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T
he rising popularity of photo-

sharing applications on the Web

has led to the generation of huge

amounts of personal image collec-

tions. Browsing through image collections of

such magnitude is currently supported by the

use of tags. However, tags suffer from several

limitations—such as polysemy, lack of unifor-

mity, and spam—thus not presenting an ade-

quate solution to the problem of content

organization. Therefore, automated content-

organization methods are of particular impor-

tance to improve the content-consumption

experience. Because it’s common for users to as-

sociate their photo-captured experiences with

some landmarks—for example, a tourist site or

an event, such as a music concert or a gathering

with friends—we can view landmarks and

events as natural units of organization for

large image collections. It’s for this reason

that automating the process of detecting such

concepts in large image sets can enhance the

experience of accessing massive amounts of

pictorial content.

In this article, we present a novel scheme for

automatically detecting landmarks and events

in tagged image collections. Our proposal is

based on the simple yet elegant concept of

image similarity graphs as a means of combin-

ing multiple notions of similarity between

images in a photo collection; in our case, we

use visual and tag similarity. We perform clus-

tering on such image similarity graphs by

means of community detection,1 a process

that identifies on the graph groups of nodes

that are more densely connected to each

other than to the rest of the network. In con-

trast to conventional clustering schemes such

as k-means or hierarchical agglomerative clus-

tering, community detection is computation-

ally more efficient and doesn’t require the

number of clusters to be provided as input. Sub-

sequently, we classify the resulting image clus-

ters as landmarks or events by use of features

related to the temporal, social, and tag charac-

teristics of image clusters. In the case of land-

marks, we also conduct a cluster-merging step

on the basis of spatial proximity to enrich our

landmark model.

Landmark- and event-detection

framework

Image groups are extracted from the original

tagged-image collection by means of a graph-

based image-clustering algorithm that operates

on a hybrid image-similarity graph, including

visual and tag similarities between images. Sub-

sequently, the image clusters found by this al-

gorithm are classified as either landmarks or

events. Landmark clusters are merged on the

basis of their spatial proximity and labeled by

use of some additional tag processing. Figure 1

depicts an overview of the framework.

Hybrid image clustering

The proposed image-clustering framework

relies on the creation of two image graphs rep-

resenting two kinds of similarity between

images, with the similarity being based on

their visual features and their tags. Subse-

quently, community detection, consisting of

an efficient graph-based clustering scheme, is

applied on the union of these two graphs to

identify sets of nodes (that is, the image clus-

ters) that are more densely connected to each

other than to the rest of the network.

For visual-similarity graph creation, we com-

pute the scale invariant feature transform (SIFT)
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for every image. The original 128-dimensional

SIFT descriptors were introduced by Lowe.2 In

our experiment, we accomplish the extraction

using the software implementation of Van de

Sande, Gevers, and Snoek.3 We use a bag-of-

words model with a vocabulary of 500 words

and perform the clustering process using the

k-means algorithm. The assignment of visual

words to image features is performed using

the code word uncertainty model.3 Once the vi-

sual feature vectors are extracted, pairwise sim-

ilarities between images (using some similarity

function, such as cosine similarity or inverse

Minkowsky distance) are computed and the

top-K (K ¼ 20) most similar images for each

image are inserted as its neighbors on the

graph. Subsequently, we specify a visual-

similarity threshold as the median of all simi-

larities in the graph and filter out all edges

falling below this threshold.

We base the creation of the tag similarity

graph on the co-occurrences of tags in the

image contexts. We process the image-tag asso-

ciations to build an inverted index, which

maintains for each tag a list of annotated

images. Each possible pair of images in this

list leads to the creation of an undirected edge

between these two images on the image

graph. The edge is weighted by the number of

times these two images are found together in

a tag list. Tags associated with long image lists

(that is, used frequently to tag images) are

excluded from the process of establishing

links between images on the graph. In that

way, we avoid the insertion of spurious edges

in the tag-similarity graph, which would only

indicate an obvious association between two

images through some generic tag. Moreover,

this process leads to considerable computa-

tional gains because the number of all possible

pairs in a list of length n (that we avoid consid-

ering) is n � (n � 1)/2 ! n2.

After the creation of the tag-similarity

graph, we filter out edges with co-occurrence

frequency below an empirically selected thresh-

old. Such a filtering step is designed to remove

associations among images that are not com-

mon and in addition makes the problem of

graph clustering easier from a computational

perspective because the resulting graph is

sparser.

