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1 Introduction 

HELIOS is a platform for creating and managing Decentralized Social Networks (DSNs), with the 
goal of democratizing content production, promotion and monetization while letting users retain 
control over data ownership and dissemination. In this deliverable, we explore algorithms that mine 
user behavior to bring social analysis and recommendation capabilities to the decentralized 
applications and protocols developed in the HELIOS platform. Mining algorithms could enrich user 
experience by suggesting social actions, such as getting in touch with connections who are still of 
interest, and providing patterns of social organization that describe the social roles of users. They 
could also analyze social behaviour to support the decisions of other mechanisms, such as 
selecting who to send information to so that fast propagation is achieved. 
 
User behavior can be broadly categorized as either active or passive [1,2]. The latter refers to 
users only consuming content but not engaging in social actions; hence, it seldomly leaves behind 
data that can be utilized by graph mining algorithms. Instead, in this task we focus on mining the 
active behavior of social media users, which refers to their performed social actions. These actions 
can be organized into edges of graphs -called social graphs- whose nodes represent social media 
users. Mining social graphs can be considered equivalent to mining the user actions they capture. 
 
We recognize that there are two different types of mineable social actions social media users can 
engage in: forming relations and performing interactions. Relations represent long-term links 
between them, such as being friends or acquaintances, and are typically bidirectional in the sense 
that both involved parties need to acknowledge them. Therefore, mining relations can reveal 
important organizational properties of the social graph, such as community structures that can be 
exploited for information diffusion, preferences pertaining to the structural role of users within the 
graph or whether the graph is a small world one, i.e. whether visiting a user from any other can be 
achieved within a few number of hops. 
 
On the other hand, interactions refer to repeatable social actions, such as sending private or public 
messages. Since they repeat over time, these form temporal graphs whose edges can appear 
multiple times and last only as long as the respective action (often, only for the brief instance at 
which the action is transmitted between user devices). Interactions are often directed, in the sense 
that it is important to differentiate between their sender and their receiver. It must be pointed out 
that, for users to interact in social media platforms, they need to have already formed relations; as 
an edge case, acquaintance relations can be implicitly formed the first time two users interact. In 
this deliverable we tackle the task of understanding and modelling the latent time-evolving user 
preferences that drive their interactions. These preferences can be used both to recommend 
interactions with “old” connections that may be missed when users engage with their “favorite” 
connections on a regular basis and to recommend relations between users of similar preferences. 
 
The challenges of performing the above-described types of graph mining within the HELIOS 
platform lie in its decentralized nature. In particular, state-of-the-art graph mining algorithms are 
not well-suited to decentralized platforms, either because their computations cannot be split 
between many devices, or because in doing so they fail to account for the intrinsic evolution of 
such platforms over time. Previously, researchers have proposed distributed graph mining 
algorithms in which user devices mine (a local area of) the social graph by constantly 
communicating with either a central service or their graph neighbors until they arrive at a desired 
solution (see Section 3). However, these approaches are not applicable to fully DSNs, where there 
is no central service and critical communications can be disrupted by users going offline at 
irregular intervals. 
 
In this deliverable, we start by investigating popular graph mining algorithms pertaining to the 
organization of users into community structures and their preferences, placing emphasis on the 
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algorithms that can also capture the temporal dynamics of social networks. These include 
community detection for mining user relations and graph neural networks for mining user 
interactions. We then select the most promising of those algorithms and devise novel information 
exchange protocols as well as comprehensive adjustments that allow them to be used in DSNs, 
such as the applications developed within the HELIOS platform. In particular, in this deliverable we 
describe two new types of decentralized graph mining algorithms; decentralized dynamic 
community detection (see Section 4), which uses a super-peer approach to detect and manage 
user communities through time, and decentralized temporal graph neural networks (see Section 5), 
which capture the temporal evolution of user preferences as these are reflected by the preferences 
of who they currently interact with [3,4]. 
 
As we mentioned before, the algorithms and protocols proposed in this deliverable enable graph 
mining that can improve HELIOS applications, such as those to be developed within the scope of 
the use cases first described Deliverable 2.1 and revised in Deliverable 2.6. For example, in Use 
Case A, action recommendations can help users wade through an otherwise large number of 
possibilities, such as selecting people to connect to in new environments. The matchmaking 
between users in Use Case B could also be enriched through an understanding of latent user 
preferences that drive their actions. Finally, in the marathon setting of Use Case C, graph mining 
could help recommend social actions, such as speaking with fans of similar athletes. At the same 
time, community detection can be used to support the operations of the HELIOS peer-to-peer 
network. For instance, the matchmaking of Use Cases A and B could lead people to organize in 
stable communities according to their interests, which can hence support the diffusion of 
information between users of common interests. 
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2 Preliminaries 

2.1 Social Network Graphs 

A common formalism that enables the analysis of social networks is to model them as graphs 𝐺 =
(𝑉, 𝐸),whose nodes 𝑉 comprise their users and edges 𝐸 = 𝑉 × 𝑉 the social actions between them, 
such as relations and interactions. For example, in Figure 1 we show a visual representation of 
graphs with nodes 𝑉 = {𝐴, 𝐵, 𝐶, 𝐷} and edges 𝐸 = {(𝐴, 𝐵), (𝐴, 𝐶), (𝐴, 𝐷), (𝐶, 𝐷)}. As we can see in 
that figure, graphs can be either directed or undirected, depending on whether the element of the 
edge tuples 𝐸 are ordered or not respectively, i.e. an edge (𝐴, 𝐵) of an undirected graph, is 

considered the same as (𝐵, 𝐴). In the case of interactions, multiple edges could exist between the 
same two nodes. For example, the edge (𝐴, 𝐵) could occur twice - once per every interaction 
between those users. 

  

Figure 1. Example of directed (left) and undirected (right) graphs 

  
Usually, social interactions, such as sending or reacting to messages, are modeled as edges of 
directed graphs, which provide a clear distinction between who the senders and receivers are. For 
example, in Figure 1 the edge (𝐴, 𝐵) of the directed graph could depict that user Ahas messaged 
user 𝐵 but not the other way around. On the other hand, the edges of undirected graphs would 
correspond to modeling bidirectional relations, such as users being friends. Although specific types 
of social actions could deviate from this formulation (e.g. parent relations need distinguish between 
the parent and the child), throughout this deliverable we assume the undirected modeling of social 
actions, unless stated otherwise. 
 
In the above example, the graphs are static in the sense that their edges do not change over time. 
However, graph nodes can also exhibit dynamism in that they can join or leave the graph and 
create or remove edges. This concept was described in detail in Deliverable 4.2, alongside existing 
models for managing dynamic graphs in the literature, as well as the one adopted by HELIOS. As 
an example, interaction graphs are often dynamic in that new interactions occur over time. 

2.2 Graph Theory Concepts 

Graph nodes exhibit various types of structures and properties that are of interest to social network 
mining. In this subsection we present some of the most widely used ones that pertain to the 
research and development actions of this deliverable. 

 
Ego network 
The ego network is a common structure in the fields of complex network analysis and distributed 
systems that represents a local view of each node’s placement in the graph, as first described in 
Deliverable 4.1. In particular, the ego network of a node u comprises that node and all its graph 
neighbors, as well as the edges between the starting node and its neighbors as well as between 
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the neighbors. In this deliverable, we will call uthe ego of its ego network and its neighbours as its 
alters within the ego network.  
 
Paths 
Paths are a pivotal concept of graph theory, which is used to define most network properties or 
complex structures. In the case of undirected static graphs, a path vu from a source node v to a 
destination node u is defined as a sequence of nodes (𝑣, 𝑣1, . . . , 𝑣𝑛, 𝑢), such that each node is a 
neighbor to its predecessor and its successor in the sequence, and there are no duplicates in the 
sequence. In the case of directed static graphs, the nodes in the path should also be connected 
with at least one edge from the previous to the next one. In dynamic graphs, there is no commonly 
agreed view of paths and the one followed in this task will be described later on in subsection 3.4. 
 
Some widely adopted graph theory concepts pertaining to paths are listed below: 

• Path length. The number of edges in a path. 
• Random walks. Random walks are processes used to iteratively create paths arising in the 

graph by selecting an existing path or node and forming a new path by (randomly) visiting 
one of the last node’s neighbors. 

• Connected graphs. A graph is said to be connected if there exists a path from every one of 
its nodes to every other. 

• Node distance. The length of the shortest path between two nodes. 
• Node eccentricity. The longest distance between the node and any other node. 
• Graph diameter. The largest node eccentricity in the graph. 
• Small world graphs. Both offline [5] and online [6] social networks often show a very low 

diameter which increases only logarithmically with respect to their number of nodes. Since 
node distance tends to be short between nodes of those graphs, they are often referred to 
as small world graphs. 

 
The clustering coefficient 
The clustering coefficient measures the extent at which nodes of a graph are tightly connected to 
each other. It has been shown that, in social networks and other real-world graphs, nodes tend to 
show values of clustering coefficients which are higher with respect to the ones found in random 
networks, thus forming groups of tightly interconnected nodes with a density that is higher than the 
one of the whole graph. 
 
Usually two definitions are used in the literature: the global clustering coefficient and the local 
clustering coefficient. The global coefficient is based on the notion of triangle and triplet. A triangle 
is a graph made of three nodes and three edges, where each node is connected to the other two, 
whereas a triplet is a triangle with a missing edge. The global clustering coefficient of a graph can 
then be defined as: 

 𝐶𝐶𝑔𝑙𝑜𝑏𝑎𝑙(𝐺) = 3𝑇
𝑡⁄  (2.1) 

where Tis the number of triangles in the graph and tis the number of triplets. The global clustering 
coefficient expresses how many triplets are part of triangles. The local clustering coefficient is 
instead a measure of how well the neighbours of a reference node u are connected. The local 
coefficient is defined as: 

 𝐶𝐶𝑙𝑜𝑐𝑎𝑙(𝐺) =
|𝐶𝑁(𝑢)|

𝑑𝑢(𝑑𝑢 − 1)⁄  
(2.2) 

where |𝐶𝑁(𝑢)| is the number of neighbours of node 𝑢 that are connected, and 𝑑𝑢 is the degree of 
node that node, i.e. its total number of neighbors. We can estimate the global clustering coefficient 
of the graph by averaging the local clustering coefficients of all of its nodes. Also the clustering 
coefficient was used to determine whether a graph is a small world or not [7]. 
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Node centrality 
Centrality is a general concept of how important nodes are within a graph’s structure. Its study has 
gained a lot of traction in the field of social network analysis because it can uncover users that play 
a key role in information dissemination, such as influencers. Many centrality measures have been 
proposed in the literature, the most well-known of which we explore here. 
 
Degree centrality. The most intuitive measure of node centrality is with how many neighbours 
nodes are connected with. This measure’s distribution over graph nodes often follows a power law, 
where exponentially more nodes have low (rather than high) degree centrality, regardless of the 
number of graph nodes. 
 
More advanced centrality measures can be defined using the concept of node distance. Such 
measures include the closeness centrality, which identifies the importance of nodes based as the 
sum of the reciprocal of the distances from a node to all the others in the graph, under the 
assumption that more central nodes should be closer, on average, to all the other nodes of the 
graph. One can also identify central nodes based on how many include them, a concept referred to 
as betweenness centrality. The intuition in this case is that nodes with the higher centrality should 
be frequently visited when moving between pairs of nodes. 
 
Finally, other measures of centrality focus on the structural positioning of nodes. For example, k-
decomposition [8,9] assumes that finding nodes with at least k neighbors who also have at least k 
neighbors for increasingly larger k reveals the hierarchical organization of graphs around central 
highly-connected components. Whereas Google’s PageRank algorithm [10], which will be 
explained in more detail in subsection 3.1, considers as more central the graph nodes that would 
be visited more often when one randomly hops through the graph’s edges. 

 
Community structure 
The community structure of graphs is one of the most studied properties of both social media and 
complex networks [11,12,13], because it can reveal important information concerning the structure 
of the network. There is no universally accepted formal definition of what a community is. The lack 
of consensus among researchers on a formal definition has brought the proliferation of several 
definitions of community and, along with them, to the development of a huge number of methods to 
detect the communities depending on the definition chosen. For instance, if we decide to identify 
the community structure with the partition of the graph with the highest modularity, we can then 
define several algorithms that search for that partition. Moreover, we can also define other 
algorithms that can try to approximate the best solution. For the rest of the document, we will adopt 
the following intuitive and abstract definition of community provided by Fortunato et al. [14]:  
 

“A community is a set of entities where each entity is closer to the other entities 
within the community than to the entities outside it.” 

 
This definition lets us be general enough when talking about communities and how they can be 
extracted or used. In the case of static networks, there are a plethora of methods in the literature, 
based on a number of different ideas [15]. Given their importance, researchers started to grow 
interest in their study also from a temporal point of view, that is, taking into account that the graph 
may change over time. As for the static case, a consensus on the definition of the concept was not 
achieved, thus leaving freedom to the development of dynamic community detection algorithms. 
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Figure 2. The dynamic community events that define the lifecycle of a community. 

Dynamic communities were shown to have a complex lifecycle which is characterized by a set of 
events, as shown in Figure 2. The events can be summarized as follows: 

• Birth. A new community is born when the network topology matches the condition for a 
community to be created. While, in principle, there is no lower limit for the number of nodes 
required to form a community, in many approaches at least three nodes are required; 

• Growth. New nodes join an existing community, increasing its size; 
• Merge. Two communities are merged together into a single one; 
• Split. A community divides into two or more independent communities; 
• Shrink. A community decreases in size when some nodes leave it; 
• Death. If a community completely loses its structure, it ends up in dissolving, thus marking 

its death. 

 
By studying the community lifecycle, one can gather even more information about the user 
behaviour in the social network. Communities with a recurrent lifecycle uncover repetitive 
behaviour which may be connected to the daily/weekly cycle, while unexpected events can help in 
the detection of abnormal activity gathering around unexpected situations. 

2.3 User Embeddings 

A common practice when mining data of high dimensionality, such as data organized as graphs 
[16], is mapping data points to lower dimensional spaces (e.g. that comprise hundreds instead of 
tens of thousands of parameters) while preserving their underlying relations. This way, low-
dimensional representations can replace the respective high-dimensional ones as inputs to 
machine learning models. In turn, this reduces the time needed to train and run those models by a 
large margin, as at best that time would be proportional to the number of dimensions (also called 
features) in training data. The found low-dimensional representations are called the embeddings of 
the respective data points, in the sense that they embed them in the lower dimensional space. 
 
Data embeddings were popularized thanks to natural language processing and synthesis systems 
[17,18], where they are often superior to similar techniques for reducing dimensionality. 
Furthermore, they provide a much-celebrated semantic understanding of underlying linguistic 
models, where conceptual combinations or differences of words are preserved in the latent low-
dimensional space they are projected into. A characteristic example of this phenomenon is that the 
embedding obtained from large English corpora for the word “queen” tends to lie closely to the 
outcome of the embedding vector operations “king - man + woman”. 
 
Motivated by these results, embeddings have also been adopted to graph mining tasks, for 
example to represent user and item preferences, which can help recommend matching graph 
nodes [19,20]. In this case, they have in large part replaced previous approaches that discovered 
underlying representations of nodes by factoring or decomposing the graph’s adjacency matrix into 
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a product of simpler ones that exhibit helpful properties. These kinds of approaches focus on 
decomposing the node representations of the adjacency matrix to their principal components and 
projecting them in low dimensional spaces that retain the most important components. Although 
this line of thought is conceptually different to graph embeddings -to the extent that they have been 
previously considered different areas of research- recent findings have shown that embeddings for 
reconstructing graph edges are effectively approximations to low dimensional projections obtained 
by spectral decomposition. Compared to principal component analysis, embedding mechanisms 
run fastly, can be easily generalized to temporal graphs and can be deployed with unknown 
similarity objectives. Therefore, in this deliverable we recognize that embeddings are better-suited 
to enabling the machine learning aspects of HELIOS. 
 
In general, extracting embeddings within the scope of graph mining is often thought of as capturing 
the graph’s structure, in the sense that similar embeddings can help reconstruct edges by 
connecting the respective nodes [21,22]. Given this formulation, graph node embeddings enable 
prediction tasks, such as recommending missing edges based on their endpoint similarities in the 
embedding space. A more advanced understanding that moves beyond the scope of providing an 
unsupervised understanding of the graph arises in the general framework of graph neural networks 
(see Subsection 2.3). In this case, embeddings are trained alongside an encompassing model, 
such as a learned non-linear similarity function, so that more emphasis is placed on the structural 
characteristics best-suited to the prediction task. In the scope of social networks, embedding-
based recommendations can be used to suggest promising relations and interactions between 
users.  
 
In the literature, there are three well-known approaches for finding node representations in time-
invariant graphs [22]; these are graph factorization, random walk-based embeddings and deep 
embeddings. All three approaches can be considered variations of the same scheme, in which 
node embeddings are extracted so that their similarities can respectively reconstruct the graph, the 
probability of following particular random walks within the graph, which is equivalent to 
reconstructing node neighborhoods up to a given number of hops away, or augmenting the latter 
by using multilayer neural network architectures (see subsection 3.3). 
 
As a general framework to understanding node embeddings, we consider a number of processes 
𝑁𝑘(𝑢) that yield sets of nodes satisfying different notions of structural or temporal proximity to 

nodes 𝑢. For example, 𝑁1 ℎ𝑜𝑝 may comprise the neighbors of each node, which reside one hop 

away in the graph’s structure [23] and 𝑁2 ℎ𝑜𝑝 may comprise the neighbors of each node’s 

neighbors, which reside two hops away in the graph’s structure (i.e. can be reached by a path of 
length 2). The embedding mechanism then tries to find node representations that preserve the 
outcome of one or more of these processes. As a result, those processes deeply characterize the 
nature of the embedding mechanism, as well as what kind of information it captures. 
 
For example, the 𝑁1 ℎ𝑜𝑝 proximity mentioned before focuses on preserving the immediate 

neighbors of nodes but potentially forsakes temporal information that could be provided alongside 
those nodes. In general, it has been shown [24] that making embeddings accurately predict the 
𝑁𝑘 ℎ𝑜𝑝 neighborhoods of nodes with weights that are exponentially degrading with respect to 

𝑘 preserves which subgraphs of the graph have identical internal structure (i.e. there exists a 
mapping between their nodes so that edges also match), a property also known as isomorphism. 
Embeddings can also learn to preserve any similarity measure between nodes as long as an 
adequately strong objective function of node similarity is selected [25]. 
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3 Related Work 

The core engagement mechanism of social networks lies on interactions and long-term relations 
between users, such as sending messages and becoming friends. Due to the growth of social 
media however, the social behavior enabled by these mechanisms has grown to be increasingly 
complex and span many interpersonal relations. As a result, social media users may encounter 
trouble in selecting who to interact or form relations with, as their prefered social actions could be 
drowned within the sheer number of available options. Furthermore, users of social networks tend 
to group together based on the mechanisms that influence how they interact or form relations, 
where formed groups can often be identified with community detection algorithms. The study of the 
community structure was proved to be useful for a number of applications, such as acquaintance 
sorting [26], for the influence maximization problem [27,28], recommendation systems [29,30], link 
prediction [31,32], and detection of users with similar motivation [33] or needs [34]. To address 
these points, existing social media platforms have introduced a variety of tools that extract patterns 
of user behavior or their organization into communities. 
 
In HELIOS we aim to model both the structural and the temporal aspect of the heterogeneous 
social graph that comprises user relations within different contexts, as described in Deliverable 4.2. 
The goal of this modelling is to enhance user experience by recommending new graph between 
HELIOS nodes, such as devices and smart objects. In this deliverable we focus on the preferences 
that arise from static relations between users and enrich it by taking into account dynamic user 
behavior, as captured in their interactions between over time. 
 
In addition to the above mining tasks, any machine learning performed in HELIOS encounters the 
limitations of its decentralized architecture. This means that there exists no central service to guide 
user devices toward a common objective by communicating with all of them. Instead, those 
devices can only exchange information at the irregular intervals users activate them (e.g. go 
online) and are at best aware only of the devices they have previously communicated with. In 
terms of graph theory, this means that devices effectively know their ego network, in which the ego 
device has communicated at least once with one of its alters’ devices. 

3.1 Diffusing Note Relevance 

Graph mining approaches often aim to extract information that is captured in the graph’s structure 
and how this pertains to a set of example nodes. Example nodes may be one or many and often 
share some metadata attributes that are diffused throughout the rest of graph nodes through their 
edges. Traditionally this setting is used to predict the relevance of nodes to the attributes shared 
by the examples. However, it can also be used to recommend additional edges by finding the 
relevance of all graph nodes to a given one and selecting the most relevant ones to form an edge 
to. Since rank diffusion can be thought of as a propagation of a relatedness score throughout the 
graph, this method realizes the concept of forming edges between well-connected nodes, i.e. that 
are linked through many paths. 

Personalized PageRank 

The graph mining task of ranking nodes based on their relevance to an attribute of interest is often 
implemented through strategies that diffuse the relevance of known example nodes to the rest of 
graph nodes based on their structural proximity [35-38]. These types of methods usually follow a 
random walk with restart formulation, in which an iterative Markov process starts from a random 
example node and, at each step, either jumps to the neighbors of the currently visited node or 
teleports back to a new randomly selected example node. For example, they are predominantly 
used in the domain of collaborative filtering, in which recommender systems aim to suggest items 
to users based on their common preferences with other users [39-41]. 
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The original motivation of rank diffusion strategies stems from Google’s PageRank algorithm [10] 
which estimates the probability of a random web surfer to arrive at a page of the web’s hyperlink 
graph. To ensure convergence while capturing the importance of graph nodes, this method 
considers that the surfer randomly clicking on hyperlinks has a chance to start from a new fully 
random web page-node at each step. This strategy can be adapted to accommodate personalized 
preferences of the random surfer by setting their restarting web pages-nodes to belong to a set of 
known preferences. In terms of attribute mining, the random surfer is a Markov process and 
personal preferences correspond to nodes that implicitly define a shared attribute of interest. The 
probability of the random surfing process arriving on nodes can be considered as the relevance of 
these nodes to this attribute of interest. At the same time, these probabilities are effectively a 
diffusion of the original preferences, in the sense that they are larger for graph nodes that are 
repeatedly encountered by more paths starting from the prefered nodes. 
 
