
AutoGF: Runtime Graph Filter Tuning
for Community Node Ranking

Emmanouil Krasanakis, Symeon Papadopoulos, and Ioannis Kompatsiaris

Abstract A recurring graph analysis task is to rank nodes based on their relevance
to overlapping communities of shared metadata attributes (e.g. the interests of social
network users). To achieve this, approaches often startwith a fewexample community
members and employ graph filters that rank nodes based on their structural proximity
to the examples. Choosing betweenwell-knownfilters typically involves experiments
on existing graphs, but their efficacy is known to depend on the structural relations
between community members. Therefore, we argue that employed filters should be
determined not during algorithmdesign but at runtime, upon receiving specific graphs
and example nodes to process. To do this, we split example nodes into training and
validation sets and either perform supervised selection betweenwell-knownfilters, or
account for granular graph dynamics by tuning parameters of the generalized graph
filter form with a novel optimization algorithm. Experiments on 27 community node
ranking tasks across three real-world networks of various sizes reveal that runtime
algorithm selection selects near-best AUC and NDCG among a list of 8 popular
alternatives, and that parameter tuning yields similar or improved results in all cases.

Keywords Node ranking · Graph signal processing · Parameter tuning

1 Introduction

When graph nodes are attributed (e.g. they are social network users and attributes are
their areas of interest), they can be organized into communities of shared metadata

E. Krasanakis (B) · S. Papadopoulos · I. Kompatsiaris
Centre for Research and Technology Hellas, Information Technologies Institute, Thessaloniki,
Greece
e-mail: maniospas@iti.gr

S. Papadopoulos
e-mail: papadop@iti.gr

I. Kompatsiaris
e-mail: ikom@iti.gr

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2023
H. Cherifi et al. (eds.), Complex Networks and Their Applications XI,
Studies in Computational Intelligence 1078,
https://doi.org/10.1007/978-3-031-21131-7_15

189

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-21131-7_15&domain=pdf
mailto:maniospas@iti.gr
mailto:papadop@iti.gr
mailto:ikom@iti.gr
https://doi.org/10.1007/978-3-031-21131-7_15

190 E. Krasanakis et al.

attributes [26]. By definition, these communities are not tied to specific high-level
structural characteristics, such as strong connectivity between nodes. Still, it is com-
monly accepted that attributes could correlate to low-level dynamics leading to the
creation of edges, in which case graph structure can help predict metadata. For exam-
ple, nodes of social network graphs often exhibit homophilous behavior [23], a term
describing their tendency to form edgeswith others of similar attributes. Then, tightly
knit structural communities become good predictors of parts of -but not of whole-
metadata communities [35].

A recurring graph analysis task, which we tackle in this work, is to rank nodes
based on their relevance to communities sharing metadata attributes of interest [16,
19, 29, 32, 33]. Ranking provides greater granularity than clear-cut predictions, for
example in the scope of recommending more community members. It also respects
overlaps and fuzzy boundaries between communities [21]. Furthermore, node rele-
vance scores obtained during ranking are often the core of more sophisticated sys-
tems, such as graph neural networks for classification after initial neural estimations
[13, 15] and post-processing strategies that threshold transformations of scores to
predict community membership [3].

A popular use case for community node ranking, which we also follow, is to
start with a few known community members serving as examples, and inferring the
relatedness of all nodes to respective communities based on their structural proximity
to the examples [19, 34, 37]. This task is performed independently for one or more
communities. Assumptions about what constitutes proximity have coalesced under
the field of graph signal processing [Sect. 2], where they are modeled with ad-hoc
graph filters and controlled by a small number of parameters [8, 25].1 Different filters
and parameters match different types of communities. For example, filter efficacy
could depend on the number of communitymembers [1, 12, 19].As a result, deployed
filters may work well in certain graphs but not necessarily in others. By extension,
running filter-based tools ‘off-the-shelf‘ in deployed systems risks producing node
ranks of lesser quality.