An alternative, more precise, but also more

computationally expensive approach for deriv-

ing the tag-similarity graph is by use of tag-

based features. A typical approach often used

in related problems4 is to consider the image-

tag occurrence matrix formed by the given col-

lection of tagged images. In this way, images

are represented as vectors in the space of

unique tags. Due to the high dimensionality
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of the raw vector space, it’s customary to apply

an appropriate dimensionality reduction tech-

nique, such as latent semantic indexing (LSI),

which projects the raw tag space on a space of

much fewer latent dimensions. Then, pairwise

similarities between images are computed in

the latent space and the top-K most similar

images for each image are inserted as its neigh-

bors on the graph. Finally, thresholding similar

to the one used for the visual graph creation is

applied. Such an approach results in a more

accurate and noise-resilient depiction of tag-

based image similarities, but it comes at a sub-

stantial computational overhead.

Once the visual- and tag-similarity graphs

are created, they are merged into a hybrid

image graph comprising the union of their

nodes and the union of their edges. On the

basis of these three image similarity graphs,

we perform graph-based image clustering by

use of community detection, that is, by identi-

fying regions on the graph that are more

densely connected to each other than to the

rest of the network.1 We have experimented

with the structural clustering algorithm for net-

works (SCAN) approach,5 which is based on the

concept of structural similarity between nodes.

The structural similarity between nodes u and w

is defined as

�ðu;wÞ ¼
j�ðuÞ \ �ðwÞj
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

j�ðuÞj � j�ðwÞj
p

where G(u) is the structure of node u, that is,

the set comprising the node’s neighbors and

the node itself as elements. Communities

(clusters) are then defined as groups of �

nodes that have a structural similarity value

of at least e between each other ((�, e)-cores5).

The rest of the nodes on the graph are not

assigned to any cluster, leading in that way to

clusters of high coherence, meaning they con-

tain members that are highly related to each

other.

Compared to conventional schemes used

previously for the problem of image clustering—

such as k-means and hierarchical agglomera-

tive clustering—community detection offers

improved computational efficiency. With this

approach, there’s no need to know the num-

ber of clusters to be extracted. In addition,

this approach offers the possibility of tuning

cluster coherence by means of the two parame-

ters (� and e). Increasing � results in fewer and

larger communities while increasing e makes

the clustering scheme more selective and

leaves more images unassigned to any cluster.

The option of keeping unrelated images out

of the produced cluster structure is particularly

important in the context of social-content

sources because such content often entails sig-

nificant amounts of noise.

In terms of computational demands, the

method used in this study scales with O(km � m),

where km stands for the average degree of

the graph and m is the number of graph

edges. In practice, because km is upper-bounded

due to the nature of the graph-construction

process (retaining the top-K most similar images

per image), the complexity of the clustering

method is O(m). This method offers a much

lower complexity than conventional clustering

schemes, such as O(I � C � n � D) for k-means

and O(n2 � log n) for hierarchical agglomerative

clustering, where n stands for the number of

objects, I the number of iterations, C the num-

ber of clusters, and D the number of dimen-

sions of the feature vectors. In terms of

memory requirements, the employed community-

detection technique is also advantageous

because it needs approximately 2 � (n þ m)

memory elements, while k-means needs

(n þ C) � D and hierarchical agglomerative

clustering needs n2 memory elements.

Cluster classification

Once clusters of images have been extracted

by the process described previously, each clus-

ter is classified as either a landmark or event.

To proceed with this classification, we employ

several standard classification algorithms

(namely kNN and support vector machine, or

SVM), which use four features for each cluster.

Two of these features, which constitute our

baseline, were introduced in Quack, Leibe,

and Van Gool: the duration of the cluster in

days (computed by subtracting the timestamp

of the earliest image of the cluster from the

one of the most recent), and the ratio of

the number of unique image creators over

the number of images in the cluster.6 We de-

note the first feature as f1 ¼ |D|, where |D|

stands for the number of days spanned by

the image cluster and the second as f2 ¼

|U|/N, where |U| is the number of unique

users contributing images to this cluster and

N is the number of images in the cluster.
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Quack, Leibe, and Van Gool show these fea-

tures to be effective in distinguishing between

landmark and event image clusters. The main

motivation behind their use is that landmarks

are photographed by many people and

throughout long periods. In contrast, events

are usually characterized by a short duration

(up to few days) and covered by few people.