The most well-known random walk with restart strategy is personalized PageRank [42-44], in 
which the probability of jumping from a node 𝑣 to a neighbor 𝑢 is proportional to the corresponding 

element 𝑊[𝑢, 𝑣] of a normalization of the network's adjacency matrix. If we additionally organize 
the example nodes into a personalization vector 𝑠 whose elements 𝑠[𝑣] ≥ 0 represent the known 

relevances of nodes 𝑣 to a metadata group, the ranks 𝑟[𝑣] of network nodes 𝑣 are calculated 
through personalized PageRank converge to the solution of the following linear system: 

 𝑟 = 𝑎𝑊𝑟 + (1 − 𝑎)𝑠 (3.1) 

where 1 − 𝑎 is the teleportation probability to a random example node, also called restart 
probability on merit that it restarts the random walk. The adjacency matrix normalization that 
models the previous random walk description probabilistically distributes each node’s jump 
probability to its neighbors, i.e. satisfies ∑ 𝑊[𝑢, 𝑣] = 1𝑣∈𝑉 . If 𝑀 is the graph adjacency matrix whose 
elements 𝑀[𝑢, 𝑣] ∈ {0,1} correspond to the binary existence or weight of edges (they are zero if the 

edge (𝑢, 𝑣) does not exist) and 𝐷 is the diagonal matrix of node degrees, i.e. whose diagonal 

elements are obtained as 𝐷[𝑢, 𝑢] = ∑ 𝑀[𝑢, 𝑣]𝑣∈𝑉  and other elements are zero, the aforementioned 
normalization can be written as: 

 
𝑊 = 𝑀𝐷−1 ⇔ 𝑊[𝑢, 𝑣] =

𝑀[𝑢, 𝑣]

∑ 𝑀[𝑢, 𝑘]𝑘∈𝑉
 (3.2) 

More recent works often adopt a symmetric normalization that satisfies 𝑀[𝑢, 𝑣] = 𝑀[𝑣, 𝑢]: 

 
𝑊𝑠𝑦𝑚𝑚 = 𝐷−1/2𝑀𝐷−1/2 ⇔ 𝑊[𝑢, 𝑣] =

𝑀[𝑢, 𝑣]

√∑ 𝑀[𝑢, 𝑘]𝑘∈𝑉 √∑ 𝑀[𝑘, ]𝑘∈𝑉

 (3.3) 

This normalization pertains to the normalized Laplacian operator 𝐿 = 𝐼 − 𝑊𝑠𝑦𝑚𝑚, which is the graph 

equivalent to discrete derivation [44-46]. Furthermore its symmetric nature makes it suited to 
modelling bidirectional relations of undirected graphs and lets it satisfy known bounds of its 
information diffusion rate [46,47]. 

Graph signal processing 

The simplest numerical approach for solving the personalized PageRank formula (2.1) is the power 
method, which starts from the rank distribution of the personalization vector 𝑠 and iterates the 

formula by plugging in previously estimated 𝑟 until convergence. From a theoretical standpoint, this 
yields the following computational scheme for personalized PageRank: 

 𝑟 = (10𝑎)𝑠 + (1 − 𝑎)𝑎𝑊𝑠 + (1 − 𝑎)𝑎2𝑊2𝑠 + ⋯ = (1 − 𝑎)(𝐼 − 𝑎𝑊)−1𝑠 (3.4) 

An important aspect of this solution is that multiplication with the normalized adjacency matrix 𝑊 

can be interpreted as a propagation of node ranks one hop away. For example, the expression 𝑊𝑟 



  

HELIOS D4.3 

Page 17  

  
 

propagates node ranks 𝑟 to their immediate neighbors. By extension, multiplication of node ranks 

with 𝑊𝑘 can be interpreted as propagation of node ranks k hops away. Given these observations, 
personalized PageRank can be considered a weighted aggregation of processes that propagate 

the personalization vector 𝑘 hops away within the graph with weights 𝑎𝑘 = (1 − 𝑎)𝑎𝑘. 
 
This analysis can been generalized into what is known as the domain of graph signal processing 
[48-51]. This domain defines the concept of graph filters 𝐻 as functions of the normalized 
adjacency matrix that perform a weighted aggregation of rank propagation within the graph. In 
particular, given weighting scheme akfor capturing the importance of nodes at k hops away from 
the personalization nodes, graph filters can be expressed as: 

 
𝐻(𝑊) = ∑ 𝑎𝑘𝑊𝑘

∞

𝑘=0

 (3.5a) 

These filters can then be applied on personalization vectors s to diffuse their information 
throughout the graph’s topology: 

 𝑟 = 𝐻(𝑊)𝑠 (3.5b) 

For example, a popular graph filter often used as an alternative to personalized PageRank is Heat 
Kernels [52]. This filter places strong emphasis to propagations only few hops away by selecting 

weights 𝑎𝑘 = 𝑒−𝑡𝑡𝑘𝑗/𝑘! for some parameter 𝑡. The differences between personalized PageRank 
and this scheme are demonstrated in Figure 3, in which we can see that the former performs a 
monotonic degradation of hop importances but the latter focuses on a window of hops deemed 
important. Using the equations (3.5), the weights of the HeatKernel filter yield the following 
transformation of the “graph signal” 𝑠: 

 𝑟 = 𝑒−𝑡(𝐼−𝑊)𝑠 (3.6) 

 

Figure 3. The importance assigned to 𝒌 hops away from the query vectors for different graph filters. 

 
Graph filters are often defined in the domain of graph signal processing to facilitate a variety of 
machine learning tasks. These are based on understanding graph filters as transformations of the 
graph’s spectrum, i.e. the eigenvalues of its adjacency matrix. In particular, if 𝑊 is a normalization 

of the graph’s adjacency matrix it can be decomposed to its Jordan normal form 𝑊 = 𝑈𝛬𝑈−1, 
where 𝑈 is the orthonormal matrix comprising 𝑊 ‘s eigenvectors and 𝛬 a diagonal matrix of the 
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respective (generalized if 𝑊 is not obtained by symmetric normalization) eigenvalues [53]. Then, 
graph filters can be rewritten as transformations of the eigenvalues: 

 𝑊𝑘 = 𝑈𝛬𝑘𝑈−1 ⇒ 𝐻(𝑊) = 𝑈𝐻(𝛬)𝑈−1 (3.6) 

This formula helps express diffusion of a seed vector’s ranks as 𝐻(𝑊)𝑠 = 𝑈𝐻(𝛬)(𝑈−1𝑠) which can 
be viewed as a transformation of the seed vector to the graph’s implicit spectral domain through 

the operation𝑈−1𝑠, application of the filter 𝐻(𝛬) and a transformation of the outcome back to the 
graph’s domain by left multiplication with 𝑈. Generalizing the theory of time signal processing that 
arises when time is considered a linear graph, as shown Figure 4, these steps are equivalent to a 
Fourier transformation to the graph’s spectral domain, a convolution with a graph filter in that 
domain and an inverse transformation. 
 

 

Figure 4. Viewing time as a graph. In this case, graph signal processing becomes time signal processing. 

This analysis enables a variety of machine learning tasks. One of these is limiting the number of 
computations needed to calculate the outcome of graph filters by keeping only the most important 
eigenvalues, i.e. by selecting 𝐻𝜃(𝜆) = {𝜆 𝑖𝑓 𝜆 ≥ 𝜃, 0 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒} a small enough threshold 𝜃 that 

yields a good approximation 𝑊′ = 𝑈𝐻(𝛬)𝑈−1 of the adjacency matrix, given that the error of using 
this approximation in propagating ranks can be bound by: 

 ‖𝐻(𝑊) − 𝑊‖ ≤ ‖𝑈‖𝜃/𝜆𝑚𝑎𝑥  

where 𝜆𝑚𝑎𝑥 the largest eigenvalue of 𝑊 (it assumes value of 1 if the latter is symmetrically 

normalized) and the matrix norm is defined as ‖𝑈‖ = max
s!=0

‖𝑈𝑠‖

‖𝑠‖
. If 𝐻𝜃(𝛬) has a lot of zeros while 

still achieving a small error, then the rows of 𝑈−1 and columns of 𝑈 that correspond to the zeroed 

eigenvalues do not need to be computed, as their values would be absorbed by those zeroes. 
 
Another useful graph property is the Cheeger inequality [47,54,55] which relates the rate at which 
information is diffused in a graph by bounding around the difference of the maximal and second 
maximal eigenvalues, a quantity called the spectral gap of the graph. 

3.2 Community Detection 

Community structure is one of the main properties of Social Networks, which is widely studied in 
the literature. Community detection is a process able to facilitate the discovery of important 
information, by exploiting the structure of the network. Considering the scenario in which the 
process is applied, we can divide the studies concerning the community detection in centralized 
and decentralized approaches. 
 
Centralized Community Detection 
Several community detection algorithms are proposed in the literature [15]. They are mainly based 
on different definitions of community. The absence of a general formal definition is the key in the 
proliferation of different definitions and different algorithms. The most popular algorithms rely on a 
pure structure-based approach. In the following, we present the most common community 
detection algorithms. 
 
Label propagation [56]. This algorithm is based on the assumption that a node’s community should 
depend on the communities of its neighbours. This is done through an iterative labeling process. At 
the start, each node is labeled with a unique label, and iteratively labels of the nodes are updated. 
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The label of a node is updated according to the most frequent label among its neighbours. The 
label update stops when some conditions are met, usually when either no labels are changed in a 
full update iteration, or when a set number of iterations are completed. A very important trait of this 
algorithm is the almost-linear time complexity. 

 
Infomap [57,58]. This is an algorithm which is based on random walks. The amount of information 
to describe a random walk is modeled through what the authors call the map equation, which is 
optimized in order to obtain the community structure. The algorithm initially assigns each node to 
its own community. In the subsequent steps nodes are moved to the community of the neighbour 
for which the decrease of the map equation is maximum, if any. 
 
Walktrap [59]. This is also a community detection approach based on random walks. This 
approach is based on the intuition that random walks are likely to get trapped into sets of densely 
connected nodes. Moreover, the approach returns a hierarchical community structure. Initially each 
node belongs to a different community. Then the pair of communities which minimizes a measure 
based on the distances among the nodes of the two communities are merged together, until only 
one community exists. The partition with highest modularity is returned as the final community 
structure. 
 
Greedy modularity [60]. This method is also called Clauset-Newman-Moore greedy modularity 
maximization and, as its name suggests, aims to optimize a measure called modularity [61], which 
evaluates the modular structure of a partition of the graph. Modularity measures how many intra-
community edges are in the partitions compared to the expected ones as if the network is random. 
Nodes are initially assigned to their own community. Then, through an iterative procedure, the pair 
of communities for which the modularity score of the partition would increase the most are merged 
together. The procedure ends when merging any pair of communities will result in a decrease of 
modularity. 
 
Louvain [62]. The method aims to find the partition with the highest modularity value using an 
iterative procedure based on the contribution of each node to the modularity score. Each node 
starts in its own community and then the community structure is updated as follows. In the iterative 
procedure, nodes are considered one by one and they are moved to a community such that the 
modularity score of the partition increases. Only communities of the neighbours are considered 
and the one which would increase the modularity score the most is chosen. 
 
Decentralized Community Detection 
In the latest years, there has been increasing attention to the management of communities in 
decentralized networks. We point out that in the literature there is sometimes confusion regarding 
the concept of community in social networks and that definitions change in different contexts [13]. 
Indeed in some studies we find that the word community or the saying virtual community identifies 
groups of people in a somewhat restricted social virtual place held together by shared interests 
and understandings, a sense of obligation and possibly trust. These communities can still be 
expressed as graphs, but usually the users can explicitly request or decide to be included in the 
communities. Instead, in the context of peer-to-peer systems, the concept of a community is 
generally used in reference to all users of the whole system and the topology of the network that 
describes it, rather than groups of users formed around more specific interests and understandings 
[63]. However, in a distributed social environment, the concept of community is more general than 
this. Indeed, communities can be formed by exploiting several pieces of information belonging to 
both domains, ranging from interactions, to the social overlay topology, common attributes, 
memberships, etc.  
 
Some studies concerning the general aspect of communities, the community detection or node 
clustering, in dynamic peer-to-peer networks, have been recently presented. Many of these 
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approaches are in principle adaptations of label propagations [64] in a distributed setting. For 
instance, in [65] authors propose a framework that allows an analytical study of the distributed 
community detection problem. A revised label propagation algorithm is proposed to model some 
features of opportunistic networks. A simpler approach is presented in [66], where the rule to 
update the labels of the nodes is based on a similarity metric. This approach seeks to achieve 
better results on modularity and to mitigate the wandering community effect. In [67], authors 
propose a distributed approach for local dynamic community detection and three implementation 
variants. In this case, the distributed nature of the algorithm induces a very weak consistency 
among the nodes of the network. Also, the node clustering problem has been tackled with 
distributed approaches [68]. A downside of this approach is the fact that it is difficult to deal with 
node dynamics, i.e. join and leave, because, due to the presence or absence of nodes, the 
clusters may differ a lot. A common technique to tackle dynamism is to add new nodes to existing 
clusters and to periodically run from scratch the distributed clustering algorithm. There are only a 
few interesting approaches for distributed communities detection applied on distributed social 
networks. In [69] the authors study the problem of community detection as a binary classification 
problem. Finally, in [70] the authors propose a decentralized protocol in order to manage 
community detection in a decentralized environment. The performances of the protocol show that it 
is not feasible to apply it as-it-is to decentralized environments, in particular for the definition of 
community. 

3.3 Graph Neural Networks 

GNN Architecture 

Neural networks is a machine learning field that has seen explosive growth in recent years. Their 
growth has, in large part, been fueled by the widespread use of GPU computing, which provides a 
robust setting for parallelizing symmetric operations. At their core, neural networks architectures 
are structured in the form of hierarchically stacked layers, each of which performs data 
transformations, as demonstrated in Figure 5. These architectures can be deep in the sense that 
they involve multiple layers. Layer parameters, such as the elements of the matrices Wi in the 
example figure, are trained by back-propagating the output loss of how much they deviate from the 
target value. Mathematically, training schemes form various adaptations of the gradient descent 
method, in which parameter derivatives move down across the steepest derivative slope. An 
important variation of neural networks are convolutional neural networks, which deploy 
convolutional instead of multiplicative matrix layer input transformations to limit training to the few 
parameters on each convolutional filter. 
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Figure 5. Example neural network architectures for signal processing. On the left one, each layer comprises 

a multiplication of its input 𝒓𝒊 with a dense matrix 𝑾𝒊 and a ReLU activation of the outcome to yield the 

output 𝒓𝒊+𝟏. On the right one, matrix multiplication is replaced with a convolutional operation with a filter 

vector 𝒘𝒊 of few parameters. 

An important theoretical property [71] of neural networks is that, if they comprise adequately many 
parameters, they can learn any function at any precision level. However, in practice, their efficacy 
is also compromised by the number of given training examples (millions of examples are often 
required to capture all feature relations), the available computational resources that could limit the 
number of training steps, and the selection of training hyper-parameters, such as learning rates.  
 
The popularization of neural networks in a wide variety of domains, such as image processing and 
text mining, has also motivated their adoption in graph analysis and mining. This has created the 
emerging field of Graph Neural Networks (GNNs), which adapt the more traditional neural network 
architectures to work with graph-structured data as inputs. 
 
Originally, GNN architectures were defined as message passing mechanisms, in which nodes 
send messages to their neighbors over the graph’s edges. The neighbors in turn aggregate and 
transform the received messages before passing them on until the whole process arrives at a 
stable set of embedding-like representations for all nodes. In particular, each node u derives a 
vector representation ru by aggregating the received representations of its neighbors (e.g through 
a simple sum or average) and transforming the latter with a function 𝐻 that is shared among all 
nodes, as demonstrated in Figure 6. Thanks to Banach’s fixed point theorem [72], this procedure 
has a convergence point at which the representations of nodes do not change further. The final 
representations effectively capture the structural role of nodes within the graph and can be used to 
facilitate machine learning tasks, for example as inputs to a traditional neural network architecture. 
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Figure 6. GNN architecture based on message passing through graph neighbors identified by edges 𝑬 (left) 

and a visual demonstration of the latter (right). The parameters of the transformation function 𝑯 are learned 

so that messages converge to embeddings 𝒓𝒖 of nodes u that help facilitate a prediction task 𝒇(𝒓𝒖). 

An important bottleneck of this scheme is the computational cost of repeated message passing 
until convergence. This cost is encountered both when accumulating the training objective’s partial 
gradients for message transformation parameters and after applying those gradients to improve 
parameter estimations, as the respective improved convergence point estimation needs be 
computed. To tackle this problem, more recent GNN approaches have moved to approximating the 
outcome of message passing with a feedforward (i.e. non-recursive) neural network equivalent. In 
particular, advances in deep learning that succeed in approximating a variety of functions have 
motivated the replacement of the transformation function with a multilayer neural network. The 
latter typically comprises several layers of aggregating previous layer representations of the 
previous layers across all neighbors, linearly transforming the aggregation outcome and passing 

the result through a (non-linear) activation function, as shown in Figure 7, where 𝑟𝑢
(𝑖)

 represents the 

representation found by node 𝑢 at layer 𝑖. Commonplace activation functions are overviewed in 
subsection 5.1. 

 

Figure 7. Multilayer GNN architecture relaxing the iterative scheme and the transformation function 𝑯 with 

intermediate embedding 𝒓𝒖
(𝒊)

. 
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If we consider an element-wise activation function, i.e. such that 𝜎(𝑥)[𝑢] = 𝜎(𝑥[𝑢]), and an 
aggregation mechanism that averages all neighbors (𝑣, 𝑢) ∈ 𝐸 of nodes 𝑢 ∈ 𝑉, these produce a 
variation of the scheme demonstrated in Figure 7 that computes layer representations as: 

 

𝑟𝑢
(𝑖+1)

= 𝜎 (𝑊𝑒𝑔𝑜,𝑖 𝑟𝑢
(𝑖)

+ ∑
𝑊(𝑣, 𝑢)

|(𝑣, 𝑢) ∈ 𝐸|
 𝑊𝑖𝑟𝑣

(𝑖)

(𝑣,𝑢)∈𝐸

) (3.7) 

Where 𝑊𝑒𝑔𝑜,𝑖 and 𝑊𝑖 are low-dimensional square matrices (e.g. 32 × 32 if all intermediate GNN 

layer representations are of 32 dimensions) that perform the previous layer’s and neighbor 

aggregation transformations respectively. Then, if we gather the representations at layers 𝑖 and 

across all nodes into matrices 𝑅(𝑖) with columns 𝑅(𝑖)[𝑢] = 𝑟𝑢
(𝑖)

 , the above equation can be rewritten 

as: 

 𝑅(𝑖+1) = 𝜎(𝑊𝑒𝑔𝑜,𝑖 𝑅(𝑖) + 𝑊𝑖𝑊𝑅(𝑖)) (3.8) 

where 𝑊 is the column-wise normalization of the graph adjacency matrix presented in (2.2) that is 
responsible for performing the averaging aggregation. Given the aforementioned understanding in 
graph spectral theory of neighborhood aggregations as graph convolutions, this particular GNN 
architecture can be considered an extension of convolutional neural networks, in which the 
convolution operation is replaced with graph convolution. 
 
To see which graph characteristics contribute to the final node representations, let us consider the 
simplest linear activation 𝜎(𝑥) = 𝑥. For this activation, if the GNN learns to directly propagate the 

aggregation with weights 𝑊𝑖  =
𝑎𝑘

𝑎𝑘−1
𝐼 and Wego,i = 𝐼 for 𝑖 > 0 and 𝐼 the unit matrix and 𝑊0 = 0, the 

representations at layer 𝑖 can be written as: 

 𝑅(𝑖+1) = (𝐼 + 𝑊𝑖𝑊)𝑅(𝑖) =. . . = (𝑎0𝐼 + 𝑎1𝑊 + 𝑎2𝑊2+. . . +𝑎𝜄𝑊
𝜄)𝑊𝑒𝑔𝑜,0𝑅(0)  

Hence, GNNs can be considered a generalization of graph signal processing filters of parameters 

𝑎𝑖.to matrix-organized signals 𝑅(0) whose diagonals can comprise the elements of the respective 
vector signals. 

GNNs for Edge Prediction 

GNNs were originally developed with the idea of learning to predict node labels in sparsely-labeled 
graphs by learning an underlying propagation mechanism through the graph. However, recent 
works have used similar architectures to also learn missing or likely graph edges. This kind of 
objective aligns well with one of the goals of this deliverable to recommend relations or interactions 
of interest to users. Edge prediction tasks often aim to leverage only the structural information of 
the graph, the same as embeddings do. Given the nature of this task, it is often assumed that no 
metadata features (e.g. user preferences) are available as GNN inputs and nodes are assigned a 
one-hot encoding of a unique identifier as their features. 
 
To this end, the commonly followed architecture is using GNN layers to derive node embeddings R 
and then compare the embeddings of node pairs through a (sometimes learned) similarity function 
sim . This function can then be used to predict new edges, as demonstrated in Figure 8. 
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Figure 8. GNN architecture for link prediction given a graph convolution operation 𝑊, such as the graph 
adjacency matrix of equation (3.2). At the node similarity layer, each node pair that could potentially be 
linked is considered and a similarity between representations is computed. 

 
An overview of some common similarity functions is presented in Table 1. When not otherwise 
stated, in this work we follow the triple dot similarity followed by DistMult and R-GCN approaches, 
as in principle others could be discovered by adding additional GNN layers. Usually, the outcome 
of similarity functions is further transformed to reside in the range [0,1] by passing through a 
sigmoid activation function. 
 

Table 1. Well-known link scoring functions, where ⧼. , . , . ⧽ is the triple inner product, ⧼. , . ⧽ the inner product, 

and ∗ 𝝎 convolution with a pattern 𝝎. In all cases, 𝒓 is a learned vector. 

Approach Similarity Function 

TransE [73] ‖𝐻[𝑢] − 𝐻[𝑣] + 𝑟‖  

DistMult [74] ⧼𝐻[𝑢], 𝑟, 𝐻[𝑣]⧽ 

R-GCN [75] ⧼𝐻[𝑢], 𝑟, 𝐻[𝑣]⧽ 

ConveE [76] ⧼𝐻[𝑢], 𝑅𝑒𝐿𝑈(1𝐷(𝑅𝑒𝐿𝑈([2𝐷(𝐻[𝑣]) ;  2𝐷(𝑟𝑖)] ∗ 𝜔)𝑊))⧽ 

 
An important challenge when learning to predict graph edges is setting up a training scheme that 
scales well with the number of graph nodes, i.e. whose running time scales linearly or near-linearly 
with the number of graph edges. For example, let us consider the naive scenario in which the 
embeddings of all graph nodes are trained so that they attempt to predict whether edges exist 
between all node pairs in the graph, i.e. including those not connected. This would require setting 

up an objective that involves |𝑉|2 terms to calculate and partially derivative, where |𝑉| is the 
number of graph nodes. In practice, when graphs span a lot (e.g. millions) of nodes, such a 
strategy would require an intractable number of operations to calculate the objective function (and 
its partial derivatives). 
 
A common way to efficiently address this problem is through a procedure called negative sampling, 
which selects only some of the non-edges between graph nodes to learn as non-existing. Usually, 
negative sampling selects the non-edge node pairs through fully random processes, for example 
by taking existing edges and randomly replacing one of their ends with another node of the graph 
that is not already linked with the remaining edge end. More sophisticated negative sampling 



  

HELIOS D4.3 

Page 25  

  
 

approaches involve doing this permutation among structurally close node candidates. For 
example, it has been proposed that diffusion mechanisms use personalized PageRank to find the 
most structurally close nodes that can serve as negative samples. 
 