In this work, we address the above issue by exploiting autotune principles [17]
for runtime selection of graph filters. We explore two strategies: a) choosing the best
among a list of promising filters, and b) tuning the parameters of a generalized filter
form. For the second strategy, we also introduce a novel tuning algorithm that keeps
examining awide search breadth in the solution space but convergeswithin a bounded
number of filter runs. The effectiveness of our approach is corroborated on 27 com-
munity node ranking tasks across 3 real-world graphs of different domains. Results
indicate that neither strategy falls significantly behind best-performing ad-hoc fil-
ters when optimizing popular node rank quality measures. Furthermore, parameter
tuning frequently captures structural proximity better than ad-hoc assumptions and
improves rank quality.

1 Most non-filter node ranking algorithms, such as k-shell decomposition and variations [36], blindly
rank the importance of nodes within graph structures and can not personalize ranks in terms of
importance to specific communities.

AutoGF: Runtime Graph Filter Tuning for Community Node Ranking 191

This paper is organized as follows. In Sect. 2 we present graph filters as an
approach for ranking nodes with respect to metadata communities, alongside a gen-
eralized literature filter form. In Sect. 3, we describe our runtime filter selection
approach and its implementation choices. We also present a novel algorithm for tun-
ing parameters of generalized graph filters. In Sects. 4 and 5we evaluate our approach
in real-world data and discuss practical applicability and potential risks. Finally, in
Sect. 6 we summarize our findings and present promising research directions.

2 Background

Graph edges are often represented by adjacency matrices Awith elements A[u, v] =
{1 if edge (u, v) exists, 0 otherwise}. These are symmetrically normalized byweigh-
ing edges to mitigate the importance of highly connected nodes per:

W = D−1/2AD−1/2

where D with elements D[u, v] = {∑v′ A[u, v′] if u = v, 0 otherwise} are diagonal
matrices of node degrees. The graph’s spectrum can be defined as the eigenvalues of
the normalized adjacency matrix.2 In detail, eigenvalue decomposition yields W =
U�U−1, where� are diagonal matrices of eigenvalues� = diag([λ1, λ2, . . . , λn])
andU are orthogonal matrices whose columns hold the corresponding eigenvectors.
For connected graphs, eigenvalues of the normalized adjacencymatrix are real-valued
and reside in the unit range λi ∈ [−1, 1].

Graph signal processing [24, 27, 28] manipulates signals p whose elements p[u]
correspond to values stored at nodes u. To do this, it defines their graph Fourier trans-
form as F{p} = U−1 p and its inverse as F−1{F{p}} = UF{p}. Then, it observes
thatWn = U�nU−1 ⇒ H(W) = UH(�)U−1 for function forms H(·) whose Tay-
lor expansions exist aroundzero, anddefinesfiltersHF = [H(λ1), H(λ2), . . . H(λn)]
in the Fourier space, whose parameters arise through transformations H(λi) of eigen-
values λi . Graph filters can be applied on signals via an element-wise multiplication
� on their Fourier transform F{p}. The outcome of filtering in the node space
becomes:

F−1(HF � F{p}) = UH(�)U−1 p = H(W)p

During the above analysis, the function forms H(·) determining graph filters can
be parameterized in terms of their Taylor coefficients h0, h1, . . . per:

H(W) =
∞∑

k=0

hkW
k

2 The graph’s spectrum can also be defined as the eigenvalues 1 − λi of its normalized Laplacian
I − W . This, too, can express filters as infinite-degree polynomials of W .

192 E. Krasanakis et al.

As Wk p propagates graph signals p at k hops away through normalized adjacency
matricesW , the above formula describes a weighted aggregation of multi-hop signal
propagation. Filters matching different structural assumptions arise from different
coefficients hk . Two well-known filters are personalized PageRank [3, 4] and heat
kernels [16]. These respectively adopt degrading hop weights hk = (1 − a)ak and
the kernel hk = e−t t k/k! for parameters a ∈ [0, 1) and t ∈ {1, 2, 3, . . . }.