In practice, however, there are numerous

cases that these features are not discriminative

enough for the purpose of landmark and

event classification. For instance, during our

experimentation we ran into several clusters

of images, which, despite the fact that the clus-

ters consisted solely of images by a single user,

depicted landmarks. Had we relied exclusively

on these two features, such cases would have

definitely beenmisclassified. A similar situation

arises in cases where a cluster comprises multi-

ple similar events (for example, weddings) that

span a long period. The features of such a clus-

ter would result in it erroneously being classi-

fied as a landmark in the aforementioned

feature space.

To address this limitation of the cluster fea-

ture space, we propose the use of two additional

features that are based on the cluster images’

tags. Because we have a set of training clusters

at our disposal, labeled as either landmarks or

events, we are able to create two tag profiles

corresponding to the two cluster classes (land-

mark and event) in the form of tag frequency

vectors. After deriving such tag vectors, we

can identify the shared tags and then remove

them from both cluster classes. In that way,

we end up with a tag vector consisting of

landmark-only tags and one consisting of

event-only tags. For instance, landmark-only

tags for an image collection focused on Barce-

lona include the tags ‘‘gaudi,’’ ‘‘architecture,’’

‘‘buildings,’’ ‘‘railway,’’ ‘‘park,’’ and so on;

while event-only tags include ‘‘concert,’’

‘‘music,’’ ‘‘racing,’’ ‘‘live,’’ and so on. Then,

for each cluster, we can count the number of

times that a tag from its images belongs to

one set or another. These two counts constitute

the two additional cluster features.

Landmark cluster merging and labeling

After the cluster-classification step, we apply

an additional cluster-processing step on the

image clusters that depict landmarks. The

need for such a step stems from our observation

that many of the landmark clusters refer to the

same object. To maximize the utility of our

image-organization framework, we would like

all these clusters to be grouped together and

be labeled with a meaningful name.

For the cluster-merging step, we make use of

the geolocation information that is frequently

available in tagged images. Based on this geolo-

cation data, we derive for each image cluster

two geographical features: geographical center

by averaging over the geocoordinates of its geo-

tagged images, and mean distance between

cluster images. Based on these features, we cre-

ate a spatial-proximity graph comprising image

clusters as nodes and their pairwise distances as

edges. We filter out edges exceeding a distance

threshold of 300 meters and nodes, of which

the mean distance between their images is

higher than 300 meters. Once such a graph is

formed, we apply our community-detection

scheme and we merge image clusters belonging

to the same community into metaclusters.

To assign a meaningful label to each meta-

cluster, we aggregate their tags and rank them

by frequency of appearance in the given meta-

cluster. Subsequently, we discard tags that ap-

pear in more than two metaclusters as we

consider these to be generic. Finally, we select

the first five tags as the label of each metaclus-

ter. For summarizing each metacluster, we also

randomly select one image from each of its

containing clusters.

Evaluation

Our goal for the evaluation is to demon-

strate that the resulting image clusters are suit-

able for the task of landmark and event

detection and that detected clusters are classi-

fied with satisfactory precision to these classes.

We conducted two comparisons: image clusters

derived from the proposed graph-basedmethod

were compared to the ones derived from a base-

line clustering scheme, namely k-means, and

the proposed cluster feature space for landmark

and event detection was compared to the base-

line.6 In all cases, the proposed techniques were

able to produce superior results. The evaluation

demonstrates that the detected landmarks can

be automatically labeled and located with satis-

factory precision and that the detected events

span a wide range of types of both public and

personal interest.

We conducted our experiments on a set of

207,750 images collected by querying Flickr

with a geoquery centered on Barcelona. These
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images were uploaded by 7,768 users. We first

processed the image tags by filtering long and

short tags, tags that consisted of both numeric

characters and letters, as well as tags from a

manually created blacklist. We also merged

tags that were lexically similar to each other

as expressed by the Levenshtein distance.

Doing so resulted in a total of 33,959 unique

tags, and 173,825 images tagged with at least

one of them. Subsequently, we formed the

tag-image list index and removed tags used in

more than 350 images. Examples of such tags

that can be considered uninformative for the

particular data set include ‘‘Barcelona,’’

‘‘Spain,’’ and ‘‘Catalunya.’’ This step reduced

the unique tags to 33,367 and the images

tagged with at least one of them to 120,742.

