with higher 
semantic coverage. This model was based on Deep Metric Learning and approximates a function 
that can map a user’s photo collection to an embedding space where similar users are closer and 
dissimilar users are further apart. The model was trained on a subset of the YFCC100m dataset 
annotated with autotags and we demonstrated that there is correlation between the closeness of 
the users’ embeddings and the similarity of the users based on the tags they provided to their 
photos. 
 
Another kind of semantic information that can be available in an image and cannot be captured 
with either of the previous methods is textual information (e.g. memes, document snapshots). To 
extract this information a text processing model is needed. Therefore, we designed a model that 
can first extract the text present on images with an OCR engine and then perform textual analysis. 
To this end, the text is first pre-processed by removing stopwords, lemmatization and stemming. 
Then, word frequency analysis is performed, including TD-IF, bigram and trigram modeling. Finally, 
for the purposes of this report topic analysis is carried out through LDA. By performing topic 
analysis on the aggregated set of text items of a user, it is possible to construct text-based 
semantic profiles. 
 
The previous models are able to extract varied semantic information from a collection of images, 
but HELIOS users also operate on multiple spatio-temporal contexts. For this reason, the content 
aware features should also be able to adapt to the different contexts and that is addressed by 
creating conditional user profiles. The conditional profiles are calculated with any of the previous 
models, but with an attention vector applied on the images that focuses on the most relevant ones 
to the active context. 
 
To validate the proposed models at the task of user matching we created an additional dataset 
involving 422 Pinterest users and the connections among them. While the dataset is particularly 
challenging due to the very few connections present (mostly just 1-2 per user), we achieved 5% 

recall with the top-5 recommendations compared to the 2.5% of the random baseline, 
demonstrating that the produced recommendations are meaningful. 
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The models developed in this deliverable provide a solid foundation for the incorporation of content 
aware features in the HELIOS platform. We can provide multiple content aware user profiles that 
are complementary to each other and could be exploited in different HELIOS modules such as the 
social graph mining developed in D4.3. We are also in a position to provide content aware 
recommendations for user matching based on the constructed user profiles. 
 
Finally, it is important to note that special care was taken throughout the development of this 
deliverable to design models that are suitable to be deployed in a mobile environment, that is they 
can be compressed in a small binary package, require modest computational resources and can 
operate in the background (and while the device is charging to limit power consumption). The 
architecture is also meant to respect the privacy of the users, there are no external servers 
involved in any step of the process and the data never leaves the user’s device. 

9.2 Future Work 

Integration with the Helios platform 

The Content Aware Profiling API, briefly described in the first annex, is part of the HELIOS platform 
extension modules. It has not been completed yet and as such a discussion of how it is going to be 
integrated in HELIOS is ongoing. 
 
When deployed, the Content Aware Profiling Module requires access to the user’s photo collection 
from which the content aware user profile will be calculated. We have described in this deliverable 
three different models, each emphasizing a different semantic representation of the visual content: 
the interest-based model focuses on the predefined interest categories, the DML model is 
adaptable to the provided data and the text model analyzes the text extracted from the images. 
However, it is not clear yet how the module will combine these three representations. It would be 
reasonable to provide the option to calculate the content aware user profile using any of them or 
even define an appropriate combination of them, but that would impact the overall size of the 
application as multiple models will have to be packaged as well as the required calculations. To 
make a proper decision we will have to measure more precisely the impact of each model to the 
application’s resource usage and study the respective trade-offs. 
 
In Section 8.1 we discussed some of the issues concerning the mobile deployment of the models 
and what steps we can take to alleviate them. We proposed using the MobileNetV2 as the base 
CNN for our models which is fast and efficient, quantizing the weights and the activations or 
pruning the network. Not all of these have been implemented yet on all models; the interests based 
model is trained with MonbileNetV2 with weights-only quantization post training, however we have 
only trained the DML model with EfficientNetB3, a server-side model and also as far as the text 
processing is concerned, we have not yet tested the applicability of the Tesseract OCR engine on 
the Android platform. It is important that these issues are addressed as the HELIOS platform 
matures and the module implementations start being tested. In the next section we will discuss an 
interesting research avenue of improving the models even after their deployment, based on the 
user interaction data. 

Online Weight Adjustment 

The development of a machine learning model does not stop after achieving satisfactory validation 
accuracy, but rather it also needs to be tested in real world conditions. There are many reasons 
that could lead to poor performance in practice and a major one is different input data distributions. 
This is particularly relevant to our task of developing content aware social graphs as HELIOS 
accepts input from many heterogeneous sources, that is different people from possibly different 
countries and with different images, and all of them cannot be appropriately represented in any 
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reasonably sized dataset. Therefore, an important aspect of the models we create is whether they 
can adapt to better fit unforseen data. 
 
However, development in the context of HELIOS is also challenging in another way as no data can 
leave the device and thus the adaptation process cannot be offloaded to an external server, but 
rather it has to be done on device with the usual computational limitations as well as the limited 
information one node has available on its own. The concept of federating learning27 is very relevant 
to this topic, but in the remaining we will briefly discuss the possibility of leveraging implicit signals 
from user interactions to continuously train the models in each user’s device. 
 
The idea is to take advantage of interactions that would suggest that two conditional content aware 
user profiles should be close. The type of interaction we have in mind is simply when two users are 
in contact under the same spatio-temporal context. This information makes it quite probable that 
their content aware profiles conditioned under the same spatio-temporal context, in the sense 
described in Section 6, are also close. We can thus calculate on the devices of these two users a 
weight update in the direction that pushes the two conditional profiles closer. 
 
There is a significant issue, however, with this approach; after some time each HELIOS user will 
have a different version of the model. This can be considered a desirable feature as we want the 
models to be personalized to better fit each user’s needs, but at the same time it raises the risk 
that the users’ content aware profiles could grow to unpredictable states. For example, in the case 
of two users with identical content stored on their devices, their past interactions could make their 
profiles seem distant while we would normally expect them to also be identical. 
 
Therefore, although we believe that online weight adjustment as previously described is a 
promising idea that could enable our models to adapt to unforeseen circumstances, more research 
needs to be done to provide both qualitative and quantitative analysis on the evolution of the 
weights and the content aware profiles. 
  

                                                
 
27

 https://ai.googleblog.com/2017/04/federated-learning-collaborative.html 

https://ai.googleblog.com/2017/04/federated-learning-collaborative.html
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Annex I - Content Aware Profiling Module 

The Content Aware Profile Manager handles the creation of the users' interest profiles as well as 
the matching between users. With a user's available image collection as input, the manager can 
construct their interests profile using a deep learning algorithm. Furthermore, the manager can 
provide a metric on the quality of the match between two users based on their constructed interest 
profile. The Content Aware Profiling Module depends on core modules 
eu.h2020.helios_social.core.contextualegonetwork and eu.h2020.helios_social.core.storage. 
 
Our main considerations when defining the module were: i) the usability of the module, developers 
should be able to use the module within 10 minutes after reading the documentation and ii) the 
extensibility of the module, to allow and make easy for other developers to build their own solutions 
and integrate their solutions into HELIOS platform. An overview of the Content Aware Profiling 
module is presented in the UML diagram below.  
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