Given the above formulation, graph filtering can rank how nodes pertain to com-
munities of interest [19, 34, 37]. Approaches start with signals p whose values
capture whether nodes v belong to sets C of known community members per:

p[v] = {1 if v ∈ C, 0 otherwise}

Then, for graphs with normalized adjacency matrices W , graph filters H(W) yield
new signals r = H(W)p with elements r [u] corresponding to how proximate nodes
u are to known member sets C under some understanding of proximity. Finally,
nodes are ranked by order of their proximity to known members.

3 Tuning Graph Filters at Runtime

As previouslymentioned, graph filters for community node ranking should ideally be
selected at runtime, after graphs and example community members become known
and therefore can be used to understand underlying structural features. We consider
best-performing filters those with higher node rank quality, for instance measured
with the area under curve of the receiver operating characteristics (AUC) [6] and
the normalized discounted cumulative gain across all graph nodes (NDCG) [14].
Employed measures should coincide with practical objectives on unknown test data.
For example, high AUC indicates higher ranks for community members than non-
members, whereas high NDCG verifies the community membership of top-ranked
nodes.

To optimize node rank quality at runtime, we follow an autotune paradigm that
searches through the parameter space of black box algorithms to optimize validation
objectives. Originally, the term was associated with specific approaches [17], but
nowadays broadly describes automatic selection of machine learning model param-
eters. This comes at the expense of multiple algorithm runs, but there exist mature
solutions for fast computation of graph filters [18].

Our approach starts with sets C of known community members among graph
nodes, which are organized into binary graph signals p per the formulation of Sect. 2.
We split knownmembers into non-overlapping subsets Ctrain, Cvalid ⊆ C, which cor-
respond to “training” graph signals ptrain to be used as filter inputs, and desired
output validation signals pvalid . We employ evaluation measures M(·, ·), such as
AUC or NDCG, that assess node rank quality via pairwise comparison between pre-
dictions and ground truth, and select filters with highM(rtrain, pvalid) for predicted
ranking scores rtrain = H(W)ptrain . We avoid overfitting by computing measures

AutoGF: Runtime Graph Filter Tuning for Community Node Ranking 193

Fig. 1 Overview of graph filter autotuning under measures M. Example nodes are split between
training and validation graph signals, where the latter assume the role of ideal training outputs.
Highlighted signal elements correspond to higher node values

only across non-training nodes. As long as graphs exhibit homogeneous correla-
tions between communities and edges, filters maximizing validation evaluation are
expected to also maximizeM(r, ptest) for r = H(W)p on nodes other than known
community members, where ptest are unknown ideal test labels. Our pipeline’s data
flow is summarized in Fig. 1.

We follow two strategies for graph filter selection by the autotune component
of our approach. The first is to perform a simple selection among a list of popular
filters, such as those we experiment with later on. The second is to start with the
parameterized graph filter form presented in Sect. 2 and tuning a vector of its param-
eters h = [h0, h1, . . . , hK]T to optimize validation objectives. We explore only non-
negative parameters to match the widespread literature practice of introducing only
non-negative correlations between hops and high-quality node ranks. Then, without
loss of generality, we tune all parameters in the range [0, 1].

When tuning graph filter parameters on non-differentiable (potentially even non-
convex) validation objectives, a first take is to adopt existing generic black box
optimization algorithms [7, 10]. However, these do not guarantee convergence for
all deployed system inputs. At the same time, adjusting one graph filter parameter
to control the importance of propagating graph signals a fixed number of hops away
could drastically affect the validity of other propagation weights. This hypothesis is
also corroborated by experiments later on.

194 E. Krasanakis et al.

To address the above concerns, we propose an algorithm for graph filter parameter
tuning that maintains a broad parameter search space while converging in finite
time. This involves cycling through parameters, and progressively minimizing a
loss function �(h) = 1 − M(H(W)ptrain, pvalid) by finding the best permutation
around each parameter with coarse linear search. As tuning progresses, we shrink
the search range, so that small permutations around ideal values are eventually found.
Intuitively, this is equivalent to moving the center of the selected rectangle chosen
for each parameter based on subsequent selections of other parameters. If shrinking
is slow enough, by the time when parameter permutation breadths become small,
potential combinations with drastically different permutations of other parameters
have already been considered.