Furthermore, out of the original set of

207,750 images, there were 195,308 geotagged

images.

As a first step, we conducted a comparison

between the cluster quality derived from the

community-detection scheme and the conven-

tional k-means clustering that is often used

other work.7,8 With the data set images as a

starting point, we first formed the image-

similarity graphs according to the process

described previously. We created four image-

similarity graphs for representing the visual

similarity (VIS); the two variants of tag similar-

ity, namely co-occurrence based (TAG-C) and

LSI-based (TAG-LSI); and hybrid similarity

(HYB) between images. The VIS and TAG-LSI

graphs were built by use of the inverse city-

block distance (that is, Minkowsky distance

with p ¼ 1). We built the HYB graph by consid-

ering the union of VIS and TAG-C graphs. Their

sizes were respectively (137K, 2M), (83K, 3.6M),

(92K, 1.3M), and (162K, 5.5M), where K stands

for thousand, M for million, (n, m) for a graph

of n nodes and m edges.

Subsequently, we applied the community-

detection algorithm on each of the three graphs

(for clustering the graphs, we set � ¼ 4 and e ¼

0.6.). To have a direct comparison with k-

means, we also clustered separately the images

contained in the VIS graph and the ones con-

tained in the TAG-LSI graph using the SIFT-

based visual and latent tag features, respec-

tively. We set the number of clusters for

k-means to be M, 2 � M, and 3 � M, where M is

the number of communities produced by the re-

spective community-detectionmethod. Because

there is no straightforward means of combining

the visual and tag-based features by use of

k-means, we compare separately the clustering

performance for each kind of feature. Thus, we

ended up with two different groups of cluster-

ing outputs: the ones based on visual features,

namely SCANVIS and KMVIS,xM (where x ¼ 1,

2, 3); and the ones based on tag features,

namely SCANTAG-C, SCANTAG-LSI, and KMTAG,xM,

(where x ¼ 1, 2).

For each clustering output, we derive two

measures of quality: geospatial cluster coher-

ence (GCC) and subjective cluster quality

(SCQ). GCC is computed by use of the geotag-

ging information available for most images in

our collection. More specifically, for each clus-

ter we compute the average geodesic distance

between the cluster members and the cluster

geographical center. Then, GCC is expressed

as the mean and standard deviation of this

quantity across all clusters. GCC constitutes

an objective measure that can be automatically

computed for the whole data set and thus

makes possible a large-scale evaluation of the

clustering quality. In contrast, SCQ was eval-

uated by human inspection of the clustering

results on a set of 33 visual and 40 tag-based

and randomly selected clusters.

More specifically, for each type of feature

(visual and tag) a number of clusters (33 visual

and 40 tag-based) were randomly selected from

the results of SCAN and the corresponding clus-

ters (those with the highest overlap in terms of

contained members) from the KM results were

also selected. We showed the different clusters

to the users, asking them to mark the images

in each cluster that weren’t relevant to the

main object or entity depicted by the cluster.

The evaluators were not aware of the method

that produced the clusters. Once the irrelevant

images were marked for each cluster, it was pos-

sible to compute the typical information-

retrieval performance measures (precision, re-

call, and F-measure) for each of the competing

methods (recall was computed with reference

to the total number of relevant images across

the different clusterings). In addition, because

each cluster was subjected to evaluation by

two independent evaluators, it was possible to

compute a �-statistic for each method (interan-

notator agreement). Table 1 presents the col-

lected results.

Observation of the tabulated results reveals

that image clusters produced by the employed

community-detection method (SCAN) are
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more precise than the ones produced by

k-means clustering. In terms of the GCC mea-

sure, the SCAN-produced clusters are clearly su-

perior to the k-means ones, which indicates

better geographical focus and thus better corre-

spondence to landmarks and events (which are

usually highly localized). The difference in GCC

is especially pronounced for visual clusters. The

actual GCC performance of k-means clustering

is worse than presented in Table 1 because in

the computation of �d we also included one-

member clusters (that obviously have �d ¼ 0),

which constitute a large portion of the k-

means results and thus reduce the average �d.

In terms of SCQ (subjective evaluation), once

more the SCAN clusters appear to be of higher

precision than the competing k-means ones.