As a final remark, neural networks are often trained towards minimizing a cross-entropy loss 
function [77] between real training data labels and predicted confidences of assuming those labels. 
This loss function penalizes severely confident mispredictions of data labels: 

 𝐶𝑟𝑜𝑠𝑠𝐸(𝑟𝑒𝑎𝑙, 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑) = 

   − ∑ 𝑟𝑒𝑎𝑙[𝑖] log2 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑[𝑖]𝑖  

    − ∑ (1 − 𝑟𝑒𝑎𝑙[𝑖]) log2(1 − 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑒𝑑[𝑖])𝑖  

(3.9) 

In the context of GNNs, training labels are either 1 or 0, depending on whether a node pair forms 
an edge and the predicted confidence is obtained as the outcome of the similarity function. To 
ensure fast convergence without exploding parameter values into high orders of magnitude, neural 
networks often introduce a regularization term that penalizes large values by penalizing their 
square with a small constant 𝜆; that constant makes each parameter’s involvement in the loss 
function negligible as long as it does not assume large values, but severely impacts its training 
process towards assuming smaller orders of magnitude otherwise. Formally, a loss function using 
regularization for GNNs can be written as: 

 
𝑙𝑜𝑠𝑠 = 𝐶𝑟𝑜𝑠𝑠𝐸({1 if (𝑢, 𝑣) ∈ 𝐸, 0 otherwise}, 𝜎(𝑟𝑢 ⋅ 𝑟𝑣)) +

𝜆

𝑁
∑ 𝑝2

𝑝∈𝑝𝑎𝑟𝑎𝑚𝑠

 (3.10) 

Where (𝑢, 𝑣) are terated over all training examples and 𝑝𝑎𝑟𝑎𝑚𝑠 are the GNN parameters, such as 

matrix elements across all 𝑁 layers of the GNN architecture (each layer may comprise multiple 
parameters). Then, training the architecture refers to obtaining parameters that (locally) minimize 
this loss function, for example by training each parameter through a gradient descend scheme: 
 

𝛥𝑝 =  −𝛾 𝜕𝑙𝑜𝑠𝑠
𝜕𝑝⁄          (2.11)  

 
where 𝛥𝑝 is the change induced to parameter 𝑝 and 𝛾 is the learning rate. To improve 
convergence speed compared to constant learning rates, in this deliverable we consider first 
inducing large changes and only later on fine-tuning learned parameter values by assuming 

adaptive learning rates of the form 𝛾 = 0.9𝑒𝑝𝑜𝑐ℎ where epoch is the number of times we have 
passed over training data to update parameters. Other methods for parameter optimization, such 
as the popular Adam optimizer [78], tend to improve only convergence speed compared to this 
practice and hence lie outside the scope of this deliverable. 

3.4 Mining Temporal Graphs  

An important aspect of machine learning algorithms is capturing the temporal aspect of given data. 
In traditional neural network architectures, this problem is solved by processes involving some kind 
of memory of past interactions. The most widespread of such approaches is Long Short-Term 
Memory (LSTM), which learns to aggregate previous outputs to the input of each layer [79,80]. A 
typical LSTM architecture is shown in Figure 9. An important aspect of this architecture is the 
usage of the tanh function, of which the derivative is bounded but tends to avoid values of small 
magnitude that would require a disproportionately large number of repetitions to accumulate into 
meaningful parameter updates during training, a problem known in the literature for other activation 
functions as vanishing gradient. 
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Figure 9. LSTM neural network layer (left) and the tanh activation function (right) used to avoid vanishing 

gradients. 

 
When applied to GNNs, LSTM layers can be considered from the viewpoint of learning 
embeddings that are aggregated in the near future. However, it can be argued that temporal 
patterns in graphs are intrinsically tied to the notion of temporal paths that explicitly capture 
information dissemination over space (i.e. between nodes) and time. There are multiple ways to 
model the time-evolving aspect of temporal paths, some of which involve a more granular 
understanding of the graph’s evolution than the others. There are two main approaches in this 
regard:  
 
a) Multilayer temporal graphs. The first approaches on temporal graph mining aimed to capture the 
state of the graph within a short timeframe and express the evolution of mined characteristics over 
different points in time. This field matured alongside the (unrelated at the time) field of neural 
networks to consider a multilayer view, where each layer represents a time slot [81]. Time slots 
could be either separate points in time at which the graph’s structure is captured or evenly-spaced 
periods of time between which node behavior is aggregated into one graph (e.g. by integrating 
edge weights or providing an edge if it has been formed during that period). This concept of graph 
nodes being connected with edges within a designated period of time is also referred to as 
belonging to both the structural and temporal neighborhood of each other [82].  
 
b) Labeled temporal graphs. A more recent approach to temporal graph mining involves 
understanding the more intricate dynamics that arise from the causal formation of subsequent 
edges given previous ones. For example, workplace messages between executives may trigger 
trickle-down mechanisms so that directives are passed lower in the hierarchy. Labeled graphs aim 
to avoid losing the intermediate steps involved in this type of information propagation, which may 
not be captured by multilayer temporal representations. To this end, all edges are considered to 
connect the same set of nodes and are augmented with a temporal information label, such as their 
creation time. This representation is particularly useful for modeling interactions that occur over 
time. 
 
Labeled temporal representations of graphs provide a holistic understanding of the graph. For 
example, in Figure 10 the multiplayer representation of the example graph at each individual time 
slot may not yield any meaningful insights towards node 𝐶, even if that node could be considered a 
potential motivation of forming the edge 𝐸𝐷 at that time. 
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Figure 10. Multiplayer (left) and multigraph (right) view of the same temporal graph. 

 
On the surface, the more intricate understanding of temporal graph evolution appears more difficult 
to devise algorithms for, which is the reason that multiplayer representations were the first ones to 
be considered in the field of graph mining. However, the more recent formulation of node 
embeddings as methods to preserve random walks has enabled mining of these models through 
embedding extraction processes, such as those detailed in subsection 2.3, which aim to preserve 
the graph structure, as captured by temporal random walks. 
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4 Community Detection in Temporal DSNs 

In this section, we present a decentralized protocol for community detection and for the 
management of local communities, targeted to the HELIOS scenario. In particular, we present the 
principal novelty of the protocol created for peer-to-peer networks based on the definition of a 
social overlay, such as HELIOS. In the decentralized setting of HELIOS, the social overlay of each 
node can only contain partial, local information about the whole network. This partial knowledge is 
modeled by the nodes with the usage of the Contextual Ego Network (CEN), introduced in 
Deliverable 4.1. Therefore, the solution we propose is local, which means that it exploits only the 
local information of a node in a DSN and this is in line with the HELIOS scenario, because the 
nodes’ knowledge is limited by the information included in the CEN. To have communities that are 
local to a specific user, we execute one instance of the protocol for each user, which will work 
within the user’s CEN. Users belonging to the CEN will cooperate to extract and maintain the 
communities as its topology changes over time. In order to take into account the multilayer nature 
of the CEN, we foresee to extract the communities at the level of the context, that is, limited by the 
context boundaries in order to have communities that are meaningful from the contextual relations 
point of view. In order to partially overcome synchronization and distributed consensus problems, 
the solution we propose is based on the definition of a set of super-peers which execute a 
sequential algorithm for detecting the communities and, periodically, synchronize among 
themselves to possibly merge communities. It uses a Temporal Trade-off approach [83] to manage 
the evolution of communities, which is well suited to discover and manage communities varying 
over time in a distributed system. Finally, it includes a load balancing mechanism which tries to 
even the burden of the management of the communities among all the nodes. 

4.1 Decentralized Dynamic Community Detection Challenges 

The detection of the dynamic communities in decentralized scenarios, such as the one of HELIOS, 
is a very complex task and presents a number of challenges and problems to be faced. 
 
First and foremost, one should be aware that in a DSN there are two kinds of dynamism which 
have different impacts on the system: social and infrastructural. Social dynamism is linked to the 
social relationships of the users and their impact on the social overlay. For instance, if users u and 
v establish a new friendship relation, they should add each other to their respective CEN, and the 
update should be propagated to the relevant neighbours such that they can update their CEN as 
well. On the other hand, the infrastructural dynamism is related to the availability of the nodes in 
the network overlay. One must be aware that in this particular scenario, not all nodes are available 
at all times, but instead nodes may be available only for a short period of time per day, which may 
be linked to the activity of people outside the platform (work, day/night cycle, etc.). Infrastructural 
dynamism also encompasses the cases in which we have unexpected failures of nodes. 
Infrastructural dynamism has an enormous impact on the task of community detection, because 
node churn rates are high in DSN scenarios, and each time a node appears or disappears from the 
network overlay, existing communities should be updated accordingly and new communities can 
form. 
 
If we consider the graph on which the task must be performed, we can model its dynamics either 
by considering edge-based dynamism or node-based dynamism. In the first case the graph will 
change in terms of single edges, while in the latter case the graph will change in terms of nodes 
and the edges connected to them. Edge dynamism is usually preferred because it has a finer grain 
with respect to node dynamism, but can have a non-negligible impact on the algorithm used for 
community detection. If we contextualise the two dynamisms in the scenario of HELIOS, we clearly 
see that edge dynamism models very well the social dynamism, because social relationships 
usually change one at a time. Node dynamism is instead better suited for modelling the 
infrastructural dynamism, because the network overlay changes in terms of nodes available in the 
network. 
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Another very important aspect to handle is the choice of the algorithm and the protocol structure to 
be used in the solution. As we saw in subsection 3.2, there are a plethora of approaches in the 
literature, using different features, and based on various intuitions. While the optimization of 
measures, and their approximations, are quite popular, not all of them can be applied in the 
scenario of HELIOS because they usually require a high amount of computational and storage 
resources even for centralized approaches. But the HELIOS setting imposes even harder 
limitations. Devices of the users will have limited resources, therefore simple and possibly local 
definitions of community are to be preferred. The communication may not be always flawless and 
stable, so it becomes imperative to develop a solution that is self-adapting and self-healing. Finally 
the disparity of the nodes in the network should be taken into account in order to balance the 
burden of the solution according to each node’s capabilities. 

4.2 Choosing a Decentralized Community Detection Approach 

While community detection has been widely studied in static complex networks, the interest is 
quickly growing also for dynamic networks. This is because dynamic networks better model the 
dynamic nature of current complex networks such as social networks, economic networks and 
many more. Indeed, the time-evolving nature of social network, especially when considering 
spontaneous networks arising from peer-to-peer/opportunistic contacts makes it even harder to 
formally define what a community is. A first very abstract definition of dynamic communities has 
been proposed in [83], where the classical definition of a community as a set of closely correlated 
nodes is refined by taking into account that the graph topology can change over time. 
 
Dynamic community detection algorithms can be broadly categorized as [83]: 
 
a) Instant-optimal community detection. The communities are discovered by considering only the 
current state of the network. The network’s evolution is seen as a series of successive snapshots, 
each representing the state of the network at a particular instant.  
 
b) Temporal trade-off community detection. The communities identified at a given time depend on 
the state of the network at previous times, up to the initial known state. 
 
c) Cross-time community detection. These methods use past, current and future information with 
respect to the current time at which communities are identified. 
 
In Table 2 we summarize these three types of community detection algorithms. We point out that 
the information used by approaches deeply affects their usability in different settings. 
 

Table 2. Information used by the three decentralized community detection approaches 

Approach State of the network 
in the past 

Current state of the 
network 

State of the network in 
the future 

Instant optimal NO YES NO 

Temporal trade-off YES YES NO 

Cross-time YES YES YES 

 
In particular, cross-time approaches detect communities at a given time instance using all the 
information pertaining to the graph, namely its current state alongside past and future events (i.e. 
that have occured and will occur afterwards). The greatest limitation of such approaches is that 
they require access to future information to detect communities. Since in our scenario communities 
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have to be computed in real time future information is not available, which prevents us from using 
such an approach. 
 
On the other hand, instant optimal approaches detect communities by considering only the state of 
the graph at the current time instant but not any past or future information. These approaches use 
the least amount of information and hence lead to defining simplified community detection 
processes. A significant shortcoming of these approaches is that communities are detected from 
scratch each time, since no past information is available. Therefore, a snapshot of the social graph 
must be collected in order to start the detection of the communities; whereas this may not be a 
significant issue in centralized graph mining, it is infeasible in decentralized, peer-to-peer 
architectures with heterogeneous low-end devices, where each node is constrained to a limited 
view of the graph. The scalability of the system may be highly affected by such an approach: in 
fact, it is not feasible to make one node collect the snapshot of the network and then detect 
communities in a large scale network. A mechanism which efficiently distributes the computation, 
will clearly introduce heavy synchronization phases. For these reasons, the Instant Optimal class 
of algorithms is not suited for our scenario. 
 
Finally, temporal trade-off approaches exploit present and past information to detect communities 
at a given time instant. The term "past information" does not necessarily refer only to the state of 
the network at past instants of time but may also include previously detected communities. So, 
starting from pre-existing communities, a potentially scalable approach could keep these 
communities updated by observing only which nodes join or leave the network. Beyond the fact 
that such an approach is more efficient because the detection of communities is not made from 
scratch each time they are needed, it is also potentially more scalable. Indeed, to carry out the task 
it is not necessary to have at one’s disposal a complete snapshot of the network and communities 
can be reevaluated locally. 
 
To summarize, we decided to choose an approach belonging to the temporal trade-off class, 
because of the better chances to obtain an efficient and scalable solution. The two key features of 
our approach emerging from this choice are: the ability to update communities locally and 
independently and the possibility to update communities on the fly, without detecting communities 
from scratch each time. 

4.3 Overview of the solution 

The solution we propose follows the temporal trade-off approach and adopts a node-based 
dynamism as opposed to the edge-based dynamism. The node dynamism can better model the 
infrastructural dynamism that is a critical aspect of decentralized online social networks, because 
the graph changes in terms of nodes switching from offline to online and vice-versa. The approach 
is decentralized, meaning that the computation and management of the communities is not 
condensed in a single node, or offloaded in an external resource such as a cloud infrastructure. 
 
The nodes themselves must cooperate and communicate with a protocol in order to detect the 
communities. However, since obtaining synchronization in a completely distributed environment is 
a complex task [84], we decide to adopt a weak consistency model where nodes do not need to be 
aware of all the communities and the nodes inside them. Instead nodes will only aim for being part 
of a community. The solution follows a super-peer [85] approach because we appoint a node in 
each community to be responsible for keeping the community updated though time as the network 
changes. In the rest of the document, we will refer to these nodes as the moderators of the 
communities. In order to keep the community updated, the moderator should not only decide which 
nodes are part of the community and which are not, but it should also make sure that a new 
moderator is chosen when it leaves the community. Therefore, the moderators of communities are 
not fixed nodes through time, but instead each node can potentially become a moderator. 
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This flexibility of the approach makes the moderators not so easy to be detected, hence we also 
introduce a lookup service (e.g. a distributed hash table [86,87] stored across the decentralized 
graph or an equivalent mechanism) that nodes use to discover moderators. A node m, that is 
currently a moderator for a community of a node e, will register itself in the lookup service, using 
the identifier of node e as key. In this way, other nodes can easily retrieve the moderators of the 
active communities inside the CEN of their neighbours. 
 
A single moderator per community is usually enough, but there is a chance that the community 
structure may end up in an inconsistent state. Indeed if a node unexpectedly fails and that node is 
also moderator for a community, the community may be still alive, but not working properly, 
because the node appointed as manager of the community is not available. To overcome this 
possible situation, we introduce the roles of primary moderator and secondary moderator of a 
community. The primary moderator of a community is the node that is operatively in charge of 
managing the community. The secondary moderator acts as a normal node, with the only addition 
that it keeps itself in contact with the primary moderator, so that, in case it detects the primary 
moderator failure, it can substitute the primary moderator and guarantee the correct behaviour of a 
community, restoring the optimal situation with two moderators. We only use two moderators per 
community because it was shown that using a single backup node yields satisfactory results [88]. 
 
One important novelty in this approach is that nodes will constantly try to be included in at least 
one community. In all the approaches we found in the literature, nodes will try to join communities 
only when specific conditions are met, which usually means when the node just switched its state 
from offline to online. But, at the end of a join procedure, a node does not necessarily end up in 
joining at least one community. This can happen because, for instance, not enough nodes are 
online at the same time, or their connections are not such that the node can be accepted in the 
communities. We also must consider that the network dynamism is present, and communities can 
dissolve if the key nodes leave the network, possibly leaving other nodes outside any communities. 
Since being part of at least one community is crucial, to overcome the issue of being left out of 
every community, nodes will check their status periodically and will try to always be included in at 
least one community at all times. In order to do so, a node will firstly try to join existing 
communities and, if none of them is able to accept it, the node will also try to form a community of 
its own. 
 
The community detection can be an extremely time consuming task, and in some cases it is the 
result of very complex procedures. However, in the scenario of HELIOS, we must take into account 
that node’s devices do not necessarily boast high communication bandwidth (e.g. may be limited 
by the speed of their internet connection), memory or computing power, therefore the aim is to try 
to find a community structure that is meaningful, without the need of extremely complicated 
procedures. For this solution the leading structure for the definition of a community is the triangle 
(a set of three nodes fully interconnected), as this structure is the basis for many other community 
detection algorithms [89-93]. While this seems at first a very complex task, because it involves 
triangle counting algorithms, it is instead a much easier version of the problem because one node 
(the joining node) is fixed, and because once a triangle is found the procedure can stop. However, 
in the worst case scenario the check can take a non-negligible amount of time. For this reason, we 
also introduce another condition that, if met, it allows a node to be accepted in a community. This 
simpler condition is based on a relaxation of the concept of triangle, i.e. triad (three nodes 
connected by two edges), and consists of checking if a node has at least a number of neighbours 
already in the community, it can join the community. 
 
To present the solution we will firstly describe what is the algorithm used by the moderators to 
manage the communities in the event a node requests to join or to leave the community. Then we 
present the protocol that the nodes follow. 
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4.3 Computing communities 

In this subsection we introduce the algorithm used by the moderators to manage the communities. 
It is used by each moderator when it receives messages from the nodes joining/leaving the social 
overlay of a node to update the communities. The protocol executed by the peers will be described 
in subsection 4.5. 

Join algorithm 

We start by presenting the algorithm used to evaluate whether a node should be accepted into a 
community by its moderator when the node sends a join request. In the solution we use two 
building blocks for the definition of a community: triangles and triads. Let us consider a community 
and a requesting node. That node can be added to the community if and only if at least one of the 
following conditions are satisfied: 
 

• Triangle condition. This condition is satisfied if the requesting node forms at least one 
triangle with two different nodes already belonging to the community. This is the case for 
node 𝐶 in Figure 11. 

• Triad condition (or invitation condition). This condition is satisfied when the number of 
neighbours of the requesting inside the community is larger than a fixed threshold, i.e. 
when the joining node forms a number of triads equal to the previous threshold with the 
additional constraint that the joining node must be the central node of the triad. This is the 
case for node 𝐵 presented in Figure 11. 

 
The triangle condition aims at keeping a high level of clustering among the nodes inside the 
community. On the other hand, the invitation condition aims at softening the triangle condition, 
making nodes that are well connected to the community to join it, even if they do not close a 
triangle. What we expect is that a well connected node n will close increasingly more triangles over 
time, so in time it will increase the clustering coefficient of the community, even if the insertion of n 
has lowered it temporarily. This fact should also bring to a situation where the number of 
communities is sensibly lower because a node is more easily accepted into existing communities, 
rather than creating new ones. Last, the invitation condition is also computationally less expensive 
with respect to the triangle condition. Indeed, it only requires to count the number of neighbours of 
the requesting that are inside the community. Furthermore, with a low threshold, it will often 
happen that whenever the triangle condition is satisfied, also the invitation condition is satisfied. 

Leave algorithm 

Let us now discuss what happens when a node n requests to be removed from a community 
because it is about to go offline. The very first step for a moderator is to handle the leaving of node 
n, which is simply done by removing the node from the community. After the node is removed the 
following step is a check for membership for a subset of nodes inside the community which are 
involved in the leaving of n. In this solution the check for membership is localized to guarantee a 
reduced computational cost. Rather than checking all nodes in the community, the check is 
performed only for the neighbours of n, sensibly reducing the number of controls to be made. The 
nodes to be checked are labeled as unconfirmed (see Figure 12). Then, any unconfirmed node is 
considered, one by one, and the moderator checks whether the node still belongs to the 
community. The check process consists in verifying if either joining condition holds, i.e. the triangle 
and the triad condition. If at least one of the conditions holds, the node is labeled as confirmed and 
excluded from further checks. This verification process is repeated until no more nodes can be 
labeled as confirmed. At this point, all unconfirmed nodes (nodes that were not confirmed) are 
removed from the original community, while all confirmed nodes will remain inside the community 
(see Figure 12). We clarify that in the case the set of unconfirmed nodes is not empty, we will not 
check for membership also the neighbours of these unconfirmed nodes. 
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After the check for membership process has finished, the original community can be split into 
several shards, where each shard may contain one or more nodes. To detect these shards, the 
connected components of the graph resulting from the removal of the leaving nodes are computed. 
 
Each of the resulting components will be considered as a new standalone community. As we will 
see in the next section, if required, the moderator will notify the peers involved in the community 
update so that they can self organize in new communities. 
 
 

 
 
 

 
 
 
. 

Figure 11. Steps of the node join protocol. 

 

(a) Nodes 𝐴, 𝐵and 𝐶 attempt to join 
the community moderated by m send 
a request to the moderator. 
 

(b) Joining nodes 
 

(c) Nodes 𝐵, and 𝐶 get accepted because 
they satisfy one of the two conditions. 
Node 𝐴 does not get accepted. 
 

(d) The community structure after the 
protocol completes its execution. 
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Figure 12. Steps of the node leave protocol. 

4.4 Protocol for community management 

In this section we present the steps of the protocol followed by the nodes and moderators. 
Moderators are passive and wait for other nodes to contact them in the case the node wants to join 
or leave the community managed by the moderator. A node executes the joining protocol when it 
finds itself not being part of any community, which can happen in two cases: the node just joined 
the network, or the node is removed from all the community (as result of the check for membership 
process explained above). Instead, a node executes the leaving protocol only in the case it is 
about to voluntarily leave the network. By the end of the section we also analyse the case in which 
a node that is currently moderator, primary or secondary, of a community leaves the network. 

Node join 

In the case of a node n joining an ego network of a node e as an alter, the aim of n is to get 
accepted into an existing community within the ego network of e. In order to do so, node n obtains 
the list of active moderators of the ego network it is joining from the moderators lookup service, 
and upon receiving this list, it sends a join request to each moderator. Thanks to the fact that the 
moderator knows the ego network of the node whose community it is moderating, it can check if 

(a) The moderator manages the 
leave of node 𝐴. 
 

(b) The neighbors of node 𝐴 are 
marked as “uncomfirmed”. 
 

(c) Nodes 𝐸 and 𝐷 are comfirmed 
and will remain in the community. 
Nodes 𝐶 and 𝐷 remain uncomfirmed 
and are hence left out. 
 