Conceptually, this procedure is a variation of divided rectangles (DIRECT) [9]
that, instead of keeping many candidate rectangles to divide, keeps only one, though
of larger width than the partition. This practice corresponds to the shrinking radius
technique proposed for non-convex block coordinate optimization [22], although
the two are not mathematically equivalent due to the finite sum of rectangle widths
that limits the optimization within the hypercube of searched parameters instead of
looking at an unconstrained range.

In detail, we start from the center of the parameter hypercube and cycle through
parameters i . For each of those, we consider the range �h[i] in which to search
for new solutions and partition it uniformly to 2P + 1 candidate points, P of which
examine higher parameter values and an equal number lower values. Values are
snapped to the search bounds 0 or 1 if they subceed or exceed those respectively.
Perturbations form a set Hsearch of potential parameter vectors, of which we select
the one minimizing the loss. Finally, we contract the search range by division with
constant T > 1 andmove on to the next parameter. Cycling through parameters stops
when loss reduction becomes smaller than a tolerance ε across all parameters. This
process is outlined in Algorithm 1.

Algorithm 1 Parameter tuning
Inputs: parameter loss �(h), tolerance ε, line search partitions P , range shrinking T
Outputs: near-optimal vector of K parameters
h ← [0.5] × K , �h ← [0.5] × K , err ← [∞] × K , i ← 0
while maxi err [i] > ε do

ui ←unit vector with ui [j] = {1 if i = j, 0 otherwise}
Hsearch ← {max(0,min(1, h + ui · �h[i] · (p/P − 1))) | p = 0, 1, . . . , 2P}
err [i] ← �(h) − minh∈Hsearch �(h)

h ← argminh∈Hsearch �(h)

�h[i] ← �h[i]/T
i ← (i + 1)mod K

return h

If the objective �(h) is Lipschitz continuouswithLipschitz constant L < ∞ (when
the loss is differentiable, this means that sup ‖∇�(h)‖ ≤ L), it is easy to see that the
division of the parameter permutation radius by T every K iterations lets the algo-

AutoGF: Runtime Graph Filter Tuning for Community Node Ranking 195

rithm run in amortized time O
(
K (run �(h)) logT

L
ε

)
. If graph nodes are fewer than

edges (as happens for connected graphs), in which case the running time of �(h) is
not dominated by node validation. Using sparse matrix multiplication to iteratively
compute Krylov space elements {Wk ptrain |, k = 0, . . . , K } by left-multiplying pre-
vious ones withW , graph filters run in time O(K E), where E is the number of graph
edges. Thus, our graph filter parameter tuning mechanism can be implemented to
run in amortized time:

O
(
K 2E(logT L − logT ε)

)

Running time scales linearly with the number of edges and quadratically with the
number of parameters. We recommend and employ default parameters P = 2, T =
1.01, which suffice to minimize the Beale and Booth functions often used in opti-
mization benchmarks [2] to 10−6 parameter (instead of loss) tolerance.

4 Experiment Setup

We experiment on three publicly available real-world graphs with metadata commu-
nities. First is the Amazon co-purchasing graph [20], whose nodes and edges corre-
spond to products and frequent co-purchases. Products are organized into metadata
communities based on their type (e.g. book, movie) attribute. Second is the Citeseer
citation graph [11], whose nodes and edges correspond to scientific publications and
citations. Publications are organized into communities based on scientific field. Third
is the Maven dependency graph [5], whose nodes and edges correspond to software
projects and dependencies. Projects are organized into communities based on the
organization responsible for their development.