Clusters produced by k-means present consider-

ably higher recall. However, the low �-statistic

values that characterize k-means clusters indi-

cate that users don’t agree on whether the

images included in the clusters are related to

each other. In contrast, there is a high inter-

annotator agreement with respect to SCAN clus-

ters. That means that these clusters are easy to

interpret by users. Another interesting observa-

tion pertains to the cluster quality derived by

each variant of tag-based graph similarity,

namely plain co-occurrence and LSI. There is a

clear cluster quality advantage in favor of LSI,

which comes at a significant computational

cost during the graph construction step.

We also conducted a similar study where we

compared the quality of clusters derived by

clustering the VIS, TAG-C, and HYB image

similarity graphs. We found that the best

information-retrieval performance is achieved

by use of the hybrid similarity graph. More spe-

cifically, the F-measure of the HYB image clus-

ters was 28.5 percent higher than the one of

VIS clusters and 19.8 percent higher than the

one of TAG-C clusters. The interannotator

agreement for these results was substantial, be-

cause in all cases the obtained �-statistic values

were above 0.6. These results are consistent

with our previous study.9

We also inspected the distribution of the dif-

ferent clusters (visual, tag, and hybrid) in the

feature space of Quack, Leibe, and Van Gool.

Figure 2 (next page) presents a comparison

among the three clusterings, revealing conspic-

uous differences. One could postulate that vi-

sual clusters largely correspond to landmarks,

while tag clusters mainly correspond to events.

It’s the hybrid clusters that span the whole fea-

ture space and thus correspond to both land-

marks and events. Thus, we use hybrid

clusters for the rest of the evaluation study.

To further quantify the purity of the result-

ing clusters in terms of correspondence to land-

marks and events, we asked two users to look at

the images of 60 hybrid clusters and provide a

characterization of landmark or event at

the image level—that is, to decide whether

each image (seen in the context of the rest of

the images belonging to the same cluster)

depicted a landmark or an event. The annota-

tion set of 60 clusters consisted of 1,127 images.

For each cluster, we computed the percentage of

images that were annotated as landmarks and
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Table 1. Cluster quality comparison between SCAN and k-means approaches. The performance is

evaluated separately on visual and tag-based features and for multiple values of k. We could not include

k-means with K � 3M in the tag cluster comparison because the large number of K led to an estimated

execution time of over a week.

Clustering method

Geospatial cluster

coherence

(m stands for meters) Subjective cluster quality

Cluster type (number of clusters) md (m) sd (m) P R F �

Visual SCANVIS (560) 357.1 1185.7 1.000 0.110 0.199 1.000

KMVIS,1M (560) 2470.0 1734.4 0.806 0.324 0.462 0.226

KMVIS,2M (1,120) 2249.7 1893.7 0.899 0.294 0.443 0.544

KMVIS,3M (1,680) 2183.1 2027.4 0.929 0.271 0.420 0.719

Tag SCANTAG-C (1,774) 767.4 1712.0 0.898 0.253 0.394 0.642

SCANTAG-LSI (4,027) 456.3 1151.1 0.950 0.182 0.306 0.820

KMTAG,1M (4,027) 766.8 1762.7 0.848 0.307 0.451 0.564

KMTAG,2M (8,054) 563.2 1528.7 0.903 0.258 0.401 0.707
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the percentage of images that were annotated as

events. In only one cluster did one of the two

annotators find that the percentage of land-

mark images (57.1 percent) was approximately

equal to the number of event images (42.8 per-

cent). The same annotator found another clus-

ter consisting of 26.3 percent landmark images

and 73.7 percent event images. For the rest of

the clusters, both annotators annotated the

large majority of images (>80 percent) to be-

long to only one of the two classes. Thus, it’s ev-

ident that the vast majority of clusters are pure.

That is, they largely contain images of the same

class, and can thus be considered suitable for

the task of landmark and event classification.

Subsequently, we annotated all 2,056 image

clusters derived from clustering the hybrid sim-

ilarity graph. Each image cluster could be classi-

fied as landmark or event, but it was also

possible to assign no class to the cluster if the

cluster didn’t contain images related to some

specific entity (a landmark or an event). Out of

the 2,056 clusters, 969 were landmarks, 636

were events, and 451 were left unassigned. Sub-

sequently, we trained a set of four variants of

standard classification algorithms using land-

marks and events as the classes of interest. We

left out the unassigned clusters. We used the

following four classifier variants: k-nearest

neighbor with k ¼ 3 (3NN) and k ¼ 5 (5NN);

and SVM with a linear kernel (SVM-LIN) and

a radial basis function kernel (SVM-RBF).