(d) As a result, the original 
communty is split in two shards that 
work as two separate communities. 
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the requesting node can join the community autonomously, without further information. Moreover, 
the joining node pings all its alters to check which of them is online, in case a new community 
needs to be defined from scratch. Finally, a timeout is set to restart the joining procedure in case it 
fails. When the list of moderators for the ego network of e is retrieved in the aforementioned lookup 
service, the joining node n contacts them to notify it is now online and to ask to be part of one of 
the communities managed by the moderators. 
 
Upon receiving a notification from a joining node, a moderator evaluates the former’s connections 
with other nodes inside each managed community, so as to assert whether the joining node can be 
inserted in that community based on the previously outlined join algorithm’s conditions. Then, a 
message is sent back to the joining node to notify it on whether it can be inserted in a community 
or it cannot join any community because the joining conditions are not satisfied. In the first case, 
the moderator also accordingly updates its managed communities. In Figure 11, we show the join 
procedure executed by nodes 𝐴, 𝐵 and 𝐶, with the messages exchanged between each of them 
and the moderator of a community. 
 
It may happen that a node cannot join any community of any moderator, for instance when no 
communities have been previously defined and no moderator has been elected. When this 
happens, the joining node can detect if a new community can be built around itself, collecting 
information about its neighbours through the ping process detailed in the following paragraph. 

Community birth 

If a node cannot join any community, either because no community has already been created or 
due to not satisfying the criteria to be accepted in any comunity, it will try to create a community of 
its own, which leads to a community birth event. When a node joins the network, it also pings its 
neighbours on the social overlay. Thanks to the information received from the online neighbours, a 
it is able to detect whether it resides within a community structure. Upon receiving replies to ping 
messages from its neighbours, the node checks if there is at least a triangle of online nodes 
including itself. After having detected all the triangles with the online neighbours, the node n 
creates a new community with the nodes that appear in at least one triangle.  
 
When the community has formed, the node birthing it becomes the primary moderator. Right after, 
the newly self-proclaimed moderator elects a secondary moderator by choosing a node among the 
nodes belonging to the newly-formed community, using one of the strategies described in 
subsection 4.5. To complete the community birth protocol, the primary moderator also registers 
itself as a moderator of a community in the lookup service, along with a reference to the secondary 
moderator, so that other nodes that will join the network in the future will be able to interact with the 
community. As the last step, to complete the community birth, all the nodes inside the community 
are notified of its birth by the primary moderator. 
 
It must be noted that the join protocol and the community birth protocol can fail if not enough nodes 
are online (less than 3), or if they are connected in a way such that no community structure is 
present at this time. For this reason, if node n, after the completion of both protocols, is still not in 
any community, the node sets a timeout after which it will trigger a re-execution of the join protocol. 

Node leave 

A node voluntarily leaving the network should inform the primary moderator of the communities it is 
part of that it will be unavailable soon. Since each node stores a reference to the moderators of the 
communities it belongs to, the overhead to leave the network is minimal, requiring a single 
message. When the moderator m receives the message from a leaving node n, it has to update 
the community as described in subsection 4.3. As a result of the node leave algorithm, some 
nodes may be labeled as unconfirmed: these nodes should be excluded from the community as 
they are not well connected with the rest of the nodes which are instead rightfully in the 
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community. To those unconfirmed nodes, the primary moderator m will send a message to inform 
them that they are no longer part of the community so that nodes can stay up-to-date with the 
communities it is part of. 
 
In particular cases this may lead to a situation in which one (or more) nodes are still online and 
available but they are not inside any community. A node in this situation will be unable to have 
access to the services connected to the community membership, therefore it is its first priority to 
find a new community to join. To re-establish a regular situation, the node tries to become part of a 
community as if it just joined the network. The fact that a node actively tries to always be part of a 
community is a peculiar property of this solution. Indeed, many decentralized community detection 
algorithms in the literature do not have this feature, and nodes try to join communities only when 
they switch their status from offline to online. Instead, our solution enables nodes to actively search 
for new communities when they do not have one. 
 
After this process, the community can simply shrink in size if the departure of the leaving node has 
not produced a split of the community. A more impactful scenario is when, after a node leaves the 
network, the community is divided into shards. In this case, the primary moderator m of the original 
community must make sure that each shard is able to progress in its lifecycle. If m still belongs to 
one of the shards resulting from the split, this shard inherits the original community and the 
corresponding primary moderator.  
 
All the nodes that do not belong to this shard will receive a message from the primary moderator m 
informing them that they are no longer part of that community. On the other hand, each shard of 
the original community is now a community of its own and will have both a primary and a 
secondary moderator. To this end, for each shard s of the original community, the moderator of the 
original community m chooses a random node m’ among all the nodes inside s to be the new 
primary moderator of s (Figure 12) so that each shard can start behaving as a new community. 
Once a primary moderator m’ is selected for s, m entrusts m’ the community s. The primary 
moderators of the new communities, independently of each other, are in charge of notifying all the 
nodes in their respective shard about their identity, and register them as moderators in the lookup 
service, so that other nodes can find and join it. To complete the protocol, the new primary 
moderators elect a new secondary moderator for the community, such that the optimal situation is 
restored. 

Moderator leave 

In the previous section we described the protocol followed in the case generic nodes leave the 
network. However, there is a chance that the node leaving the network is moderator for some 
communities. 
 
We start with the case in which the leaving node is the primary moderator for a community. This 
event can be treated as a normal node leave, as long as a new primary moderator can be elected 
to replace the leaving node-moderator. We perform the election of the new primary moderator in 
leaving primary moderator, since it has the most recently updated view of the community. This 
election can be performed quickly, which helps ensure that the previous primary moderator leaves 
as soon as possible and that no community is left without a primary moderator. The more time-
consuming task of updating the community is delegated to the new primary moderator. The 
strategies we considered for the election of a (new) primary moderator are presented in subsection 
4.5. Once the community is entrusted to the latter, we revert to the case in which a general node 
requests to leave the network, with the addition that the new primary moderator should register 
itself as such in the lookup service and the leaving moderator should also remove itself. 
 
The case of a secondary moderator leaving the network is simpler. The primary moderator elects a 
new secondary moderator, updates the lookup service, and manages the leave of the secondary 
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moderator as a normal node. The strategies we considered for the election of a (new) secondary 
moderator are presented in subsection 4.5 as well. 
 
Finally, a moderator can also fail unexpectedly. To cope with this possibility we recommend that 
each pair of primary and secondary moderators of the same community run a ping-pong protocol. 
This way, they can preemptively detect each other's failure and perform the required actions to 
reestablish the optimal situation with two moderators. 

4.5 Moderator Election Strategies 

In this subsection we discuss two possible moderator election strategies and their implications on 
the protocol described in subsection 4.4. 
 
The first strategy we discuss is the random election strategy. With this strategy, the primary 
moderator election corresponds to choosing a random node inside the community. In case a 
secondary moderator is needed, the moderator is chosen at random among the nodes inside the 
community, minus the primary moderator, because a node cannot be at the same time primary and 
secondary moderator of the same community. This strategy comes in handy in the case where it is 
crucial to save all possible resources. Indeed it requires no additional storage, since the 
community structure (i.e. a reference to the nodes inside the community) is already stored in the 
moderator for the proper functioning of the protocol, no additional communication, and a negligible 
amount of computation, depending on how the node is chosen at random. 
 
However, having a different way to choose moderators can bring several benefits to the protocol, 
such as distributing in a smarter way the burden of being a moderator among the nodes. In 
particular, as a second strategy, we try to define one that is designed to use low communication, 
computational and storage resources of nodes to avoid introducing overheads. The approach we 
adopted involves the finding of the node, among the valid candidates, which minimizes a measure 
of communication load. The features we take into account for this task are the number of 
messages received by a node and the bandwidth of the corresponding device. We define the load 
𝐿𝑢u of a node 𝑢 as: 

 
𝐿𝑢 =

𝑀𝑢 + 1

𝐵𝑢
 (4.1) 

where 𝑀𝑢 is the number of messages received the node during the last 5 minutes, and 𝐵u is the 

bandwidth of node 𝑢. We add the constant term 1 to the number of messages received, so that 
nodes of high bandwidth are preferred, even when no messages are received. At the same time, 
the above formula selects the node between those of similar bandwidths that have received fewer 
messages and are hence expected to be moderators of fewer communities  When a new primary 
moderator is needed, the election process establishes that, among all the nodes in the community, 
the one with the lowest load is chosen. If a secondary moderator is needed, the node with the 
lowest load is chosen as long as it is not the primary moderator of the community. Thanks to this 
mechanism, we aim to choose as moderators the nodes that can handle a high amount of traffic. 
 
To implement this moderator election strategy, each node needs to keep track of the messages it 
receives so that it can easily evaluate its loading factor using (4.1). In addition it has to send a 
periodic update message to the moderators of the communities it is part of, such that the 
moderators have a clear view of the nodes’ load. From the side of the moderator, it needs to keep 
track of the load factors of the nodes in the community using a data structure. Since the nodes 
send periodic updates about their load factor, but we do not expect frequent moderator elections, 
moderators use a hash addressed data structure for storing the load factors of nodes. This way we 
expect to pay constant time for the update of the load factor of each node, and the cost of sorting 
the load factors when an election is needed. 
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5 Decentralized Social Graph Recommendations 

Currently, most large social network platforms, such as Facebook and Twitter, are accessed 
through internet endpoints that also expose centrally produced recommendations to users. This 
organization has raised concerns over the ownership and dissemination rights of user information, 
especially since that information is not under the direct control of the ones that provide it but needs 
to pass through a central gateway (i.e. the social network service) to reach others. Such concerns 
have motivated the development of DSN platforms, such as the ones outlined in Deliverable 4.1, in 
which users directly share information with desired recipients.  
 
An important challenge that arises in DSNs, such as the ones developed in HELIOS, is adopting 
graph mining strategies to work without a central overseer. In the case of mining user preferences 
to provide future recommendations, a key problem is that existing algorithms often learn a common 
set of parameters that pertain to underlying mechanisms shared between all graph nodes. For 
example, they learn how to extract and match user latent preferences. Then, it is important to 
identify mining algorithms and communication protocols that enable a decentralized learning 
process, which runs on user devices without relying on any central entity. In practice, such 
algorithms would be constrained to viewing only small local subgraphs of social networks and this 
introduces the challenge of learning a high quality understanding of user behavior only through this 
kind of partially accessible information. 
 
Before researching decentralized graph mining algorithms though, it is important to first identify the 
best centralized ones, as these could provide valuable insights into which practices work and 
which do not. To this end, in this section we first investigate popular mining algorithms for 
extracting latent users preferences in the form of embeddings that can explain their actions; mined 
preferences can be used in recommendation tasks, such as recommending new relations and 
interactions. For example, user preferences could help recommend new friends or old 
acquaintances.  
 
A set of preliminary experiments in six real-world social network datasets reveal that shallow GNN 
architectures are the ones that best capture latent user preferences that drive the formation of 
relations. We also provide a literature-corroborated theorization of why this type of architecture 
best mines active user behavior, despite being conceptually simpler than some of its competitors. 
Hence, our subsequent analysis focuses on this type of architecture.  
 
In addition to recommending relations, we also investigate the efficacy of shallow GNNs in 
understanding the preferences that drive user interactions by experimenting in the four interaction 
datasets. At first, we met limited success in predicting which of the older interactions users would 
revisit. However, we argue that the frequency at which interactions occur makes them heavily 
dependent on short-term evolution of user preferences (e.g. switch of focus) and that the selected 
GNN architecture should account for their temporal evolution, for example by placing more weight 
in the preferences revealed by more recent interactions. Indeed, if we also introduce this kind of 
dynamism, the top three recommendations of the selected GNN architecture are better than 
heuristic alternatives in recommending old interactions. 
 
We then introduce the differences between centralized and decentralized architectures, while 
stressing the need for new practices that are lightweight enough from a communication overload 
perspective to be allowed in DSNs. 
 
For the first formulation of GNNs that involves message passing between graph nodes, although 
this setting appears to mimic a decentralized structure, in which each node has its own view, the 
transformation process needs to be learned simultaneously across all nodes. 
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5.1 Preliminary Investigation 

Before engaging in a more thorough discussion on mining decentralized temporal social networks, 
we recognize that different graph mining algorithms are better suited to different mining tasks, 
depending on the complexity of the employed machine learning architecture (e.g. in terms of GNNs 
the number of layers and type of the activation functions σ) and how well its intricacies capture the 
underlying domain modeled by the graph. For example, if node representations within a domain 
are driven by linear combinations of underlying real-world attributes, as demonstrated in Figure 13, 
using non-linear activation functions may introduce needless systemic complexity that could 
potentially overfit the learned model and hence fail to generalize to new examples. 
 

 

Figure 13. Example of linear edge prediction in a graph. Nodes 𝑨, 𝑩, 𝑪 could be represented close to (𝟏, 𝟎) 

and the nodes 𝑫, 𝑬 close to (𝟎, 𝟏) so that edges could be predicted by 1-the dot product (which is a linear 

function) of their endpoints. 

 
Given these concerns, we first investigate the most promising architectures for predicting user 
relations and interactions in social networks of similar characteristics to HELIOS. This way, we can 
select only the best-performing algorithms to make them account for the temporal evolution of user 
preferences and the decentralized structure of HELIOS. 
 
An important aspect of this analysis that will be useful later on is assessing whether the small size 
of social networks impacts the efficacy of mining algorithms. As an edge case, we investigate 
whether utilizing only the immediate neighborhoods of nodes suffices for graph mining. But we are 
also interested in graphs of few nodes that arise during the initiation phase of social media 
platforms, such as HELIOS, since neural networks are in general notorious for needing huge 
volumes of data to exceed the accuracy of competing methods. 
 
To this end, we conduct experiments on six social graphs; a Facebook static graph that comprises 
friendship relations, a Facebook temporal graph of wall-posting interactions between users, a 
Twitter static graph of user follows, a Twitter temporal graph of retweets, an SMS network of 
message sending interactions and an Email exchange within a large organization. The domains of 
these graphs span different types of relations and interactions, similar to those that could arise 
within HELIOS applications. Their respective characteristics are summarized in Table 3.  
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Table 3. Social network graphs involved in experiments. 

Personalized PageRank Mining 

The first type of mining we investigate is the well-established Personalized PageRank (PPR). As 
we mention in subsection 3.1, this graph diffusion scheme is affected by the rate a at which the 
importance of longer random walk degrades, where 1-a is the restart probability of the equivalent 
random walk with restart scheme. In particular, the lower the restart probability, the farther away 
seed node ranks are propagated. On the other hand, larger restart probabilities concentrate on 
recommending relations with nodes only a few hops away in the graph’s structure [99]. To make 
our investigation inclusive, we consider a wide range of restart probabilities 1 − 𝑎 ∈
{50%, 30%, 15%, 1%}. 
 
Different restart probabilities need different number of iterations to converge to a robust node rank 
order [100], i.e. to arrive at ranks whose pairwise comparisons are not affected by additional 
iterations. Therefore, a different stopping point needs to be adopted when running personalized 
PageRank each time. An important barrier in doing so is that rank order robustness measures, 
such as numerical tolerance or rank order correlation with the previous iteration, are heavily 
influenced by the scheme’s convergence speed and could be too lax or too strict with no way of 
assessing this. 

 
To avoid time-consuming and potentially biased case-by-case empirical investigation of the best 
point to stop personalized PageRank, we developed a methodology for estimating that point [101]. 
In particular, we argue that node rank order is robust and we account for most random walks. To 
explore this property, we consider that the random walk with restart scheme characterizing 
personalized PageRank can be defined as several independent sub-processes 𝑤𝑎𝑙𝑘𝑒𝑟𝑘, 𝑘 = 1. . . 𝑛 

that start from the given seed nodes and repeatedly perform random walks of exactly 𝑘 steps 
before restarting. We also consider that the random walk with restart process spans intermediate 
steps ℓ = 1, . . . , 𝑤 of transitioning to the next node, where 𝑤 is an arbitrarily large number. For 
example, w could be the number of steps required to infer node ranks within a tight numerical 
precision by using the law of large numbers to count how many arrive on each node. Then, the 
random walk with restart process can be equivalently formulated as selecting a sub-process 
walkerk at random and then performing k steps before restarting from a new one. To express this 
behavior at any intermediate step l, we employ the following random variables: 
 

 𝑆(ℓ) = {1 if at iteration ℓ, 0 otherwise}  

𝑋𝑘(ℓ, 𝑛) = {1 if ℓ in 𝑤𝑎𝑙𝑘𝑒𝑟𝑘, 0 otherwise}  

𝑊𝑘(ℓ, 𝑛) = {1 if 𝑤𝑎𝑙𝑘𝑒𝑟𝑘 restarts at ℓ, 0 otherwise}  

Dataset Source Type Nodes Relations Interactions 

Friends [94] Facebook Static 4,039 88,234 --- 

Wall [95] Facebook Dynamic 63,731 817,090 1,269,502 

Messages [96] Facebook Dynamic 1,899 15,737 61,734 

Follows [94] Twitter Static 4,799 127,847 --- 

SMS [97] Copenhagen network Dynamic 24,582 24,279 24,333 

Email [98] Enron emails Dynamic 92 755 1,148,072 
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Since each intermediate step occurs once, 𝐸[𝑆(ℓ)] = 1. Furthermore, the random walk sub-
processes cannot be interrupted, which makes the probability of selecting one equal to the 
probability of performing a random walk of the respective length: 

 𝐸[𝑋𝑘(ℓ, 𝑛)] = 𝑃(𝑡he random walk restarts at iteration 𝑘) = (1 − 𝑎)𝑎𝑘−1 

where 1 − 𝑎 is the restart probability of the random walk at each step that should not be chosen for 

ℓ = 1, … , 𝑘 − 1 consecutive steps and then should be chosen for the last step. Additionally, 
intermediate steps ℓ correspond on average to random points within sub-processes 𝑘 that perform 
random walks of that length, which makes the probability of restarting at that particular point: 

 𝐸[𝑊𝑘(𝑛)] = 𝑤/𝑘 

Then, the number of random walks 𝑊(𝑛) up to iteration 𝑛 is equal to the number of restarts: 

 
𝑊(𝑛) = ∑ (𝑆(ℓ) ∑ 𝑋𝑘(ℓ, 𝑛)𝑊𝑘(ℓ, 𝑛)

𝑛

𝑘=1

)

𝑤

ℓ=1

  

Finally, the above random variables are independent to each other. Therefore, the expected value 
operator 𝐸[⋅] yields: 

 
𝐸[𝑊(𝑛)] = 𝑤

1 − 𝑎

𝑎
∑

𝑎𝑘

𝑘

𝑛

𝑘=1

  

This means that the fraction 𝑝 of expected random walks considered at iteration 𝑛 is: 

 
𝑝 =

𝐸[𝑊(𝑛)]

𝐸[𝑊(∞)]
=

1

ln(1 − 𝑎)
∑

𝑎𝑘

𝑘

𝑛

𝑘=1

 (5.1) 

This probabilistic analysis can help us designate a-priori a robust stopping point of PPR repetitions. 
For example, it can be used to show that 99% of random walks are accounted for at the number of 
iterations presented in Table 4. Although more intricate stopping points can be obtained if we 
consider the actual ranks arising in each iteration, our experiments revealed that the given number 
of iterations approximate the same graph diffusion outcome fairly well, i.e. with over 99.8% node 
rank order correlation with the eventual outcome. 

Table 4. Number of PPR iterations that account for 99% of random walks. 

Restart probability Number of iterations  

50%   5 

30%   9 

15%  17 

 1% 203 

GNN Mining 

The second type of graph mining we investigate is following a GNN architecture to understand 
user embeddings that affect the formation of graph edges. To do this, we empirically select 32-
dimensional embeddings on all layers, 150 training epochs (i.e. updates to parameters) and a 𝜆 =
0.01 regularization parameter, which we then asserted to form pareto-optimal solutions (i.e. that 
cannot be improved further by changing any parameter) in all experiments detailed in this section if 
we train towards minimizing the regularized cross-entropy loss of (3.10). Therefore, we adopt 
these hyper-parameter values in all implemented GNN architectures. 
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On the other hand, the efficacy of GNNs is known to vary greatly, depending on the number of 
layers and type of layer activation. We explore the combination of N{1,2,3} layers and the following 
activation functions: 

• Linear activation. Doesn’t apply any activation function, i.e 𝜎(𝑥) = 𝑥. This corresponds to 
traditional node embedding approaches.that aim to find underlying representations that can 
directly reconstruct the adjacency matrix. It is well-known however, that non-linear functions 
often perform better in multilayer architectures. 

• ReLU activation. Using rectified linear units 𝜎(𝑥) = 𝑚𝑎𝑥(𝑥, 0). These are similar to linear 
activations but introduce a form of pseudo-linearity. 

• Sigmoid activation. 𝜎(𝑥) = 1/(1 + 𝑒−𝑥) 
• tanh activation. 𝜎(𝑥) = (𝑒𝑥 − 𝑒−𝑥)/(𝑒𝑥 + 𝑒−𝑥)Introduces non-linearity, while at the same 

time avoids the issue of gradients vanishing when being propagated to lower layers of the 
architecture [102].  

 
To facilitate an investigation of many potential architectures, we employ NVIDIA’s Tensorflow 
platform for Python, which speeds up matrix and vector computations by performing them in 
parallel over the graphic card’s processing units. This way, the training time of machine learning 
models is reduced by more than 100x. Unfortunately, existing GNN libraries, such as Microsoft’s tf-
gnn1 are focused on making predictions based on a small number (e.g. tens) of attributes and are 
not designed for predicting node links based on the high-dimensional one-hot encoding of node ids 
needed for unsupervised training (see subsection 3.4). 
 
Due to the lack of existing tools suited to our investigation, we developed a generic GNN 
architecture for Python Tensorflow2 that can be parameterized to replicate the investigated GNN 
architectures. In the same project, we also implemented graph diffusion strategies so that node 
scores are obtained in parallel for all example nodes. 

Predicting Static Relations 

We start by comparing the ability of graph mining approaches to reconstruct relations in a network. 
We remind that our goal is to select the best practices those approaches should follow and adapt 
only those to account for temporal information and the decentralized setting of HELIOS. 
 
To do this, we first perform experiments by training the previously presented graph mining 
approaches on a random subset of 80% of all node combinations, which are assigned a label of 1 
if they correspond to a graph edge and 0 if they do not. Then, we measure whether the trained 
algorithms can help predict the remainder 20% of node combinations. For example, if we consider 
the example graph of Figure 14, the labels of all potential node pairs are {𝐴𝐵: 1, 𝐴𝐶: 1, 𝐴𝐷: 1, 𝐴𝐸: 
0, 𝐴𝐹: 0, 𝐵𝐶: 0, 𝐵𝐷: 0, 𝐵𝐸: 0, 𝐵𝐹: 0, 𝐶𝐷: 1, 𝐶𝐸: 1, 𝐶𝐹: 0, 𝐷𝐸: 0, 𝐷𝐹: 1, 𝐸𝐹: 1} and using 80% of 

them for training, could leave the randomly selected sample of {𝐴𝐶: 1, 𝐷𝐸: 0, 𝐶𝐹: 0} for evaluation. 