These graphs were chosen for experimentation on merit of comprising metadata
communities with enough member nodes to conduct robust validation. To not over-
represent graphs with many communities and obtain enough validation nodes later
on, we experiment with the first three communities of each graph with at least 500
nodes. We treat all edges as undirected so that symmetric normalization of filters is
applicable. Community details are summarized in Table1.

For each of the the above-described communities, we generate three splits of
known-test members by assuming that known members are uniformly sampled to
comprise 10, 20, or 30% of total members. We remind that validation nodes can only
be subsampled from known members. Sampling is seeded to ensure reproducibility
and fair comparison between approaches. In total, experiments on 9 communities
create 9 · 3 = 27 different known-test member splits. For each split, we consider two
different node ranking objectives; optimizing AUC, and optimizing NDCG. Thus,
we obtain 27 · 2 = 54 experiment setups. Sampling and splits are seeded so that
evaluations of different graph filters in the same setups are comparable.

We investigate the ability of our approach to produce high-quality community
node ranks compared to ad-hoc graph filters and parameters often encountered in the

196 E. Krasanakis et al.

Table 1 Details of communities we experiment on

Community Graph Nodes Edges Members

amazon0 Amazon 554,789 3,577,450 280,507

amazon1 Amazon 554,789 3,57,7450 64,915

amazon2 Amazon 554,789 3,577,450 17,966

citeseer0 Citeseer 3327 9464 596

citeseer1 Citeseer 3327 9464 668

citeseer2 Citeseer 3327 9464 701

maven0 Maven 1,965,359 19,431,302 1687

maven1 Maven 1,965,359 19,431,302 1043

maven2 Maven 1,965,359 19,431,302 49,883

literature. We compare the following alternatives, all of which we integrated in the
pygrank Python library [18] alongside experiment setups:

• ppr a [3, 4, 25]. Personalized PageRank that performs stochastic random walks
with restart probabilities 1 − a at each step [29]. We test common values a ∈
{0.5, 0.85, 0.9, 0.99} and compute filters to numerical tolerance 10−9.

• hk k [8]. Heat kernels that form bandpass windows around desired propagation
hops k. We test common window centers k ∈ {2, 3, 5, 7}.

• select [this work]. Runtime selection of the best among ppr a and hk k by with-
holding a 10% validation subset of known community members. When graphs are
unknown during algorithm selection, this becomes a baseline for tuning.

• tune [this work]. Tuning a generalized graph filter with 40 parameters, where the
filter is obtainedwith non-zeroTaylor coefficientsh0 = 1and tunedh1, . . . , h40 via
Algorithm 1 towards maximizing measures of choice on the same 10% validation
subset as in select. Optimization absolute deviation tolerance is set to ε = 10−6.

• tuneLBFGSB [ablation study]. A variation of tune that substitutes our tuning algo-
rithm with the L-BFGS-B optimizer [7] provided by the scipy library [31] with
default parameters and 10−6 percentage decrease on the evaluation function as a
stropping criterion to make sure that tuning does not stop early. This is a popular
optimizer still used for parameter search [30] and approximates Neuton’s method
while limiting the number of computations to only first-order gradients. Experi-
ments with the Nelder-Mead optimizer yielded similar or worse results that we do
not report due to space constraints.

5 Experiment Results

Tables2 and 3 present the quality of community node ranking across experiment
setups in terms of AUC and NDCG respectively. Before exploring graph filter selec-
tion, we verify that individual ad-hoc filter efficacy varies across communities and

AutoGF: Runtime Graph Filter Tuning for Community Node Ranking 197

training-test splits. Indeed, no explored filter outperforms the rest in all experiments.
For instance, ppr0.99 is often the best in Amazon communities, but also the worst
in Maven communities, where it lags behind others up to 0.035 AUC. Runtime filter
selection would be useful as long as it lags less behind.