We used ten random 50-50 and 66-33 splits

of the ground truth in the training and test set

and computed mean and standard deviation

values for the precision, recall, F-measure, and

accuracy across the splits. We repeated the

experiments for the two-dimensional feature

space of Quack, Leibe, and Van Gool, and our

extended cluster feature space (incorporating

tag information). Figure 3 depicts the results.

Careful inspection of the results reveals that
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Figure 2. Comparison between image clusters derived from different similarity graphs: (a) SCANVIS, (b) SCANTAG-C, and SCANHYB.

Figure 3. Comparison of classification performance between the feature space of Quack, Leibe, and Van Gool6 (in blue) and our

extension (in red). For each bar, the standard deviation is plotted in gray at the top. Only the (a) F-measure and (b) accuracy

diagrams are presented for the 50-50 split. A similar picture holds for the diagrams of precision, recall, and the 66-33 split.

IE
E
E
M
u
lt
iM

e
d
ia

58



remarkable performance gains can be observed

for all classifiers and for both training and test

splits thanks to the use of the proposed

extended feature space. For instance, there

is an increase of almost 23 percent in the

F-measure of the approach using k-nearest

neighbor with k ¼ 3 for both splits and a cor-

responding increase in the order of 16 percent

for the SVM-RBF classifier reaching an

F-measure of 87 percent. Therefore, we can con-

clude that the proposed tag-based features are

of particular importance for the success of land-

mark and event classification.

Following the cluster-processing approach

discussed previously, we formed the spatial-

proximity graph containing the image clusters

corresponding to landmarks. The graph com-

prises 590 nodes and 10,849 edges. By cluster-

ing this graph, we obtained 38 metaclusters.

Examination of these metaclusters revealed

that 34 of them corresponded to well-known

landmarks or points of interest in Barcelona.

Five out of the 34 well-recognized metaclusters

contained image clusters that didn’t corre-

spond to the metacluster landmark (they were

placed in the same metacluster due to their spa-

tial proximity with the geographical cluster

center). For 29 landmark clusters, for which

we could find their actual location on the

Web, the automatically generated cluster cen-

ter fell on average within 80 meters of the

actual landmark position. Such accuracy is sat-

isfactory given the fact that some of the land-

marks, such as parks, palaces, and so on, span

many hundreds of meters. Figure 4 illustrates

the location of the top five landmark
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Supplementary Video
The video at http://www.computer.org/multimedia/papadopoulos/

webextra illustrates a new approach for mining landmarks and events in

large, tagged photo collections. Starting from the need for such an

approach in today’s increasingly media-abundant landscape, the video

proceeds through a step-by-step explanation of the proposed approach.

It describes the photo similarity graph creation process, the graph-based

clustering algorithm, and the photo-cluster classification. Further, the

video presents the obtained evaluation results and showcases ClustTour,

an online application facilitating the discovery of interesting spots and

activities in a travel destination.

4
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5
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4

Parc Guell Landmarks Events Theater

Sagrada Familia Music

Casa Mila Conference

Casa Batlló Traditional

Barcelona Cathedral Racing

Figure 4. Positions of the top five landmarks as identified by the proposed cluster merging and labeling scheme and five randomly

selected events. For each landmark and event, three randomly selected images are shown. The landmark titles were automatically

extracted, while the event types were contained as tags associated with images of each respective cluster.
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metaclusters detected by this step along with

three images and a tag automatically selected

for each one of them.

Manual examination of the 636 identified

event clusters revealed that a large number

(43.1 percent) of identified events were related

to music (such as concerts and DJ sets). Further-

more, a substantial number of events (9.3 per-

cent) were related to personal events (such as

going out with friends). Other important cate-

gories of events with respect to their presence

in the data set were related to conferences

(6.5 percent), traditional and local events (4.6

percent), car and motorbike races (3.3 percent),

family occasions (2.9 percent), sailing trips and

races (2.8 percent), football matches (2.6 per-

cent), festivals (2.4 percent), expositions (2.3

percent), dancing acts (1.5 percent), and theat-

rical plays (1.5 percent). Five examples of such

events are presented in Figure 4.