 
 
1 https://github.com/microsoft/tf-gnn-samples 

2 https://github.com/maniospas/gnn-test 

https://github.com/microsoft/tf-gnn-samples
https://github.com/maniospas/gnn-test
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Figure 14. An example graph for link prediction. 

To speed up training and evaluation time, we additionally follow a negative sampling methodology, 
in which we limit the number of node pairs to a randomly selected subset of at most 100 for each 
node (i.e. each node is paired with at most 100 others to form examples of non-existing edges). 
 
Then, we evaluate whether the predicted probabilities of edges existing are assigned higher values 
for the withheld edges compared to non-existing edges using the Area Under Curve (𝐴𝑈𝐶) 
measure. 𝐴𝑈𝐶 effectively measures the portion of existing edges having higher scores than 
negative connections and is robust in that it is not affected by the potentially much smaller number 
of existing vs. non-existing edges. Formally, if we denote as 𝑇𝑃𝑅(𝑟) and 𝐹𝑃𝑅(𝑟) as the fraction of 
edges with predicted similarity greater than r and the fraction of non-edge node pairs with 
predicted similarity greater than r, 𝐴𝑈𝐶 is defined as the area under the 𝐹𝑃𝑅-𝑇𝑃𝑅 plot: 
 

 
𝐴𝑈𝐶 = ∫ 𝑇𝑃𝑅(𝑟)𝑑𝐹𝑃𝑅(𝑟)

1

0

 (5.2) 

 
When nodes are assigned random similarities, 𝐴𝑈𝐶 assumes a value of 50%, whereas perfectly 
assigning higher similarities to node pairs that correspond to edges yields 100% 𝐴𝑈𝐶.  
 
As a final step, we ensure that results are not biased by the random initialization of training edges 
and neural parameters. To this end, we average the 𝐴𝑈𝐶 evaluation over the test edges across 5 
experiments. A summary of our evaluated graph mining algorithms and the obtained results is 
presented in Table 5. 
 
In general, we can see that multilayer architectures fail to improve the predictive efficacy of 
employed single-layer GNNs. We attribute this finding to the fact that representations of GNNs are 
not positionally aware [103-105] in the sense that their representations can reconstruct graph 
structure but not longer paths. For example, “if two nodes reside in very different parts of the graph 
but have topologically the same (local) neighbourhood structure, they will have identical GNN 
structure” [105]. 
 
The failure of multilayer architectures in improving link prediction can be attributed to GNNs 
learning to both distinguish and match neighbors at distances up to the number of layers N. 
Therefore, if matching connected nodes is strongly favored by training algorithms, as often done by 
training objectives, the representations a given node can match are similar to nodes that reside up 
to twice that distance away. For example, in Figure 15 a two-layer architecture would make node C 
obtain similar representations not only to 𝐷 and 𝐵 but also 𝐴. However, due to that graph’s 

symmetry, these representations would pass through the edges 𝐴𝐵’ and 𝐴𝐷’ to the right-hand side, 
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where the inverse process would require similar representations by 𝐶’ to 𝐶. Only the edge 

𝐵𝐵’ would provide a regulatory role to make the representations of the two sides. 
 

Table 5. AUC for relation recommendation averaged across 5 experiments. The best mining methods for 

each graph (i.e. each column) are bolded. The standard deviation across each averaging was less than 5%. 

 
Static networks Dynamic networks 

Algorithm Friends Follows Messages Wall Email SMS 

PPR a = 0.5 96% 64% 91% 90% 74% 36% 

PPR a = 0.7 96% 97% 90% 93% 77% 40% 

PPR a = 0.85 97% 93% 90% 89% 69% 20% 

PPR a = 0.99 96% 91% 89% 77% 71% 21% 

GNN N = 1, linear 97% 97% 93% 93% 85% 94% 

GNN N = 2, linear 98% 79% 50% 55% 50% 50% 

GNN N = 3, linear 50% 50% 50% 50% 50% 50% 

GNN N = 1, ReLU 98% 97% 91% 94% 93% 99% 

GNN N = 2, ReLU 50% 50% 50% 55% 50% 50% 

GNN N = 3, ReLU 50% 50% 50% 50% 50% 50% 

GNN N=1, sigmoid 98% 98% 93% 91% 92% 99% 

GNN N=2, sigmoid 90% 96% 93% 90% 68% 98% 

GNN N=3, sigmoid 86% 98% 93% 88% 42% 90% 

GNN N=1, tanh 99% 98% 94% 96% 94% 99% 

GNN N=2, tanh 98% 97% 93% 95% 84% 99% 

GNN N=3, tanh 97% 96% 93% 90% 69% 99% 

 
 
On the other hand, if the GNN architecture is shallower (e.g. a single-layer one) then localized 
structural intricacies are easier to learn. This phenomenon has also been recognized by previous 
research on graph labeling under scarce data [104, 106], whose theoretical probing reveals that 
applying more than two layers of graph smoothing operations, such as graph convolution, tends to 
smoothen out the representations of graph nodes by biasing them towards a uniform distribution. 
Furthermore, is has been argued that simpler representations [107] can be more powerful when 
graph neural networks are trained under the same mechanism. 
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Figure 15. Nodes 𝑩, 𝑪, 𝑫 would obtain non-positionally-aware representations similar to 𝑩’, 𝑪’, 𝑫’ 

respectively. 

 
Effectively, this subsection identifies shallow GNN architectures of a single graph convolutional 
layer as the ones most suited for unsupervised learning of social network relations. Hence, our 
analysis also focuses on single-layer architectures. These can be considered an enrichment of 
node embeddings in that they also aim to learn the similarity function of the embedding space. 

5.2 Evolving User Preferences for Rediscovering Interactions 

The need to account for temporal preference evolution 

Given the success of shallow GNN architectures in reconstructing graph relations by capturing 
latent user preference embeddings, we investigate whether they are equally powerful in 
recommending future interactions. An important point to consider when assessing their efficacy in 
this task is that social media users often engage in exchanges that can be conceptually considered 
part of larger interactions but which involve many lower-level ones provided by the social network 
application. For example, two users could exchange multiple messages in short order when 
holding a conversation. However, it is difficult to identify the precise point at which individual 
interactions can be grouped into thematically larger ones, in part because users often hold multiple 
of the latter at the same time or take the time to interact with a third person between their 
exchanges. At the same time, we argue that their most recent interactions are often fresh in their 
memory and there is no particular need to recommend those. For example, this frequently 
happens in the Messages, Wall, Email and SMS datasets, where 64%, 57%, 9% and 92% of user 
interactions respectively occur towards one of the last three interacted alters. 
 
Based on the above, we recognize that, when users favor recent interactions, it is more important 
for interaction recommendation mechanisms to recommend “older” ones. Therefore, we propose 
adapting traditional recommendation assessment measures to favor rediscovery of older 
interactions. To this end, we focus on adapting the notion of Hit Rate of the top k recommendations 
(𝐻𝑅@𝑘), which expresses whether the next occurring interaction the user performs (i.e. towards 
another user) is among the top k recommended ones. Our proposed adaptation avoids favoring 
ongoing larger thematic interactions between users (which are trivial to predict) by not aiming to 
recommend any of the last κ interactions each user has engaged in as either a source or a 
destination endpoint. To formally express this, we introduce a measure called Discovery Hit Rate 
of the k recommendations while ignoring the chronologically last κ ones (𝐷𝐻𝑅@𝑘, 𝜅). If we consider 

a time-dependent interaction recommendation system 𝑅(𝑢, 𝑡) that recommends at times 𝑡 who the 
node 𝑢 should interact and a recommendation system 𝐵(𝑢, 𝑡) that prioritizes the last interactions of 
the same node before that time, this new measure can be formally expressed as: 
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𝐷𝐻𝑅@𝑘, 𝜅 =

|{(𝑢, 𝑣, 𝑡) ∈ 𝐸: 𝑣 ∈ top 𝑘 of 𝑅(𝑢, 𝑡), 𝑣 ∉ top 𝜅 of B(𝑢, 𝑡)}|

|(𝑢, 𝑣, 𝑡) ∈ 𝐸: 𝑣 ∉ top 𝜅 of B(𝑢, 𝑡)|
 (5.3) 

 
where 𝐸 are the graph’s interactions (𝑢, 𝑣, 𝑡) from nodes 𝑢 to 𝑣 at time 𝑡 and |⋅| counts the number 

of set elements. Higher 𝐷𝐻𝑅 values (i.e closer to 1) indicate perfect prediction of which older 
interactions to revisit. The parameter 𝜅 captures how old the revisiting interactions should be; when 

𝜅 = 0 all interactions are allowed and 𝐷𝐻𝑅@𝑘, 0 = 𝐻𝑅@𝑘. In the case where 𝐵(𝑢, 𝑡) does not often 
predict (e.g. as happens in the Email dataset where users re-engage in their most recent 
interactons only 9% of the time), it holds that  𝐷𝐻𝑅@𝑘, 𝜅 ≈ 𝐻𝑅@𝑘. 
 
Using this measure, we then conduct experiments on the Messages, Wall and Email datasets, in 

which we measure 𝐷𝐻𝑅@3,3 and 𝐷𝐻𝑅@3,6. Since the quality of recommendations could change 

over time, for example, as more users are inserted as graph nodes, we report the average 𝐷𝐻𝑅 

values across the last 1000 occurring interactions for which users had to select who to interact with 
between at least 9 others (we don’t experiment on the SMS dataset, because its users don’t form 
relations with that many people). The same methodology will be followed throughout the rest of this 
section, for example to assess the efficacy of decentralized GNNs researched later on. 
 
In the first series of experiments, we utilize all interactions that have occured at times previous to t 
to train a single-layer GNN. This training is slightly different to the relation prediction GNNs of the 
previous subsection in that multiple edges (which correspond to multiple previous interactions) 
could exist between the same nodes. Then, the new model can be considered to capture user 
preferences over all past interactions. This model is compared with the heuristic baseline of 
favoring more recent interactions, regardless of who was their sender or receiver. The top 𝜅 
predictions of this heuristic are the ones 𝐷𝐻𝑅 ignores, but we assume that the interest in older 
interactions could also depend on their chronological order. For example, we expect that users 
would be more willing to interact with more recent acquaintances (e.g. from days prior) rather than 
exceptionally old ones (e.g. from months or years prior). 
 
This first comparison is presented in Figure 16 alongside subsequent experiments. We can see 
that the centralized GNN architecture does not exhibit a high discovery rate of previous 
interactions, even failing to provide an improvement compared to our heuristic baseline for the 
Messages dataset. We attribute this finding to interaction-related user preferences being 
systematically related to the attention users place on their involved interactions, i.e. that users tend 
to interact with people more recently brought to their attention. 
 
To model this type of preference evolution, we propose weighting the importance placed during 
training on accurate edge reconstruction so that earlier interactions -which may not drive user 
preferences later- are eventually forgotten. This does not affect whether old interactions would be 
re-recommended, as user preferences can still float towards them by new interactions that reflect 
similar preferences to the forgotten ones. 

Temporal degradation of training example importance 

To facilitate mining the temporal evolution of user preferences, we propose a new edge weighting 
mechanism that accounts for the temporal evolution of GNN parameters. In particular, we propose 
that each time a new interaction is introduced to the graph, the weight of accurately predicting 
previous ones is multiplied with a constant degrading factor 𝑎 ∈ [0,1]. If we assume a discrete 
representation of times as ordinals 𝑡 = 1,2,3, … the weight 𝑤 of each interaction (𝑢, 𝑣, 𝑡) at time 𝑇 
can be theoretically expressed as: 

 𝑤(𝑇, 𝑡) = {𝑎𝑇−𝑡 if 𝑡 ≤ 𝑇, 0 otherwise} (5.4) 
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which prevents future interactions from being involved in the training scheme. 
Unfortunately, weighting previous interactions does not suffice in setting up a GNN training 
scheme, as negative examples (i.e. interactions that do not occur and which training should learn 
to avoid recommending) also need to be weighted. At the very least, the negative sampling 
mechanism should account for the weights of positive examples so as not to train the architecture 
on a set of predominantly negative and disproportionately few positive examples. To this end, we 
propose an alternative method for providing weighted training data, in which negative examples 
are randomly generated as permutations of positive ones (i.e. by exchanging one of the edge 
endpoints with another random node of the graph) and are assigned the same weight as those. 
 
In particular, we consider a list of training interactions 𝐷 in which we place weighted labeled edges 

(𝑢, 𝑣, 𝑡, 𝑤, 𝑙) where 𝑤 are the training weights and 𝑙 ∈ {0,1} are binary labels of whether the edge is 
a positive or negative example at time 𝑡. When a new interaction (𝑢, 𝑣, 𝑡) occurs, all the weights of 

tuples in 𝐷 are multiplied with the aforementioned degrading factor a and three new tuples are 
added to it: a positive training example of the interaction (𝑢, 𝑣, 𝑡, 1,1) and two negative examples 

(𝑢, 𝑣′, 𝑡, 1,0) and (𝑣′, 𝑣, 𝑡, 1,0), where 𝑣′ ≠  𝑢, 𝑣 is randomly sampled among the neighbors of 𝑢. 
 
Given this new scheme of organizing weighted training positive and negative examples, the loss 
function of (3.10) can be adjusted to depend on the current time 𝑇 when applied on a single-layer 

GNN that recommends interactions (𝑢, 𝑣, 𝑇) with estimated probability 𝑅(𝑣|𝑢, 𝑡): 
 

 𝑙𝑜𝑠𝑠(𝑇) = ∑ 𝑤 𝐶𝑟𝑜𝑠𝐸(𝑙, 𝑅(𝑣|𝑢, 𝑡))
(𝑢,𝑣,𝑡,𝑤)∈𝐷

+ 𝜆 ∑ 𝑝2

𝑝∈𝑝𝑎𝑟𝑎𝑚𝑠

 (5.5) 

where p are the GNN parameters N its number of layers and the cross-entropy loss of a single 
example is calculated as 𝐶𝑟𝑜𝑠𝑠𝐸(𝑦, 𝑦) = −𝑦 log2 𝑦 − (1 − 𝑦) log2(1 − 𝑦). After each new 
interaction, we retrain towards this loss so that node preferences are guided towards 
understanding the most recent user preferences. Furthermore, we initialize GNN parameters and 
user preferences with those found during previous training steps, which helps preserve the 
understanding of previously understood user behavior that do not pertain to shifts in who users 
interact with. To understand how the above temporal-aware loss function relates to the original 
loss function (3.9), we can see that, when a new interaction (𝑢, 𝑣, 𝑇) becomes available we can 
rewrite this as: 

 
𝑙𝑜𝑠𝑠(𝑇) = 𝑙𝑜𝑠𝑠(0) + ∑ 𝑤(𝑇, 𝑡)𝛥(𝑢,𝑣,𝑇)𝑙𝑜𝑠𝑠

𝑇

𝑡=1

  

where the 𝛥(𝑢,𝑣,𝑡) operator designates the value change before and after accounting for a new 

interaction (𝑢, 𝑣, 𝑡). The last expression is the discrete equivalent of integrating a time-degrading 

transformation of the loss’s derivative. Hence 𝑙𝑜𝑠𝑠(𝑇) can be considered to capture the evolution of 
an interaction recommendation model’s original loss function as new interactions occur. A similar 
scheme is also followed by stochastic gradient descent optimization [108], in which training is 
applied on one example (in our case: one positive and its corresponding negative examples) at a 
time and still reaches a (locally) optimal point We finally investigate the applicability of this newly-
proposed temporal GNN training scheme in discovering user interactions: 

• Favor Last Interactions. The (strictly better than random) baseline proposed in the last 
subsection. 

• Static GNN. A (centralized) single-layer GNN trained towards minimizing the loss (3.9). 
• Temporal GNN. A (centralized) single-layer GNN trained towards minimizing the loss (5.5) . 

Through a perfunctory exploration of its efficacy for various degrading factors of example 
importances, we select 𝑎 = 0.5. We also exclude training tuples with weights 𝑤 < 0.01 from 
training, as at that point they only slightly affect the training’s outcome. An empirical 
investigation leads us to adopting the well-performing regularization parameter 𝜆 = 0.1. 
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In Figure 16 we show a comparison between temporal GNN mining and the previous baselines in 
terms of 𝐷𝐻𝑅. We can see that taking advantage of the temporal component helps significantly 
outperform the baselines in discovering more interactions older than both the three or the six 
previous ones. 

 

 

 

Figure 16. Using temporal GNNs to recommend older interactions. Plots show DHR@3,3 (y-axis in the left 

column) and DHR@3,6 (y-axis in the right column) over occurring interactions (x-axis). 
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5.3 From Distributed to Federated Learning 

Having identified the most promising centralized GNN architectures for social graph mining, we 
now research how these can be deployed in the decentralized setting of HELIOS. In this respect, 
we remind that graph-based machine learning is a fairly new discipline and hence little work has 
been done to detach it from a central processing node. Hence, before tackling the decentralization 
of GNN architectures, we need to investigate the communication protocols they should follow, so 
as to limit their operations only to those provided by such protocols. 
 
In subsection 3.5 we already mention that there exists a valid background on learning models in 
multiprocessor systems, a process referred to as distributed learning. Distributed learning often 
delegates computations across many devices that report back their results to a central processing 
node that is responsible for learning an updated model. To ensure privacy of individual device 
data, this process can even involve devices reporting only gradients instead of found examples to 
the central node, where they can be aggregated with stochastic gradient descent. Furthermore, 
this practice performs the bulk of computations in individual devices, which run in parallel and 
hence reduce proportionally the training time of machine learning models. An example of this 
process is outlined in Figure 17. 
 

 

Figure 17. A decentralized machine learning scheme from the viewpoint of an ego device that continuously 

exchanges parameters (sync) with all its alters, even if no interactions are ongoing with the alters 𝑩, 𝑪, 𝑫. 

 
In this setting it is obvious that, despite devices not needing knowledge of non-alters, a central 
service is needed to orchestrate the learning process. As a result, distributed systems are not truly 
decentralized. This shortcoming has motivated a natural extension of the previous process in 
which each device sees itself as a central service and aims to elicit a machine learning model. In 
terms of social networks, each user’s device communicates with the alters’s devices in order to 
drive a machine learning task. 
 
This practice works well for machine learning algorithms for which a few training examples suffice 
to communicate their parameters, such as simple linear regression or rank diffusion models. In 
fact, constraining machine learning only on local areas of the network avoids the -often erroneous- 
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assumption that graph dynamics, such as the mechanisms that drive the formation of edges, are 
Independent and Identically Distributed (IID). Furthermore, when more complex machine learning 
models need to be learned, where we would expect individual devices to fail to learn parameters of 
adequate quality, we can organize the learning process so that neighboring devices 
simultaneously converge towards similar model parameters. For example, these can be 
exchanged and averaged over each device’s alters. 
 
Overall, the above-described extensions of distributed learning over decentralized systems can 
reproduce a variety of machine learning algorithms, such as the neural network architectures 
described in this work. However, when we try to apply them to DSNs, we find that they commonly 
exhibit three important shortcomings that come at odds with the dynamic, evolving and irregular 
aspects of user behavior: 

 
a) Distributed learning cannot learn node representations that change over time 
To help understand this claim, we point out that node embeddings are also part of the learned 
GNN parameters and should hence be communicated during parameter transfer. Hence, general-
purpose distributed learning systems would make all users learn a copy of all other updated user 
embeddings. Doing this would require transferring all embeddings at each information exchange 
step; this would lead to an impossible overhead for large social networks with thousands or 
millions of users. 
 
In practice, a large part of the described overhead can be avoided by embedding mechanisms that 
consider nodes at most a few edge hops away. In this case, nodes can store only the needed 
embeddings and exchange updates representations only with their neighbors that also need those 
nodes. This optimization strongly localizes embedding storage and transfer. However, it does not 
address the core problem of communicating the representations of a large number of nodes. 
Additionally, it introduces challenges of actually discovering who resides only a few hops away, for 
example by running one random walk mechanism originating from one user through the 
decentralized graph. 
 
Given the above, both the notion of globally trained parameters and the embedding architecture 
become significantly deformed. Hence, we propose that, to learn structural node embeddings in 
decentralized settings, new algorithms and paradigms that differ from traditional GNN architectures 
should be developed. As an example, we point to the work of Kermarrec et al. [109], which sets up 
a model of local repulsion and attraction to guide originally random graph node embeddings into a 
multi-dimensional layout.  
 
b) Distributed learning encounters failures when users go offline 
This concern is even more prevalent in social networks built over peer-to-peer protocols that can 
connect physically proximal users (e.g. exchange messages via Bluetooth), who can go out of 
range. In distributed protocols, users select at random or all neighbors to exchange information 
with based on synchronous or asynchronous processes. However, their neighbors -or even the 
users themselves for that matter- may leave the network or the user's neighborhood for 
indeterminate periods of time and hence may not be there when their neighbors reach out to them 
or when the devices themselves would need to request information. We recognize three possible 
resolutions of this phenomenon: 

• Do not perform the information exchange. This effectively ignores information for the sake 
of convenience and hence reduces the predictive capabilities of the learned embeddings. 
Furthermore, if users interact for brief periods of time that do not coincide with the timing of 
information exchanges, some or all alters may never be taken into account. 

• Buffer the information exchange and perform it the next time the alter becomes available, 
for example when both users come online. This poses several technical challenges, such 
as handling accumulated exchanges and the communication overhead of sending the 
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buffered ones within a short timeframe. Furthermore, if the information exchange happens 
much later than its original timing, it may worsen the prediction at the arrived alter. Finally, 
buffered exchanges would need to be dropped after certain time periods to account for 
possible churn and this introduces some of the drawbacks of the previous solution. It must 
be stressed that buffering the information exchanges needed for distributed learning is 
much more resource intensive compared to buffering messages, as distributed learning 
needs to accumulate many (e.g. tens of) information exchanges with all alters every time a 
user’s preferences change, such as on each of their interactions. 

• Exchange information only with the currently available alters. In this case, extracted node 
embeddings would be biased towards accurate predictions between the users more often 
available. Furthermore, the extreme case of this solution is exchanging information with no 
alters if they all happen to be offline. 

 
The above points suggest that performing information exchanges on-demand in DSNs is not 
possible unless constant network presence can be assumed. Besides the introduction of always-
online super-peers, as we did in Section 4, the only way to guarantee information transfer when 
users go online or offline is for information exchanges to happen at (approximately) the same time 
as new changes are induced. In this work, we adopt this direction by proposing an embedding 
mechanism that sends and updates parameters only when new interactions occur. 
 
c) Distributed learning requires time and space homogeneity 
Often, distributed learning assumes that learned parameters, such as node embeddings, remain 
the same throughout training. Based on this assumption, their preferred method to guaranteeing 
the convergence of learned parameters is employing learning rates that are dampened through 
time. However, the notion of needing to converge to fixed values becomes meaningless when 
considering real-world scenarios in which node preferences may drift over time, as for example 
happens when trying to mine user preferences that drive their interactions. To make matters 
worse, learned parameters may also differ between different areas of the graph, for example 
because different certain groups of users adhere to different social norms. 
  