Choosing between ad-hoc filters with our validation strategy does not always
retrieve the best-performing ones.We attribute this behavior to fewmissing examples
still impacting the ideal filter propagation weights needed for high-quality node
ranking. Withholding fewer nodes could degrade validation robustness and future
research could investigate new mechanisms to improve generalization. For the time
being, selection of best among existing alternatives at runtime chooses the best filters
in 31/54 settings. But, even when this scheme fails to identify the best filter, it often
retrieves near-best ones that at worst lag behind only by 0.011 in terms of AUC or
NDCG, where this gap usually shrinks to 0.001.

Parameter tuning with Algorithm 1 outperforms all ad-hoc filters in 40/54 exper-
iment settings. This induces up to 0.010 AUC and 0.033 NDCG improvements,
indicating that it manages to discover nuanced notions of structural proximity. It lags
behind by at worst 0.007 on account of either measure, and often bymuch less. Com-
pared to selecting among filters, tuning yields better evaluation outcomes in 49/54
of experiment settings. As such, we recommend it as an out-of-the-box solution for
community node ranking in new graphs, especially if structural characteristics corre-
lating to the formation of communities are not known beforehand. Finally, comparing
our optimization algorithm to L-BFGS-B, the latter induces marginal improvements
in the Citeseer graph, but falls significantly behind -even compared to filter selection-
in the Amazon and Maven graphs. This corroborates the need for retaining a wide
parameter search space.

In relation to applying our methodology, we experimented on communities with
enough examplemembers to achieve a robust evaluationwhen randomlywithholding
10% of them. Fewer known members may not yield robust validation strategies and
we hereby caution against blindly applying our methodology when too fewmembers
are known. In principle, we expect our approach to work well -and therefore be
applicable on- community node ranking based on at least the same number of known
members (at least 50) as in our experiments.

As evidence that tuning discovers non-trivial graph propagation schemes, Fig. 2
shows the first 41 parameters of high-AUC filters for citeseer0 with 30% known
members. There, tuning discovers a different propagation strategy than ad-hoc filters,
which subsequentlymanages to (slightly) improve the best filter inTable2.Moreover,
Fig. 3 shows that tuning is tailored not only to communities but even to specific sets
of example nodes, yielding drastically different filters for the same communities.
Given that tuned graph filters generally outperform others, this finding corroborates
our hypothesis that filters should be selected at runtime tomatch the characteristics of
data they are about to process. Finally, filter differences between different fractions
of community examples support our practice of withholding only a small fraction of
validation nodes.

198 E. Krasanakis et al.

Ta
bl
e
2

Te
st
se
tA

U
C
of

co
m
m
un
ity

no
de

ra
nk
s
fo
r
ad
-h
oc

fil
te
rs
an
d
th
os
e
ob
ta
in
ed

th
ro
ug
h
ru
nt
im

e
tu
ni
ng

on
th
e
sa
m
e
m
ea
su
re

A
d-
ho
c

A
ut
ot
un
e

C
om

.
E
xa
m
pl
es

(%
)