Conclusions

Landmark and event detection is a valuable

tool for organizing large collections of user con-

tributed images. We have exploited the results

of this work in an online travel application

for place exploration, named ClustTour.10 In

the future, we plan to investigate the impact

of different image similarity graph construction

strategies on result precision. For instance, per-

sonal image upload and tagging styles will be

taken into account when computing pairwise

image similarities. Furthermore, we are plan-

ning to extend our framework to the analysis

of user contributed videos. MM
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Related Work
Landmark and event detection have been usually dealt

with as separate problems; for instance, several works1-3

deal with the problem of landmark recognition, while

other works4-6 address the problem of event detection in so-

cial media. Moreover, there have been studies that consider

the identification of event and place semantics as parts of the

same problem.7,8

Landmark detection

The majority of landmark-detection approaches to date

exploit the abundance of metadata-rich photos in social-

content sources. More specifically, they make use of the vi-

sual redundancy in the photo content (that is, many photos

that depict the same scene), as well as of the tags and the

geolocation information of photos in order to select subsets

of images that potentially correspond to landmarks. For in-

stance, one approach2 first clusters a collection’s photos

by use of gist descriptors. It then refines the clustering by

means of sophisticated geometric verification, and finally

uses tag-based filtering to further enhance the quality of

the landmark model. However, it neither addresses the prob-

lem of identifying image sets that correspond to landmarks

(they experiment with landmark-focused data sets) nor

does it contain any discussion on the pertinent problem of

event detection.

An alternative approach3 takes a given set of geotagged

photos, identifies landmark and geographic tags, then per-

forms a visual clustering of the images tagged with these

tags, and finally ranks the derived clusters and the images

within them in order to select representative snapshots of

the identified landmarks. A similar approach,1 which apart

from a social-content source, uses external online sources

(travel guides and image search engines) to enrich the land-

mark name thesaurus and image collection to be analyzed.

Both of these approaches are different from ours, because

they perform image clustering only by use of visual similar-

ities and use tag information only for the identification of

landmark names. Furthermore, they don’t address the prob-

lem of event detection.

Event detection

The simplest case for event detection deals with event de-

tection on single images. Joshi and Luo6 attempt to classify

individual images from Flickr into a predefined set of event

and activity classes by making use of both visual features

and statistical associations between geotags and events.

However, they don’t exploit the temporal information of

images nor do they consider multiple images that corre-

spond to the same event as a single entity. Thus, their results

are highly sensitive to noise, which is more conspicuous

when media documents are analyzed in isolation.

Other work4 attempts to identify events through the tem-

poral and spatial features of tag usage. First, event tags are

identified by means of a discrete wavelet transform on the

temporal and locational distributions. Subsequently, a dis-

tinction between periodic and aperiodic event tags is

made, and finally image groups that correspond to events

are identified on the basis of the image tags. The work pre-

sented in the main article is different from certain

approaches4,8 because we directly pursue event identification
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on the image domain and not by use of tags. In another

study,5 Becker et al. present a series of experiments where

they test different image-similarity learning strategies to clus-

ter event images into sets corresponding to the real-world

events they describe. However, they don’t consider the prob-

lem of distinguishing between event and landmark images,

nor do they make use of the visual similarities between

images.

Landmark and event detection

There are only few works that consider the problems of

landmark and event detection in tandem. In one approach,8

the authors present a set of methods for associating place

and event semantics to tags by means of statistical signifi-

cance tests that identify temporal and spatial segments

with tag usage distributions that are different than expected.

Thus, their approach is largely different from ours because

they don’t directly address the problem of landmark and

event detection, focusing instead on tag classification for

the classes ‘‘place’’ and ‘‘event.’’

Quack, Leibe, and Van Gool7 employ a clustering scheme

to group images into coherent clusters by use of both visual

and textual (title, description, and tag) features. Then, hier-

archical agglomerative clustering is used and a standard clas-

sifier is trained to distinguish between objects and events.

Finally, the detected objects are mapped when possible to

appropriate Wikipedia articles. Our work employs a similar

rationale for distinguishing between landmarks and events,

but we employ community detection for clustering images

and devise a more sophisticated cluster feature space,

which leads to better results.
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