Approaches that aim to remain aware of the above issues while providing decentralized solutions 
to machine learning tasks are commonly referred to as federated learning. Unfortunately, federated 
learning has been, up to now, constrained to simple algorithms [110] that are not suited to 
performing edge (e.g. relation or interaction) recommendations. As a result, our subsequent 
research actions aim to deliver federated learning implementations that can help understand 
temporal user preferences. In particular, we aim to adapt our previously proposed temporal GNN 
framework in a decentralized setting that does not suffer from the aforementioned shortcomings. 
 
To this end, we finish this subsection by proposing an ideal federating learning protocol that is 
applicable to DSNs; this protocol consists of performing one cycle of parameter exchanges during 
every occurred interaction, as demonstrated in Figure 18. This ensures that machine learning 
parameters are exchanged at times when a communication channel (i.e. the one through which the 
interaction travels through) is known to be available and enforces a local view of the network, 
under which each device is only aware of its neighbors. Of course, these advantages effectively 
move the innovation burden from the communication protocol to the machine learning algorithms 
to be trained under such limited capabilities of accessing and adjusting information. 
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Figure 18. Our proposed federated learning scheme. Contrary to Figure 17. The device exchanges 

parameters (sync) only with the currently interacting alter. 

5.4 Decentralized Interaction Mining 

Aggregating device losses 

In the previous subsection we explained that a federated scheme for training machine learning 
algorithms in DSNs should ideally perform parameter exchanges only between the devices 
involved in the interaction. 
 
To set up a parameter exchange protocol that can help train a GNN architecture under this 
constraint, we first consider a localization of the temporal loss (5.5) on only one user’s 𝑢 device, on 
which a recommendation algorithm calculates estimated probabilities of performing interactions 
towards nodes 𝑣 at times 𝑡 as 𝑅(𝑣|𝑢, 𝑇). Then, we analyze how a temporal GNN training scheme 
would work if it was forced to locally run only on this device with no additional communication; it 
would create a set of local training examples, which will annotate as 𝐷[𝑢], that are formed with the 
same weighting and negative sampling process as the previous training examples 𝐷 but only on 

the interactions in which 𝑢 is involved. 
 
If we aggregate these training examples over all devices, the main difference compared to the 
previously centralized list of examples 𝐷 is that the negative examples are sampled out of 
interactions with previous alters, which makes forget previous interactions faster. At the same time 
though, weight degradation occurs only if new examples are provided to the specific device and 
hence very old examples on devices that have not previously interacted with others may still be left 
with high weights. We theorize that, in practice, these two mechanisms work competitively to 
provide similar lengths of preference memory as in the centralized setting. 
 
This can be formally corroborated in the specific case when user activity patterns remain 
unchanging over time and identically distributed between users; then it holds true that the average 
number of interactions between each user and the last interaction in the graph 𝛦[𝛥𝑇] is the same 
between users and that user interactions occur in statistically independent times. Hence, if a 
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training example (𝑢, 𝑣, 𝑡, 𝑤, 𝑙) ∈ 𝐷[𝑢] is stored in a user’s device, adding the same example in a 

centralized list of holding examples as (𝑢, 𝑣, 𝑡, 𝑤𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑 , 𝑙) ∈ 𝐷 would on average produce the 
following relation between their weights: 

 𝐸[𝑤] = 𝑤𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑𝑎−𝐸[𝛥𝛵]  

where 𝑎 is the example degradation parameter shared between all users. Therefore, if we consider 

the decentralized loss 𝑙𝑜𝑠𝑠(𝑢, 𝑇) = 𝑙𝑜𝑠𝑠(𝑇) trained on 𝐷[𝑢] for regularization parameter 𝜆(𝑢) =

𝜆𝑎−𝛦[𝛥𝑇] it holds that: 

 
𝑙𝑜𝑠𝑠(𝑇) = 𝛼−𝛦[𝛥𝛵]𝐸 [∑ 𝑙𝑜𝑠𝑠(𝑢, 𝑇[𝑢])

𝑢

]  

where 𝑇[𝑢] are the last time users 𝑢 have been involved in interactions and 𝑙𝑜𝑠𝑠(𝑇) is trained on 

the examples 𝐷 = ⋃ 𝐷[𝑢]𝑢 . Since 𝑎−𝛦[𝛥𝑇] is effectively a constant, this means that the centralized 

loss minimizes the expected value 𝐸[⋅] of aggregating all decentralized losses over user devices. 

Regularizing towards exchanged embeddings 

The analysis of the previous paragraph reveals that, if the decentralized loss function is minimized 
on each user device, then the overall loss should also exhibit a (local) minimal point as their 
aggregation. Then, it remains to ensure that the found point lies near global minima. An important 
challenge to this end is that each device would learn to perform recommendations with different 
criteria than its neighbors that may overfit on training examples with little generalization capabilities 
towards the future. Effectively, different devices should produce similar understandings of which 
latent user preference is which; these preferences may not necessarily be understandable by 
humans, but they should be understandable by the GNN architecture in the same or similar ways. 
The centralized nature of GNN architectures systemically avoids the above discrepancy, since 
their intermediate node embeddings are implicitly constraining towards obtaining the same 
representations regardless of who they are compared to. However, in our decentralized setting 
different devices may learn different representations for the same node not only due to different 
training examples (which to some extent cannot be avoided) but also due to selecting different 
latent preference spaces to train on. 
 
Our research has led us to the problem of constraining embeddings of the same nodes to lie in 
similar latent spaces in the sense that when they are similar, the users exhibit similar preferences 
under the understanding of all devices. To help train towards this property, we consider the 
representations 𝐻(𝑣|𝑢, 𝑇) the device of user u learns for user vby inputting their one-hot encoded 
ids. An easy trick to first remove the (for the device) unknown nodes of the graph is to see that we 
can do away with the whole one-hot encodings and directly learn this feature representation, i.e. 
that we learn the outcome of the embedding mechanism. Then, prediction tasks for user u would 
consist of matching that user with the representations of their alters, i.e. to compare 𝐻(𝑢|𝑢, 𝑇) with 

𝐻(𝑣|𝑢, 𝑇) through the GNN architecture. 
 
To do this, we come back to the concept of regularization and how it constrains the order of 
magnitude of learned parameters by penalizing them when they obtain large values. Then, we 
propose that the parameters pertaining to the extraction of node embeddings could instead be 
regularized towards that node’s understanding about itself, i.e. that 𝐻(𝑣|𝑢, 𝑇) should be similar to 
𝛨(𝑣|𝑣, 𝑇 − 1); these two quantities could not be forced to be the same by assignment, but 

regularizing them with each other means that the regularization point when learning 𝐻(𝑣|𝑢, 𝑇) is 
moved with 𝛨(𝑣|𝑣, 𝑇 − 1) as the center. In other words, the former still learns new representations, 
but these lie close to the latter in both latent preference spaces. 
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The process of regularizing towards similar latent preference spaces of neighbors is visually 
demonstrated in Figure 19, where we can see that regularization effectively lets us move alongside 
minimizing the non-regularized part of the loss while also providing a solution that lies close to the 
one provided by the neighbors, which allows them to lie in similar latent preference spaces. If the 
same holds true between every pair of device and alter neighbor representations, then we can 
consider our proposed regularization to effectively align those spaces so that they are 
permutations of a common underlying one. At worst, the implicit understanding of that underlying 
latent preference space would change only slowly as we move away from each node. 
 
This theorization leads us to defining the following loss function for training the embeddings of user 
devices: 

 𝑙𝑜𝑠𝑠(𝑇) = ∑ 𝑤 𝐶𝑟𝑜𝑠𝐸(𝑙, 𝑅(𝑣|𝑢, 𝑡))
(𝑢,𝑣,𝑡,𝑤,𝑙)∈𝐷[𝑢]

+ 𝜆

+ 𝜆[𝑢] ∑‖𝐻(𝑣|𝑢, 𝑇) − 𝐻(𝑣|𝑣, 𝑇 − 1)‖2

𝑣

+ ∑ 𝑝2

𝑝∈𝑝𝑎𝑟𝑎𝑚𝑠

 
(5.6a) 

where ‖⋅‖2 is the square of the L2 norm and is used to obtain the sum of all square differences 
between the learned and neighborhood representation elements. Then, all these local losses can 
be used to define the global loss function that the decentralized GNN algorithm implicitly aims to 
minimize at each point in time: 

 𝑙𝑜𝑠𝑠𝑐𝑒𝑛𝑡𝑟𝑎𝑙𝑖𝑧𝑒𝑑(𝑇) = ∑ 𝑙𝑜𝑠𝑠(𝑢, 𝑇[𝑢])

𝑢

 (5.6b) 

Implementing this under the communication protocol of subsection 5.3 requires exchanging only 
the last representation each node has inferred about themselves 𝛨(𝑢|𝑣, 𝑇 − 1) = 𝛨(𝑣|𝑣, 𝑇(𝑣)) with 
its interacting alter. 
 
 

 

Figure 19. Regularization of the first two elements of 𝑯(𝒗|𝒖, 𝑻) towards zeros (left) and towards the 

embedding of the neighbor (right). The arrows show the attraction towards the regularization center (it 

becomes stronger the farther away from the embedding value currently is). The non-regularized version of 

the loss function is (approximately) minimized everywhere alongside the respective curve. 
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Plausible deniability and differential privacy 

An important goal of the HELIOS platform is to provide users with control over how their personal 
information is disseminated to others. In the case of social graph mining, sensitive information 
pertains to their actions, such as who and when they interact. However, mined preferences of 
users partly encapsulate the mined preferences of their alters, which then can be sent to unrelated 
users. This type of information propagation is necessary to guide a uniform machine learning 
scheme throughout the graph. However, it is also important to avoid providing explicit 
understanding of user preferences (even if those are only latent ones) to non-alters. 
 
Two theoretically-grounded concepts pertaining to privacy concerns are differential privacy 
[111,112], which measures how much information is revealed if multiple views of the same dataset 
are made publicly available, and plausible deniability [113,114] in which the user can deny interest 
in sensitive information with some probability. In the scope of interaction mining, these concepts 
translate to other users not being able to reconstruct one’s interactions and for a user being able to 
deny that a set of mined preferences are the ones best matching them. 
 
To address these concerns, we propose that, when sharing the preferences 𝛨(𝑣|𝑣, 𝑇 − 1) with 
node neighbors, part of these can be obfuscated and replaced with random noise, as per the 
following formula: 

 𝐻𝑠𝑒𝑛𝑡(𝑣|𝑣, 𝑇 − 1) = (1 − 𝑝𝑟𝑖𝑣𝑎𝑐𝑦)𝐻(𝑣|𝑣, 𝑇 − 1) 

+𝑝𝑟𝑖𝑣𝑎𝑐𝑦[𝑟𝑎𝑛𝑑( ), … 𝑟𝑎𝑛𝑑( )]‖𝐻(𝑣|𝑣, 𝑇 − 1)‖ 
(5.7) 

 
where 𝐻𝑠𝑒𝑛𝑡 are the representations sent to the alters, 𝑝𝑟𝑖𝑣𝑎𝑐𝑦 is a value within the range [0,1] that 
corresponds to how much these representations are perturbed and 𝑟𝑎𝑛𝑑() is a process for 

creating random numbers. Hence, if someone tried to assign exact preferences 𝛨(𝑣|𝑣, 𝑇 − 1) to 
users, these would at most be similar to the real ones by: 
 

‖𝛨𝑠𝑒𝑛𝑡(𝑣|𝑣, 𝑇 − 1) − 𝛨(𝑣|𝑣, 𝑇 − 1)‖2 ≤ ‖𝛨(𝑢|𝑣, 𝑇 − 1)‖2(1 − 𝑝𝑟𝑖𝑣𝑎𝑐𝑦(1 − 𝐸[𝑟𝑎𝑛𝑑( )])) 
 
where 𝐸[𝑟𝑎𝑛𝑑()] is the mean value of the random process. Hence, if 𝐸[𝑟𝑎𝑛𝑑( )] ∈ (−∞, 1), 
positiveprivacy values help introduce plausible deniability over user preferences in that other users 
could be a better match to the permuted sent preferences. This deniability becomes even stronger 
when we consider that similar latent preferences are potentially shared between different users 
that reside in completely different areas of the graph. 
 
The decentralized GNN architecture we propose also introduces differential privacy. In particular, 
even at the edge case where no plausible deniability mechanism has been introduced, it is 
impossible to reconstruct the (positive and negative) interaction examples that led the local copy of 
the temporal GNN running on a user’s device to mine the particular preferences. To understand 
this claim, we point out that the number, chronological order and preference distribution of training 
examples all play an important role in selecting user preferences, where many different variations 
that would involve different users (among both alters and non-alters) can lead to mining the same 
preferences. As a result, it is impossible to reconstruct the interactions of a user through their 
preferences, unless all other users of the HELIOS platform explicitly collaborate by sharing their 
interactions with that user (or the knowledge that they have not interacted with them) and their 
mined latent preferences at the time of those interactions. 
 
During the continuation of this task, a more formal investigation of plausible deniability and 
differential privacy over our federated learning scheme will be conducted, so as to numerically 
relate implementation parameters to the exact probabilistic definitions of these privacy concepts. 
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Experiments 

Having defined a decentralized adaptation of the temporal GNN training scheme proposed in 
subsection 5.2 that follows the federated protocol suggested for learning on DSNs in subsection 
5.4, we now explore its efficacy in recommending old interactions in social media graphs. To do 
this, we compare it against its centralized counterpart and the baseline of favoring more recent 
interactions. In particular, we perform experiments in which we compare the following three 
algorithms: 

• Temporal GNN. The centralized temporal GNN for interaction recommendation, which 
degrades weights of previous relations by multiplying them with 𝑎 = 0.5 every time a new 
relation occurs. This is the architecture proposed in subsection 5.2. 

• DecentralizedTemporal GNN. The decentralized adaptation of the temporal GNN proposed 
in this subsection using regularization parameters 𝜆[𝑢] = 𝜆𝑠𝑦𝑛𝑐 = 0.1. We also apply a 

plausible deniability value of 𝑝𝑟𝑖𝑣𝑎𝑐𝑦 = 10%, which yields almost identical results to not 
applying any privacy. 

• Favor Last Interactions. The baseline method of recommending the most recent of older 
interactions first. 

 
The outcome of these experiments is presented in Figure 20. In that figure, we can see that the 
decentralized GNN architecture tends to closely preserve the accuracy of the centralized one. In 
particular, it yields an average drop of less than 3% of the DHR values in all but the last subfigure. 
Furthermore, it significantly outperforms the compared baseline, which usually fails to present 
meaningful predictions among older interactions altogether in the Wall and Email datasets. 
 
These results indicate that the proposed decentralized GNN architecture can help provide a high-
quality understanding of evolving latent user preferences that can help match the attention placed 
on their alters. 
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Figure 20. Comparing the decentralized and non-decentralized versions of the temporal GNN over occurring 

interactions (x-axis) with DHR@3,3 (y-axis in the left column) and DHR@3,6 (y-axis in the right column).  
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6 Mining the Heterogeneous Social Graph in HELIOS 

Given the encouraging findings of our research, we implemented our proposed time-evolving DSN 
embedding protocol as a module of the HELIOS platform. In particular, we developed a graph 
recommendation module, which exposes this approach through a high-level Application 
Programming Interface (API) so that other HELIOS modules and applications can use it to enrich 
their functionality by mining the interactions occurring within the heterogeneous social network 
graph. This module provides context-specific recommendations based on mined user-specific 
preferences and hence uses the Contextual Ego Network (CEN) management library to attach 
information on these entities. 

6.1 Extending the CEN Management Library 

Deploying the decentralized graph mining algorithms developed in this deliverable to HELIOS 
devices requires the ability to manage data structures pertaining to the CEN, such as those 
defined in Deliverables 4.1 and 4.2. For convenience, these are summarized again in Table 6. 

Table 6. Primitives of the CEN management library. 

Primitive Type Description 

Node Nodes of the heterogeneous social graph. These span both the user’s 
device and its alters and contain a unique identifier with which the 
former recognizes them. 

Context  The contexts each user has defined. Each context is effectively an ego 
graph that comprises some (but not necessarily all) of the user’s alters, 
as well as edge relations between them and their interactions. 

Edge The relation edges formed between users in a context. If more than one 
types of relations are introduced by different modules, these can be 
differentiated by storing an appropriate flag object on the edge (see 
below for storing module-specific objects). 

Interaction Interactions that occur between users of the CEN. Each occurring 
interaction is effectively a temporal graph edge. Since interactions can 
only occur between related users, they are effectively tied to the 
respective relation edges. 

ContextualEgoNetwork The CEN object, which comprises the ego and alter nodes of a user, as 
well as their contexts. 

 
A prototype library for managing the CEN has already been developed in the scope of the 
deliverables defining these data structures. The aim of this library is to be utilized by other HELIOS 
modules, such as the social graph recommendation module that is presented in this deliverable, 
and enable the development of applications that depend on the notion of the CEN and its relations 
and interactions. Additional needs arose during the development of this deliverable’s algorithms, 
which led us to extending the library in the ways detailed in the rest of this subsection. Future 
development needs could also lead to introducing more yet-unforeseeable improvements. 
 
An overview of the old combined with the new data structures is presented in the subsequent UML 
diagram of Figure 21. For the sake of conciseness, in that diagram we omit operations pertaining 
to the creation, addition and removal of objects, such as the ones tackled on the last point. A 
detailed view of all operations of the improved version of the library is provided in Annex I. 
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Figure 21. UML diagram of classes involved in dynamic storage and loading operations. Getter, construction 

and removal methods are omitted for clarity. 

Moving to a reference-based API 

The first version of the library implemented objects that provided identifier-based relational 
information. However, during the development of graph recommendation code, it was important to 
avoid logical bugs that would arise when querying for identifiers of wrong object types and to 
prevent calls; errors arising from these miscast types are very difficult to backtrace as the CENs of 
users grow in size and it becomes impossible for the developer to obtain a holistic understanding 
of all in-memory data structures. We pinpoint two ways to introduce identifier type checking: a) 
introducing constraints against all other stored identifiers and b) taking advantage of the typed 
nature of Java objects and introduce direct references between those. We elected to use the 
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second approach, as the first one would require a lot of running overhead when running the code 
by making the library perform additional checks on the validity of identifiers. 
 
An advantage of this organization is that it reduces the complexity of the code when many objects 
need to be accessed in sequential order. For example, in the new version of the library we can 
write interaction.getEdge().getContext() to obtain the context an interaction would occur in. 
Furthermore, our selected solution makes it easier to integrate future functionalities by 
implementing them as methods of their respective classes without potentially affecting the 
functionality of unrelated code entities. 
 
The challenge that needs to be addressed when moving to this non-relational but reference-based 
logic of the CEN management library is the seamless integration of context loading without 
affecting the objects that reference them. Given that we also provide a system that does so, we 
also implement context cleanup to unload context data (i.e. nodes and edges) from the memory 
without destroying the context objects themselves. This way, context data can also be silently 
reloaded on-demand when its respective getter, creation or removal methods are called. 
 
To support storage of reference-based memory serialization, we consider a pool of instantiated 
objects the serializer can reference, which we will call the Reference Pool. Objects in this pool are 
assigned unique local identifiers (UIDs) which are internally represented during serialization as an 
additional field @id. Objects of the reference pool are serialized to separate files whose storage 
path is determined by their UIDs and which can be loaded on-demand during subsequent runs of 
the application. The objects we put in this pool are the device’s CEN, its nodes and its contexts. 
Other objects, such as edges and interactions within contexts, are saved as part of their 
encompassing structure. The serializer responsible for managing the pool of objects is tied to the 
specific CEN (i.e. it is different between different networks). 
 
An important aspect of this structure is that any object can reference an object of the reference 
pool, as the latter can also be loaded in memory through its identifier. This does not hold true for 
objects outside the pool, which can only be referenced by ancestor objects when serialized and 
whose occurrences in parent objects are treated as different instances during deserialization, since 
at that point there is no other structure to yield previously instantiated objects instead of creating 
new ones. 

 

 

Figure 22. Theoretical organization of the serializer into a reference pool of objects that can be serialized 

into files. Arrows represent references towards other objects (i.e. that are declared as class field values). 
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References towards objects outside the reference pool (dashed arrows) are allowed only towards ancestor 

objects in the object hierarchy rooted on the pool, such as from J to G but not from J to H. 

A serialization pool is typically not provided by serialization libraries, such as the one supporting 
the previous version of the CEN management library. This led us to provide our own serialization 
scheme. When doing so, we took care to avoid practices required by the previous serialization 
library that made mandatory the public exposition of functionality, such as direct setters to list 
primitives, that could induce catastrophic failure if used incorrectly (e.g. by removing previously 
stored information without notifying all node entities). Hence, our improved version of the library 
boasts not only ease but also correctness of use when integrated in other modules or applications 
of the HELIOS platform. 
 
Furthermore, the data of new HELIOS modules, such as the graph recommendation module, can 
be potentially attached to CEN objects. Hence, our developed serialization scheme is made to be 
applicable on a wide range of source code object definitions whose instances can be attached to 
the CEN. An example of how the CEN data references are organized in-memory is shown in 
Figure 22. In that figure, green edges are those who link back to the reference pool and do not 
cause the loading of the respective objects unless the latter are explicitly requested. Furthermore, 
contexts are not fully loaded before their edges or nodes are explicitly requested for the first time.  
 

 

Figure 23. How the organization of Figure 22 translates to an example in-memory organization of CEN 

references. 

When new entities are to be serialized, the serializer checks their encompassing objects for 
references to objects within the pool - if such references are found, the resulting fields of serialized 
classes are converted to a pair of serialization attributes: 
 

{@class: PooledObjectClass, @id: UID} 
 
as demonstrated in Figure 24. Besides dynamic serialization and deserialization, this structure also 
helps avoid circular object references (e.g. that object A references object B, which references C, 
which references A back) that would require high computational effort to identify. 
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Figure 24. The contents of a serialized CEN node. 

 
It must be noted that objects not in the serialization pool are serialized to: 
 

{@class: objectClassName, field1: field1, field2: value2, ...}  
 
where both public and private fields are stored. We also provide the annotation 
@Serializer.Serialization(enabled=false) to place over fields the developers want to mark as not 
serializable - these are assigned null values during deserialization, unless the project entity’s 
default constructor assigns another value. Including the object’s class name objectClassName 
helps support the applicability of the serialization mechanism in polymorphic development 
environments, in which fields declared a base type but reference objects of any extending types. 
 
Field values can either be new objects or primitives (e.g. strings, doubles, integers). Primitives 
values are either their string conversions (e.g. “10.0” for a double) if their instance is of the same 
type as the declared field type or: 
 

 {@class: primitiveClassName, value: primitiveStringValue} 
 
when the primitive is stored to a generic Object. For example, storing double value of 10.0 in a 
class’s field Object data would produce the following serialization within that class: 
 
 data: {@class: “java.lang.Double”, value: “10.0”} 
 
whereas a field double doubleData with the same value would be simply stored as: 
 

doubleData: “10.0” 
 
When deserializing objects with a serialization identifier, these are registered in the serializer’s pool 
of objects. Otherwise, they are considered instances stored in their parent object’s field. In the first 
case, the serialization identifier may not reference an object of the current serializer’s pool. In this, 
a new object is created using the default constructor (i.e. the constructor with no arguments) of the 
@class attribute and its fields are read from the file corresponding to this identifier. At this point, we 
can see that storing the @class attribute is only needed for this first instantiation of each object. 
Since objects, such as nodes, can be referenced multiple times in a single file, we also adjusted 
the serialization process to remove that attribute when it is redundant. 
 
On the other hand, objects with no UID are treated as single instances of a class that are not 
shared between different objects. This may introduce discrepancies between the behavior of 
deserialized objects, which are considered logic bugs. Unfortunately, checking for these is 
impossible in a system such as ours, that offers dynamic serialization and deserialization. 



  

HELIOS D4.3 

Page 63  

  
 

 
As an intermediate step of the serialization process, we use the JSON format3 to organize the 
above hierarchical dependencies of classes and their fields that need to be stored in files and 
hence our implementation depends on the namesake Java library4, which we used to manage our 
representations. This is the only external dependency of the CEN management library and, as a 
cross-platform solution, allows usage of the latter within Android applications. In Figure 25 we 
present a JSON representation of an example CEN serialization scheme. This process can be 
locally stored by being converted to a string. 

 

Figure 25. Saving storage space by saving only on @class attribute for each object in a file (e.g. the class of 

“user-0003” is found to be a HELIOS node when retrieving the list of nodes and its class needs not be 

retrieved again when it is assigned as the destination (dst) node of the context’s first edge  

Enabling modular development 

HELIOS modules and applications could need to attach information on CEN objects to be stored 
and loaded alongside them. For example GNNs often need to attach a local estimation of 
embeddings to the respective nodes of the library. Traditional development practices indicate that 
doing so requires either extending the classes of the CEN to accommodate additional data fields or 
implementing wrapping classes that reference the objects of the CEN. However, these practices 
complicate integration of multiple modules in the same project in that they need to explicitly 
depend on each other and incrementally extend each other’s classes; this would exponentially 
raise the cost of developing, maintaining or extending modules that depend on this library, since 
they all need to depend on each other. 
 

 
 
3 https://www.json.org 

4 https://mvnrepository.com/artifact/org.json/json 

https://www.json.org/json-en.html
https://mvnrepository.com/artifact/org.json/json
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Given this concern, in this task we improve the context ego network management library by 
allowing its classes to accommodate instances other object types not yet known at the library’s 
deployment time. In particular, we define an abstract class called CrossModuleComponent that 
facilitates storage of other modules’ data structures and make all Nodes, Contexts and Edges of 
the CEN inherit its function. In particular, this class implements a method 
CrossModuleComponent.getOrCreateInstance which queries the object on whether an instance of 
the given class has been attached to it, which is returned. If no such instance is called, a publicly-
accessible default (i.e. no-argument) constructor of the given class is used to create and attach a 
new instance first. 
 
This implementation promotes usage of simple patterns for attaching information on the CEN. For 
example, a node may be queried to call a getEmbeddings() of a GNNNodeData class by: 
 

node.getOrCreateInstance(GNNNodeData.class).getEmbeddings(); 

Failsafe recovery 

The module provides a recovery mechanism that insures against premature application 
termination. In particular, it is important to ensure error-free running of the CEN management 
library when trying to load corrupted information, as for example happens when application 
crashes prevent reaching the save method of the CEN. A secondary but nonetheless important 
objective of this task is to also recover potentially unsaved information. 
 
As a first step in these directions, we integrate an observer pattern within the CEN’s organization 
[115]. This pattern allows listening for changes, such as creating new nodes or edges, and running 
the callbacks of specified objects when these occur. To this end, we provide a programming 
interface called ContextualEgoNetworkListener and allow objects that implement it to be registered 
in the CEN. Then, the objects pertaining to the latter retrieve all listeners and call the respective 
callbacks when the respective action occurs. For example the onCreateEdge(Edge) method of all 
listeners is called when a new edge is created in a context. For example, the previous functionality 
of assigning creation timestamps to objects is now implemented using a listeners.CreationListener 
that stores an object wrapping a single unix timestamp on created nodes, contexts and edges 
when these are created. 
 
By taking advantage of the listener capabilities, we implement a data recovery mechanism that 
actively logs unsaved information in a separate file whenever a CEN action occurs. This log is 
cleared when the CEN is saved. Otherwise, if the application has been exited without saving, those 
actions are re-performed on its next run. We point out that we cannot continuously save the CEN 
or edited contexts, as these operations can prove computationally intensive for contexts that 
comprise many users, edges and interactions. 
 
In particular, we implement the listener class listener.RecoveryListener, whose callbacks append 
the necessary information to a log file stored in the internal storage path. The pattern of adding 
recovery capabilities to a CEN is then as simple as adding the listener to it, as demonstrated in the 
example below: 
 

ContextualEgoNetwork cen  
   = ContextualEgoNetwork.createOrLoad("", "user-00001", null); 
cen.addListener(new RecoveryListener()); 
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Automated instantiation design patterns 

As a final improvement to the CEN management library, we found out that during the development 
actions of this deliverable we frequently used patterns of the form: 
 

if (object.hasValue(query)) 
  value = object.createValue(query); 
else 
  value = object.getValue(query); 

 
These patterns were used to create contexts, alters or edges if they were not found in a 
designated object, such as the CEN or contexts. To enable ease of use to developers using the 
library, in this task we also provide ready implementations of those patterns that take the much 
simpler form: 
 

value = object.getOrCreate(query); 

6.2 Social Graph Recommendation Module  

In this deliverable, we presented the outcomes of our research on novel decentralized graph 
mining algorithms that can mine the decentralized heterogeneous social network interactions 
between HELIOS users. In particular, we explored decentralized GNN architectures that aim to 
understand the evolution of user preferences over time and showed that these can help re-
discover older interactions. To help utilize our proposed algorithms in social network applications 
developed in the HELIOS platform, we also implement them into a social graph recommendation 
module, an instance of which will run independently on each user’s device. 
 
An important aspect of this module is that it needs to exchange information with alter devices 
alongside real-world interactions, such as sent or received messages. In particular we foresee that 
a single cycle of parameter exchanges suffices to implement both the interaction mining algorithm 
previously proposed in this work, which depends on sending and receiving parameter estimations, 
as well as future algorithms of similar nature. If parameter exchanges occur only during the 
occurrence of new interactions, the communication overhead between devices needed to train 
mining algorithms is minimized: The communication protocol parameter exchanges follow 
whenever an interaction occurs and is visually demonstrated in Figure 26. 

 

Figure 26. Parameter exchange scheme between the graph recommendation module of HELIOS devices; 

device A sends mined parameters to device B and the latter replies with its own set of parameters. 
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At the time of this module’s beta release, the burden of orchestrating the above operations, 
including a notification of the graph recommendation module that new interactions have occurred, 
falls on the one using the application.  
 
The social graph recommendation module aims to learn user preferences, for example by 
representing them in latent low dimensional spaces, from the interactions it becomes aware of. To 
do so, it utilizes the improved CEN library to represent the relations and attached learned 
representations on nodes. It can then retrieve these to recommend new interactions to users. 

Native implementation of matrix operations 

The architectures designed in this deliverable do not exhibit high computational complexity, since 
their federated learning principles effectively allocate very few computations to each device. 
 
Therefore, we deem that usage of additional libraries specifically tailored to performance 
computing, such as Tensorflow Lite5, could only serve to complicate integration and maintenance 
of the graph recommendation module without providing noticeable boosts in performance. 
Introducing such systems can even produce adverse effects, such as increasing battery 
consumption through spikes of intense on-device operations that are too few to require explicit 
optimizations. 
 
On the other hand, existing libraries of matrix (and vector) arithmetics, such as JScience, fail to 
introduce rigorous saliency checks at all stages of arithmetic operations. These are of particular 
importance during our research actions, as they facilitate early catching of logical bugs that arise 
during development of the machine learning models described in this work. For example, an issue 
that frequently occurs during development of GNNs is that, when small regularization is applied, 
gradients and parameters can explode into numerically large values through implicit feedback 
loops residing within the learned graph structures. These large values can then be exponentiated 
by neural activation functions (e.g. to calculate the derivative of a cross entropy loss) and this 
leads to an overflow that is converted to NaN arithmetics. These kinds of errors are hard to spot in 
the first place, unless disproportionally positive evaluations are spotted - due to NaN comparisons 
always yielding true. Even worse though, without catching them at the first time they occur, it is 
nigh impossible to identify the specific section of the code that first introduced them. To this end, 
base matrix operations should be equipped with error checking capabilities that directly pertain to 
such errors. 
 
An equally important reason which led us away from building the graph recommendation module 
atop of existing arithmetic libraries is that these make running simulated experiments over existing 
networks too slow, since each simulated device is delegated its own copy of a CEN management 
and graph recommendation modules. For example, loading and unloading Tensorflow programs 
from the computer’s graphics card (or worse, through a wrapper that runs on the CPU) at each 
simulated interaction introduces a significant overhead, whereas the general-purpose nature of 
matrix arithmetics means that they often neglect in-memory arithmetic operations that place back 
their outcome to one of their vectors, which ends up reducing memory allocations more than a five-
fold. 
 
Taking the above requirements into account, we started from implementing native matrix 
operations in the social graph miner’s package GNN.operations. This package provides access 
both to matrix arithmetics (e.g. vertex operations, loss functions and derivatives) that are used in 
developing the GNNs of this deliverable. 

 
 
5 https://www.tensorflow.org/lite 

https://www.tensorflow.org/lite
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Mining graph interactions 

Before developing specific graph mining algorithms, we provide an abstraction that allows a 
uniform modeling scheme of interaction mining. In particular, we provide a programming abstract 
class called SocialGraphMiner that uses the source code entities of the CEN management library 
to define the signatures of the operations outlined in Figure 26: 
 

public enum InteractionType {SEND, RECEIVE, RECEIVE_REPLY}; 

   
public void newInteraction(Interaction interaction, 
     String neighborModelParameters, InteractionType interactionType); 
public String getModelParameters(Interaction interaction); 
public HashMap<Node, Double> recommendInteractions(Context context); 

 
To distinguish between different steps of that scheme, we set up an InteractionType enumeration 
that is passed as a parameter at the newInteraction met. At any point, the recommendInteractions 
method can be used to obtain mined interaction recommendations for the device’s user. 

GNNMiner 

In the beta release, we provide a GNNMiner extension of the basic SocialGraphMiner class that 
implements the proposed decentralized temporal GNN mining algorithm developed in Section 5. 
This algorithm is parameterized to enable potential adjustments of its hyper-parameters so that 
they can be tuned by user feedback to better match the characteristics of the social media 
applications developed on the HELIOS platform (see subsection 7.3). In later releases, we hope to 
present a construction factory pattern that enables the usage of different types of GNN mining 
architectures. As of the beta release, the miner aims to share the same received neighbor 
embedding estimations across all contexts but perform different training depending on a given (e.g. 
currently active) context of the CEN in which the last interaction has occurred. The efficacy of this 
type of mining across different contexts will be investigated in future work. 
 
The developed miner is supported by three kinds of data structures; a GNNNodeData class that 
holds the currently calculated and received embedding tensors, a ContextTrainingExampleData 
class that holds a context-specific list of positive and negative training examples and a 
TrainingExample class that corresponds to the temporal (u,v,w,l) training example tuple described 
in subsection 5.2. Developers using the mining module need not necessarily be aware of these 
data structures, but they are made publicly visible to be attachable on the nodes and contexts of 
the CEN. 
 
Given that the above structures are retrieved for all nodes and the current context of the CEN, the 
GNNMiner instance running on each user’s device is trained towards the objective presented in 
subsection 5.4 by making use of our native implementation of matrix operations. 
 
A simplified data organization scheme of the GNNMiner is presented as a UML diagram of Figure 
27. For a more detailed description of this implementation’s capabilities, refer to Annex II. 
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Figure 27. The most important data structures and operations of the GNN mining module pertaining to the 

GNNMiner class. The GNN.operations package is not needed by the developers using the module. 
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Figure 28. Example outcome of delegating the graph recommendation module’s data to be stored in the 

CEN management library. 
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6.3 Peer-to-Peer Simulation  

Asserting the correctness of the social graph recommendation module 

In Section 5 we proposed a novel temporal GNN architecture that mines user preferences through 
their interactions in decentralized settings. Following that, in this section we outline the 
development of a social graph recommendation module that implements the devised 
recommendation algorithm within the HELIOS platform. Given that this module will be provided for 
direct use by HELIOS applications, we need to demonstrate that it can be integrated in a true peer-
to-peer environment. To this end, we experimented on an open source peer-to-peer simulation 
engine written in Java, called PeerSim [116], in which we simulated the social network datasets 
detailed in subsection 5.1. Our choice of the PeerSim engine was motivated by its ability to 
simulate large networks, with up to few millions of nodes, with customizable network delays and 
node churn. Furthermore, it allows a modular implementation of communication protocols so as to 
potentially simulate multiple HELIOS modules that rely on peer-to-peer communication.  
 
Using PeerSim, we simulated user devices, each of which runs different instances of the CEN 
library and the social recommendation mining module and PeerSim communication protocol and 
simulated their interactions as messages using the network dataset. In this setting, we verified that 
running the recommendation module on the simulated devices indeed provides the same 
recommendations as in our experiments. In the next period, the organized simulation will become 
available as a testing platform on which to test different variations and hyper-parameters of social 
graph mining algorithms.  

Demonstrating the social graph recommendation mining 

Since PeerSim simulates a true peer-to-peer environment, in this subsection we focus on 
understanding how our module can be integrated in applications that aim to be deployed in such 
environments. 
 
PeerSim supports two kinds of simulation models: 
 
a) Cycle-driven simulation 
In this simulation model, each node is scheduled regularly and each time it triggers the execution 
of the stack of protocols of that node. The number of times nodes should be scheduled is fixed and 
can be specified in a configuration file. In this simulation model there is no explicit exchange of 
messages, and communication is simulated by the execution of methods of the running protocols. 
 
b) Event-driven simulation 
In this simulation model, protocols communicate using messages, making it more realistic. The 
communication is modeled through send and receive primitives. In this simulation model one can 
also customize how the transport network is implemented to introduce network delays and 
message drops. Protocols in a node are triggered by sending a message to them and there is not 
a maximum nor a minimum amount of times a protocol can be executed. 
 
For social network simulations we adopted a hybrid simulation model, where part of the 
communication protocol is executed at regular time intervals, and part of it is executed 
asynchronously upon interaction. In the current implementation of the social graph 
recommendation module, periodic execution is not needed, but it helps provide an abstraction for 
additional development of machine learning models that require regular updates of their 
parameters, for example to degrade the example weights over time instead of over interactions. 
 
The interactions that occur between nodes of the social datasets are modeled as messages that 
activate each node’s communication protocols at the corresponding times. When an interaction 
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triggers the protocol instance of a node, this initiates a CEN synchronization phase and a learning 
model update. In the first phase, the currently active context of the CEN of the node performing the 
interaction is updated and the graph mining module runs over the new interaction. At the end of 
this process, that module provides parameters to be exchanged and these are sent alongside the 
interaction to all its alters (including the interaction’s recipient) that also comprise the interaction’s 
recipient to be included in their ego networks. The interaction’s recipient also performs training and 
sends back the learned parameters to the ego network. Experiments throughout this deliverable do 
not take into account ego network updates between alters that occur this way, but we provide this 
more generalized simulation setting for future research to investigate whether these can improve 
the efficacy of the GNN algorithm. 
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7 Practical Application 

7.1 Graph Mining in the HELIOS Platform 

HELIOS is a decentralized peer-to-peer social media platform that offers a number of 
functionalities on top of which developers can build their own social media applications. Its general 
architecture spans three different layers, as outlined in Deliverable 3.2: 
 
Core Modules. This layer comprises the main components of the HELIOS platform, namely the 
peer-to-peer network exposed through the communication manager, the security and privacy 
manager, the context manager, the trust manager, the personal data storage manager and the 
profile manager. Finally, the CEN manager that was extended in this deliverable is also a core 
module. 
 
Extension Modules. This layer extends the functionality of core modules to provide on-device data 
mining. These augment how users experience the decentralized platform by providing 
recommendations, rewarding opportunities and more functionalities pertaining to the analysis of 
social graphs. The social graph recommendation module presented in this deliverable, as well as 
the community detection module (described in Section 4) that will arise after the implementation of 
community detection algorithms, are extension modules. 
 
HELIOS Applications (HApps). This layer comprises applications built on top of the HELIOS 
platform; after the planned beta release, core modules and their documentation will be made 
publicly available to enable the development of new social network applications. 

7.2 Relation to Use Cases 

To understand how graph mining can be used within real-world applications, in this subsection we 
propose potential adoptions of the algorithms and protocols developed in this task that explain how 
they can be used within HELIOS’s use cases. In particular, three different use cases have been 
defined for the project, each of which is going to be translated to an application by their respective 
task based on key functionalities provided by HELIOS’s core and extension modules. These 
include the functionalities developed in the scope of this deliverable. 
 
Use Case A: HELIOS Connecting People. Task 5.3 is the leader of this Use Case and a 
preliminary version of the respective application, called Helios. TALK is already available. At its 
current state, this application focuses on group communications and offers the opportunity to the 
users to engage with new people in different contexts, organize communities based on common 
interests and connect with other people with similar interests. This task depends on the 
communication and social graph recommendation modules to not only provide friend 
recommendations, as existing social networks often do, but also recommendations of whom to 
interact with. The produced application records all user interactions through the CEN manager and 
forwards them to the social graph recommendation module, which provides recommendations to 
be displayed to the user. In that respect, Task 5.3 works closely with WP2 to define an appealing 
User Interface (UI) for displaying and help evaluate the appeal of such recommendations. 
 
Use Case B: HELIOS Cultural Hub. Task 5.1 is the leader of this use case and its main goal is to 
augment cultural experiences so they become shared spaces of communication and open 
knowledge. This relies on ad-hoc and organic creation of the social graph to provide matchmaking 
opportunities to the users. Even though this use case does not explicitly require the social graph 
recommendation module for matchmaking, future releases of the respective application could 
leverage the contextual ego management module to record interactions between HELIOS users in 
the cultural places and the social graph recommendation module to provide additional friend 
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recommendations. Furthermore, user interactions can support the definition of relations between 
users of similar interests. In turn, these can form communities whose structure can be exploited to 
spread interesting information among its components. 
 
Use Case C: HELIOS Citizen Journalism. Task 5.4 is the leader of this use case and its main goal 
is to create an application that will allow citizen journalists as well as professional journalists to 
contribute videos and pictures anonymously. Through this application, it will be possible to publish 
data into a private relationship environment, or to provide content for people with similar interests. 
Furthermore, publishers have also access to the content via a separate video exchange platform in 
order to use the distributed content for their own media channels. A first (beta) version of the 
Citizen Journalist application is already available. In future releases, this application will integrate 
the media streaming module and the payments module to distribute content (such as video-
sequences) and to reward citizen journalists for their contribution in diverse novel reward models. It 
will also interact with the HELIOS core components to take advantage of the possibilities of a 
social ego Network or the communication manager. The graph recommendation module could also 
be integrated in this application to understand social dynamics and user preferences. For example, 
it could identify communities of users characterized by common interests among those 
participating in an event, and suggest relations between them, so as to later spread information 
about those interests. 

7.3 User Feedback on the Social Graph Recommendation Module 

The social graph recommendation module, as provided in the beta release of HELIOS, aims to 
support decentralized systems that can recommend social actions to their users. In this task, the 
quality of such systems is asserted through their ability to satisfy theoretically grounded objectives, 
such as exhibiting high DHR values when recommending interactions. However, even when 
recommendations are accurate, they may not necessarily appeal to the users. For example, users 
may not know whether to accept or reject the recommendations or may find them irrelevant or of 
little value. Thus, it is critical that recommendation systems, such as the ones provided by the 
social graph recommendation module, are evaluated in real-world settings [117]. 
 
With this consideration in mind, we look to user research studies to help understand the user-
perceived quality of the algorithms designed in this task. These studies are an essential part of the 
HELIOS design and development processes, since they help understand whether modules under 
development are relevant for the users and cover the intended needs, as well as pointing to 
potential improvements. Hence, we will employ user studies to gather feedback that can improve 
base recommendation algorithms, find aspects of user behavior which have not been modelled 
due to being highly specific (e.g. introducing interaction periodicity, such as repeating an 
interaction each Monday morning). They could also help obtain local feedback to guide the 
learning process, such as by tuning the hyper-parameters of the decentralized GNN algorithms 
running on each user’s device, such as the temporal degradation rate of training example weights. 
 
Gathering user feedback is part of the validation activities of the WP7, and its methodology has 
been defined in Deliverable 7.1. Three types of validation activities have been set to test the 
technologies under development in HELIOS and provide feedback to their developers; lab tests, 
trials and pilots. The validation of the social graph recommendation module developed in this task 
is foreseen to be assessed over two main scenarios that will be tested in trials and/or pilots: a) 
recommending interactions with already existing contacts and b) potential recommendation of new 
contacts.  
 
The recommendation module in both scenarios will be fully automated and users will not be able to 
provide any manual input to modify the behaviour and performance of the system. These 
functionalities will not be available as they require a certain degree of technical expertise. For this 
reason, the user’s attention regarding interaction and feedback with the recommendation module 
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will be oriented to the user interface and the presentation of the information provided by the 
system. In order to obtain structured feedback, validation will be two-pronged, measuring 
relevance on a first stage and satisfaction on a second stage. WP7 is expected to gather specific 
feedback from users, that will be used by Task 4.3 to assess whether the predicted 
recommendations provided by the system are relevant or not. More specifically, the aim of 
involving end-users is to validate the relevance and satisfaction level of the recommendations 
provided by the HELIOS app to a) foster interaction (i.e. messaging, exchange of photos or other 
files) between existing contacts within an ego-network and b) extend their social network with new 
contacts.  
 
By definition and to ensure an optimal quality of recommendations, the recommendation module 
requires several users to interact among them in a certain period of time in order to perform 
meaningful recommendations. Thus, to evaluate the recommendation module it is necessary to 
consider a validation scenario with minimum requirements already described in Deliverable 7.1. 
(i.e. lasting enough and with a relevant sample of users involved). For this reason, the evaluation 
of the recommendation module will be integrated during the Trials and Pilots (WP7) as an 
additional validation objective (jointly with other HELIOS services and technologies). These 
validation activities will allow users to rate the relevance and satisfaction levels of the 
recommendations in the foreseen scenarios.  
 
In a first stage, relevance will be measured according to the performance of the recommendation 
module. Recommendations will be displayed to users through interfaces, such as the one being 
developed in T5.3 and users will only be able to accept or reject the recommendation. If the user 
accepts a recommendation it will be considered as relevant, on the contrary if the user rejects a 
recommendation it will be considered as non-relevant. This implicit data gathering will provide 
valuable quantitative data that could potentially be used as a feedback to improve the quality of the 
recommendations.  
 
Satisfaction levels will be measured in a second stage and related to Task 5.3, where a user 
interface will be designed and validated. Task 2.3 will cooperate with Task 5.3 in order to align the 
design for a satisfactory user experience when the recommendation system is involved. The 
HELIOS recommendation module will provide some basic information or explanation of the 
recommendation to help users make a better decision. According to Gedikli et al. [118], 
explanations of recommendations help users make better decisions in contrast to 
recommendations without explanations, for example by increasing the transparency between the 
system and the user and also to increase user satisfaction. It is important to assist users in 
understanding why these items are presented to them. To date, many researchers have 
demonstrated that providing good explanations for recommendations could help inspire users’ trust 
and satisfaction, increase users’ involvement and educate users on the internal logic of the system 
[41,119,120]. 
 
Depending on the UI of an application, satisfaction levels with the recommendation module could 
be added through Likert scale statements in a 10-point rating scale, where 0 refers to strong 
disagreement, 10 to strong agreement and intermediate values to milder sentiments. Prospective 
questions pertaining to the integration of the graph recommendation module and which can be 
rated this way are demonstrated in Table 7.  
 
Further qualitative feedback regarding the recommendation module might be gathered through 
post-test questionnaires (i.e. semi-structured interviews and focus groups) at the end of the trials 
and pilots described in Deliverable 7.1. Such qualitative information might be relevant to better 
understand what is the user’s opinion of the recommendation system and to identify what they like 
and dislike or are expecting from the module, as well as potential aspects of the user's behavior 
that have not been modeled. 
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Table 7. Prospective questions of user feedback 

Question Rating 

I am satisfied with the recommendation provided by the system 0-10 

The information provided for the recommended contact is sufficient for me 0-10 

It is easy for me to inform the system if I dislike/like/postpone the recommended contact 0-10 

The interface helped me understand why the contact was recommended to me 0-10 

The layout of the recommender interface is attractive and adequate 0-10 
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8 Conclusions and Future Work 

8.1 Conclusions 

In this deliverable, we explored graph mining algorithms that can help developers of HELIOS 
applications integrate community discovery and social action recommendation capabilities. 
 
To do this, we began by researching promising state-of-the-art graph mining algorithms that can 
account for the temporal evolution of social networks and selected those that best suit the 
aforementioned graph mining tasks, namely community detection for graph structure analysis and 
graph neural networks for mining social actions. These algorithms rely on different forms of 
computation centralization, which make them inapplicable to the decentralized setting of HELIOS. 
To tackle this problem, we proposed novel adaptations and communication protocols that allow 
their adoption in the more challenging decentralized setting of HELIOS. When underlying profiling 
mechanisms are employed during this process, we take care to also introduce privacy-friendly 
practices that provide plausible deniability and differential privacy of user data. 
 
From a practical standpoint, we provided a decentralized community detection protocol and a first 
implementation of a graph recommendation module that performs interaction recommendation in a 
fully decentralized manner. The dynamic community detection and management protocol we 
propose detects contextual local communities which can be used as support for the other modules 
in decision making, such as information diffusion strategies, recommendations, context 
categorization, and so on. Whereas the graph recommendation module extracts latent user 
preferences and leverages those to understand whom users want to interact with among older 
acquaintances. We also extended the CEN management library to better accommodate modular 
attachment of external data structures, such as those used to store the learned parameters of the 
social graph recommendation module. 
 
Experiments on the graph recommendation module show that the top three recommendations 
provided by the algorithms of its beta release correctly comprise re-enacted older interactions 
more than 35% of the time. Hence, they are of similar efficacy to the centralized GNN mining 
architectures we found to best capture user preferences. 
 
Finally, we pointed out the practical usage of our research within HELIOS’s use cases and other 
future applications, as well as what kind of mechanisms these need to employ to gather user 
feedback over the quality of social graph mining algorithms.  

8.2 Future Work 

In addition to the work of this deliverable, there exist promising research and development 
directions that have yet to be fully explored but which we plan to address in the next period. 
 
First, the implementation of the decentralized dynamic community discovery protocol is not yet 
finalized. It is currently undergoing an internal testing phase using peer-to-peer simulators, with all 
the features implemented and individually tested. Once the testing is finished, the protocol will be 
integrated in the platform and the results of the mining process of the module will be made 
available for the other modules. Moreover, we expect to receive feedback from the modules using 
this community detection module, and possibly update the protocol and the algorithm we initially 
developed for the module. We will investigate possible optimizations in the protocol such that 
computation, storage, and communication resources are saved whenever possible. Also the 
algorithm we presented may be subject to further optimizations and also consider various 
evolutions, such as more advanced community definitions, and algorithms to detect the defined 
structure. 
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Furthermore, the mined understanding of user preferences extracted through our proposed 
decentralized GNN algorithm can be used to perform relation recommendations. A prerequisite in 
doing so is that the node discovery mechanism of the communication module needs to be explicitly 
defined and integrated in the HELIOS core before we explore protocols and mining methods built 
on top of it that could help bring user attention to others who (by the definition of relations) are not 
their graph neighbors. In theory, the preferences extracted from user interactions could also be 
used for recommending relations. However, relations may be driven by non-captured preferences 
spanning larger windows of time. To enable experimentation with alternatives that can capture 
other types of preferences we have not yet considered, we also plan to provide a more general 
Java factory pattern to help construct different GNN architectures in future releases of the graph 
recommendation module. This can be used alongside the peer-to-peer simulation to identify 
promising alternatives to existing mining algorithms. 
 
Given that we provide a general graph recommendation framework, we will also continue to 
research potential improvements to the involved mining algorithms and protocols. For example, we 
have already performed a preliminary investigation over signal processing practices that can 
improve the quality of recommendations of ranking algorithms based on information diffusion [121] 
and we could translate those to GNNs. Or we could move the recommendation algorithms to 
super-peers that manage communities and perform the mining on their managed communities, 
hence taking advantage of many more potential recommendations. An additional practical 
improvement is to further mitigate parameter exchanges of the recommendation parameter 
exchange protocol. That protocol has already reduced the communication overhead to exchanging 
parameters only when new interactions occur, but it could also potentially perform the exchanges 
only once every few interactions, when parameters have significantly changed from their previous 
values. 
 
As a final remark, we recognize that it is of interest to explain the reasoning behind the mining 
outcome to users. However, the preferences mined with the social graph recommendation module 
cannot be directly explained in human terms, for example because they partially capture a 
machine-driven understanding of other users’ actions. To solve this problem, we will work on 
identifying the preferences that contribute the most to recommendations and identify how much 
alters pertain to those. As an intermediate step that will be utilized by this mechanism, we have 
already researched unsupervised evaluation of graph diffusion algorithms [122] with which we aim 
to select the best diffusion algorithms for finding the alters most related to the latent preferences. 
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Annex I – CEN Management Library API 

Details of the core module eu.h2020.helios_social.core.contextualegonetwork, which implements 
the improved version of the CEN management library. 

Table 8. Package eu.h2020.helios_social.core.contextualegonetwork entities. 

Class or Interface Description 

Context This class implements a context of the Contextual Ego Network. 

ContextualEgoNetwork This class implements a Contextual Ego Network, which is the 

conceptual model of our Heterogeneous Social Graph. 

ContextualEgoNetworkListener An interface of listeners that can be added on a 

ContextualEgoNetwork to listen to structural changes. 

CrossModuleComponent This is a base class used by HELIOS components, such as Node 

and Edge that need to store data coming from multiple modules. 

Edge This class implements an edge of the social graph. 

Interaction This class implements a generic interaction between two entities 

in a context. 

Node This class implements a node in the social graph. 

Serializer This class supports dynamic object serialization, with the 

capability of reloading only parts of objects and saving only 

particular objects. 

Utils This class implements static error parsing and logging methods, 

with the ability to suppress errors that can be silently handled 

during deployment. 

ContextualEgoNetworkListener implementations 

listeners.ActivityListener This class implements a ContextualEgoNetworkListener that 

counts the number of ego and alter interactions over the course 

of the week and time of day. 

listeners.AsyncRunListener This class implements a wrapper for 

ContextualEgoNetworkListener instances that performs callbacks 

asynchronously to the main thread. 

listeners.CreationListener This class implements a ContextualEgoNetworkListener that 

assigns node, context and edge timestamps. 

listeners.RecoveryListener This class implements a ContextualEgoNetworkListener that 

automatically safeguards the contextual ego network from failing 

to call save before terminating the application. 
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Table 9. ContextualEgoNetwork class methods. 

Method Description 

addListener Attaches a ContextualEgoNetworkListener to the contextual ego 

network, which will be called on the respective events. 

cleanup Applies Context.cleanup on all contexts. 

createOrLoad Instantiates a ContextualEgoNetwork at the given storage path 

by creating a new ego node with the given data. 

getAlters Retrieves the alters (not including the ego). 

getContextBySerializationId Searches all ContextualEgoNetwork contexts for one with the 

same serializationId assigned to it during serialization 

getContexts Method to grant safe access to all contexts of the contextual 

ego networks 

getCurrentContext Method to return the current context. 

getEgo Retrieves the ego node. 

getListeners Obtain all listeners attached to the contextual ego network 

getOrCreateContext Returns a context that satisfies data.equals(context.getData()) . 

getOrCreateNode Searches for a node with the given id and, if no such node is 

found, creates a new one using the given data. 

getPath Retrieves the path folder in which the ego network is saved by 

its serializer. 

getSerializer Retrieves the Serializer responsible for saving and loading the 

ego network and its entities. 

removeContext Removes a given context from the ContextualEgoNetwork's 

contexts. 

removeNodeIfExists Removes a node from the contextual ego network given its 

serialization id, which is the same as Node.getId. 

save Makes the getSerializer save the contextual ego network. 

setCurrent Method to set a context as the current context. 
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Table 10. CrossModuleComponent abstract class methods. 

Method Description 

assertSameContextualEgoNetwork Checks that this component belongs to the given contextual 

ego network. 

assertSameContextualEgoNetwork Checks that this component belongs to the same ego 

network as the compared component 

getContextualEgoNetwork  Retrieves the contextual ego network instance in whose 

hierarchy the component resides 

getOrCreateInstance Retrieves a given class’s instance stored in the component. 

 

Table 11. Context class methods (extends CrossModuleComponent). 

Method Description 

addEdge Creates an edge between two nodes of the social graph. 

addNode Adds a new node to the context. 

addNodeIfNecessary Adds a node to the context if it’s not already part of it. 

cleanup Saves the context to a file and removes its data memory and it 

from the dynamic serializer (so that universal save does not save 

it anymore) 

getData Retrieves a unique data object stored in the context. 

getEdge Retrieves the edge (if it exists) between two nodes in the context. 

getEdges Retrieves a shallow copy of the context's edge list. 

getInEdges Retrieves the incoming edges of a given node. 

getNodes Retrieves a shallow copy of the context's node list. 

getOrAddEdge Retrieves the edge (if it exists) between two nodes of the social 

graph or creates it if it doesn't exist. 

getOutEdges Gets the outgoing edges of a given node 

getSerializationId Retrieves the id assigned to this context during serialization. 

isLoaded Checks whether the context has been loaded in memory. 

load Loads the context from the given serializer in memory. 

removeEdge Removes an edge between a source and a destination node. 

removeNode Removes a node and its edges from the context 

file:///C:/Users/manios/Documents/eclipse/Contextual-Ego-Network/doc/eu/h2020/helios_social/core/contextualegonetwork/CrossModuleComponent.html%23assertSameContextualEgoNetwork-eu.h2020.helios_social.core.contextualegonetwork.ContextualEgoNetwork-
file:///C:/Users/manios/Documents/eclipse/Contextual-Ego-Network/doc/eu/h2020/helios_social/core/contextualegonetwork/CrossModuleComponent.html%23assertSameContextualEgoNetwork-eu.h2020.helios_social.core.contextualegonetwork.CrossModuleComponent-
file:///C:/Users/manios/Documents/eclipse/Contextual-Ego-Network/doc/eu/h2020/helios_social/core/contextualegonetwork/CrossModuleComponent.html%23getContextualEgoNetwork--
file:///C:/Users/manios/Documents/eclipse/Contextual-Ego-Network/doc/eu/h2020/helios_social/core/contextualegonetwork/CrossModuleComponent.html%23getOrCreateInstance-java.lang.Class-
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removeNodeIfExists Removes a node and its edges from the context if its part of it 

save If the context is loaded, it is serialized to a file. 

 

Table 12. Node class methods (extends CrossModuleComponent). 

Method Description 

getData Retrieves the data object describing the node. 

getId Retrieves the identifier of the node used for serialization. 

 

Table 13. Edge class methods (extends CrossModuleComponent). 

Method Description 

addDetectedInteraction Adds a new interaction with no duration on this edge at the 

current timestamp. 

addInteraction Creates and adds a new interaction on this edge. 

getAlter Retrieve the edge's endpoint that is not the ego of the edge 

context's ego network if getEgo finds an ego endpoint. 

getContext Retrieves the context the edge belongs to. 

getDst Retrieves the destination node of the edge. 

getEgo Retrieves the ego node of the edge context's ego network if that 

ego a member of the edge. 

getInteractions  Retrieves a shallow copy of the edge's interaction list. 

getSrc Retrieves the source node of the edge. 

 

Table 14. Interaction class methods. 

Method Description 

getData Retrieves the interaction's data. 

getDuration Retrieves the duration of the interaction. 

getEdge Retrieves the edge the interaction belongs to. 

getEndTime Retrieves the timestamp of the end of the interaction. 

getStartTime Retrieves the timestamp of the start of the interaction. 

getType Retrieves the class name of the interaction’s data. 

file:///C:/Users/manios/Documents/eclipse/Contextual-Ego-Network/doc/eu/h2020/helios_social/core/contextualegonetwork/Interaction.html%23getData--
file:///C:/Users/manios/Documents/eclipse/Contextual-Ego-Network/doc/eu/h2020/helios_social/core/contextualegonetwork/Interaction.html%23getDuration--
file:///C:/Users/manios/Documents/eclipse/Contextual-Ego-Network/doc/eu/h2020/helios_social/core/contextualegonetwork/Interaction.html%23getEdge--
file:///C:/Users/manios/Documents/eclipse/Contextual-Ego-Network/doc/eu/h2020/helios_social/core/contextualegonetwork/Interaction.html%23getEndTime--
file:///C:/Users/manios/Documents/eclipse/Contextual-Ego-Network/doc/eu/h2020/helios_social/core/contextualegonetwork/Interaction.html%23getStartTime--
file:///C:/Users/manios/Documents/eclipse/Contextual-Ego-Network/doc/eu/h2020/helios_social/core/contextualegonetwork/Interaction.html%23getType--
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Table 15. ContextualEgoNetworkListener interface methods. 

Method Description 

init Called when the listener is added to a contextual ego network. 

onAddNode Called when a node is added to a context (after the node is 

added). 

onCreateContext Called when a new context is created by the 

ContextualEgoNetwork.getOrCreateContext method (after the 

created context is added to the network). 

onCreateEdge Called when an edge is created in a context using the 

Context.addEdge method (after the edge is created). 

onCreateInteraction Called when an interaction is created (after it has been added to 

an edge). 

onCreateNode Called when a new node is created by the 

ContextualEgoNetwork.getOrCreateNode method (after the 

created node is added to the network). 

onLoadContext Called when the Context.load() method of a context is called. 

onRemoveContext Called when a context is removed from the contextual ego 

network by the ContextualEgoNetwork.removeContext method. 

onRemoveEdge Called when an edge is removed from a context using the 

Context.removeEdge(Node, Node) method. 

onRemoveNode Called when a node is removed from a context using the 

Context.removeNode. 

onRemoveNode Called when a node is removed from the contextual ego network 

by the ContextualEgoNetwork.removeNodeIfExists method. 

onSaveContext Called when the Context.save method of a context is called (after 

the save has completed). 
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Annex II – Graph Recommendation Module API 

Details of the extension module’s eu.h2020.helios_social.modules.socialgraphmining beta release, 
which implements the social graph recommendation algorithms described in this deliverable. 
Classes not needed to understand and work with the module are omitted. 

Table 16. Package eu.h2020.helios_social.modules.socialgraphmining entities. 

Class or Interface Description 

Measure Provides an abstraction of evaluation measures used to 

assess implementations of SocialGraphMiner. 

SocialGraphMiner Provides an abstraction of the basic capabilities and 

requirements of graph mining algorithms. 

Measure classes. 

measures.Accumulate This Measure is used to average the outcome of a base 

measure over given frames of time. 

measures.HitRate This Measure provides a HitRate@k evaluation, provides a 

HitRate@k evaluation, which measures whether the occurred 

interactions lie among the top k recommendations provided 

by SocialGraphMiner.recommendInteractions. 

GNN Implementation 

GNN.GNNMiner This class provides an implementation of a SocialGraphMiner 

based on a Graph Neural Network (GNN) architecture. 

GNN.ContextTrainingExampleData This class provides a storage structure that organizes a list of 

TrainingExample data to be stored in the contextual ego 

network's contexts. 

GNN.GNNNodeData This class provides a storage structure that organizes an 

embedding and a regularization target of contextual ego 

network nodes. 

GNN.TrainingExample A class models a training example used in GNN architectures 

that can be written a tuple (src, dst, weight, label). 

GNN.operations.Tensor This class provides a native java implementation of Tensor 

functionalities. 

GNN.operations.Loss Provides computation and (partial) derivation of activation 

and cross-entropy loss functions. 

SocialGraphMiner classes. 

SwitchableMiner This class enables switching between different 
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SocialGraphMiner implementations for performing predictions 

while training them at the same time. 

RandomMiner This class provides a SocialGraphMiner that recommends 

random interactions among previous ones.  

RepeatAndReplyMiner This class provides a SocialGraphMiner that re-recommends 

previous interactions with alters based on their chronological 

order. 

DifferenceMiner This class provides a SocialGraphMiner that wraps a miner 

predictions so as not to predict the top of a base miner's 

predictions (e.g. DHR@k,withhold of a miner is obtained if 

HitRate@k is calculated over the outcome of a new 

AdditionalDiscoveryMiner(miner, new 

RepeatAndReplyMiner(cen), withhold). 

 
Table 17. Measure class methods. 

Method Description 

evaluateSend Supervised evaluation of interactions sent by each node 

 
Table 18. SocialGraphMiner abstract class methods. 

Method Description 

getContextualEgoNetwork Retrieves the contextual ego network of the graph miner. 

getModelParameters Retrieves the parameters of the mining model that will be 

sent alongside the created interaction. 

newInteraction Makes the graph miner aware that a user received an 

interaction from another user with getModelParameters. 

predictNewInteraction Predicts the weight of performing a SEND interaction 

between the given context's ego and a destination node 

within a given context. 

recommendInteractions Calls predictNewInteraction to score the likelihood of 

interacting with all nodes of the given context. 

 

  

file:///C:/Users/manios/Documents/eclipse/SocialGraphMining/doc/eu/h2020/helios_social/modules/socialgraphmining/Measure.html%23evaluateSend-eu.h2020.helios_social.modules.socialgraphmining.SocialGraphMiner-eu.h2020.helios_social.core.contextualegonetwork.Context-eu.h2020.helios_social.core.contextualegonetwork.Node-
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Table 19. GNN.GNNMiner class methods (extends SocialGraphMiner). 

Method Description 

getModelParameters Retrieves the parameters of the mining model that will be 

sent alongside the created interaction. 

newInteraction Makes the graph miner aware that a user received an 

interaction from another user with 

SocialGraphMiner.getModelParameters. 

predictNewInteraction Predicts the weight of performing a SEND interaction 

between the given context's ego and a destination node 

within a given context. 

setDeniability Enables plausible deniability and differential privacy handling 

by permuting the ego and its alters’ parameters with a 

random noise proportional to a given constant and their 

norm. 

setLearningRate The learning rate (default is 1) from which GNNMiner training 

starts. 

setLearningRateDegradation Performs a fixed degradation of the learning rate over 

training epochs by multiplying the latter with a given factor 

(default is 0.95) after each epoch. 

setMaxTrainingEpoch Limits the number of training epochs (default is 1000) over 

which to train the GNNMiner. 

setMinTrainingRelativeLoss When the GNNMiner is being trained, training stops at 

epochs where abs(previous epoch loss - this epoch loss) < 

convergenceRelativeLoss*(this epoch loss) where losses are 

weighted cross entropy ones. 

setRegularizationAbsorbsion Multiplies regularization tensors with this value before setting 

them as regularization; value of 1 (default) produces 

regularization of calculated alter embeddings towards the 

embeddings calculated on alter devices. 

setRegularizationWeight The regularization weight (default 0.1) to apply during 

training of the GNNMiner. 

setTrainingExampleDegradation Degrades example weights each time a new one is 

generated through newInteraction by calling 

ContextTrainingExampleData.degrade to multiply previous 

weights with the given degradation factor (default is 0.5). 

setTrainingExampleRemovalThres

hold 

Sets the threshold weight at which old training examples are 

removed (default is 0.01). 
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Table 20. GNN.ContextTrainingExampleData class methods (used by GNN.GNNMiner). 

Method Description 

degrade Calls the TrainingExample.degrade operation for each 

TrainingExample in the data. 

getTrainingExampleList Grants direct access to a list of training examples to traverse 

of edit. 

 

Table 21. GNN.TrainingExample class methods (used by GNN.GNNMiner). 

Method Description 

degrade Multiplies the weight of the training example with a given 

factor. 

getDst Retrieves the destination node of the training example 

interaction. 

getLabel Retrieves the binary label the training example interaction 

that indicates whether whether the training example is of an 

existing (1) or non-existing (0) interaction. 

getSrc Retrieves the destination node of the training example 

interaction. 

getWeight Retrieves the weight of the training example. 

 

Table 22. GNN.GNNNodeData class methods (used by GNN.GNNMiner). 

Method Description 

getEmbedding Retrieves the embedding of the node. 

getNeighborAggregation An aggregation of the node's neighborhood embeddings in 

the social graph. 

setLearningRate Sets the learning rate (default is 1) of the updateEmbedding 

operation. 

setNeighborAggregation Sets a neighbor aggregation that can be retrieved with 

getNeighborAggregation. 

setRegularization Sets the regularization (default is a zero vector) of the 

updateEmbedding operation. 
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setRegularizationWeight Sets the regularization weight (default is 0.1) of the 

updateEmbedding operation. 

updateEmbedding Performs the operation embedding += (embedding-

regularization)*learningRate*regularizationWeight-

derivative*learningRate that is a regularized gradient 

descent over a computed derivative, where the area of 

regularization is constrained towards the point set by 

setRegularization. 

 

Table 23. SwitchableMiner class methods (extends SocialGraphMiner). 

Method Description 

createMiner Creates a miner of the given name for the given SocialGraphMiner class 

by calling its constructor that takes a social ego network as parameter. 

getActiveMiner Retrieves the active miner. 

getCreatedMinerNames Retrieves the names of all miners created through createMiner calls. 

getMiner Retrieves a miner previously created with createMiner by its given name. 

getModelParameters Overrides getModelParameters to send the parameters of all miners. 

setActiveMiner Gets a created miner with getMiner and, if such a miner is found, this is 

set as the active miner. 
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