pp
r0
.5

pp
r0
.8
5

pp
r0
.9

pp
r0
.9
9

hk
2

hk
3

hk
5

hk
7

Se
le
ct

T
un
e

tu
ne
L
B
FG

SB

am
az
on
0

10
0.
82
5

0.
84
4

0.
85
3

0.
90
1

0.
82
3

0.
82
5

0.
83
2

0.
84
4

0.
90
1

0.
90
3

0.
88
3

am
az
on
0

20
0.
82
0

0.
85
5

0.
87
0

0.
91
0

0.
81
7

0.
82
4

0.
84
4

0.
86
5

0.
91
0

0.
91
8

0.
90
0

am
az
on
0

30
0.
81
5

0.
86
8

0.
88
4

0.
91
4

0.
81
0

0.
82
4

0.
85
5

0.
88
0

0.
91
4

0.
92
4

0.
90
8

am
az
on
1

10
0.
93
0

0.
93
4

0.
93
5

0.
94
4

0.
93
0

0.
93
0

0.
93
1

0.
93
3

0.
94
4

0.
94
3

0.
94
0

am
az
on
1

20
0.
94
1

0.
94
6

0.
94
8

0.
95
4

0.
94
1

0.
94
1

0.
94
4

0.
94
6

0.
95
4

0.
95
5

0.
95
3

am
az
on
1

30
0.
94
6

0.
95
3

0.
95
5

0.
96
0

0.
94
6

0.
94
7

0.
95
1

0.
95
4

0.
96
0

0.
96
1

0.
95
9

am
az
on
2

10
0.
96
0

0.
96
4

0.
96
5

0.
96
8

0.
95
9

0.
96
0

0.
96
1

0.
96
3

0.
96
8

0.
96
8

0.
96
7

am
az
on
2

20
0.
97
0

0.
97
4

0.
97
4

0.
97
5

0.
97
0

0.
97
1

0.
97
2

0.
97
4

0.
97
5

0.
97
7

0.
97
6

am
az
on
2

30
0.
97
3

0.
97
6

0.
97
7

0.
97
6

0.
97
2

0.
97
3

0.
97
5

0.
97
6

0.
97
7

0.
97
9

0.
97
8

ci
te
se
er
0

10
0.
77
8

0.
78
9

0.
79
2

0.
79
3

0.
77
5

0.
77
7

0.
78
1

0.
78
4

0.
79
3

0.
79
5

0.
79
5

ci
te
se
er
0

20
0.
84
1

0.
84
9

0.
85
0

0.
84
5

0.
83
8

0.
84
0

0.
84
4

0.
84
7

0.
84
5

0.
85
2

0.
85
2

ci
te
se
er
0

30
0.
85
9

0.
86
7

0.
86
8

0.
86
1

0.
85
6

0.
85
9

0.
86
3

0.
86
6

0.
86
8

0.
86
9

0.
86
9

ci
te
se
er
1

10
0.
80
5

0.
80
7

0.
80
7

0.
79
8

0.
80
6

0.
80
5

0.
80
5

0.
80
6

0.
79
8

0.
80
5

0.
80
6

ci
te
se
er
1

20
0.
82
0

0.
82
3

0.
82
4

0.
81
3

0.
82
0

0.
82
0

0.
82
1

0.
82
3

0.
82
0

0.
81
9

0.
82
3

ci
te
se
er
1

30
0.
81
6

0.
82
1

0.
82
1

0.
81
1

0.
81
6

0.
81
6

0.
81
9

0.
82
0

0.
81
6

0.
82
1

0.
82
1

ci
te
se
er
2

10
0.
65
9

0.
66
9

0.
67
2

0.
67
5

0.
65
6

0.
65
7

0.
66
1

0.
66
4

0.
65
6

0.
67
0

0.
67
6

ci
te
se
er
2

20
0.
71
8

0.
72
7

0.
73
0

0.
73
1

0.
71
6

0.
71
7

0.
72
1

0.
72
4

0.
71
6

0.
73
2

0.
73
3

ci
te
se
er
2

30
0.
76
7

0.
77
3

0.
77
4

0.
76
9

0.
76
6

0.
76
7

0.
77
0

0.
77
3

0.
77
3

0.
77
5

0.
77
6

m
av
en
0

10
0.
99
8

0.
99
7

0.
99
5

0.
94
2

0.
99
8

0.
99
8

0.
99
8

0.
99
7

0.
99
8

0.
99
4

0.
98
9

m
av
en
0

20
0.
99
7

0.
99
5

0.
99
4

0.
92
5

0.
99
7

0.
99
7

0.
99
7

0.
99
6

0.
99
7

0.
99
8

0.
98
4

m
av
en
0

30
0.
99
7

0.
99
5

0.
99
3

0.
91
1

0.
99
8

0.
99
7

0.
99
7

0.
99
5

0.
99
8

0.
99
8

0.
98
2

m
av
en
1

10
0.
99
6

0.
99
3

0.
99
1

0.
96
7

0.
99
6

0.
99
6

0.
99
6

0.
99
5

0.
99
6

0.
99
5

0.
98
6

m
av
en
1

20
0.
99
6

0.
99
2

0.
99
0

0.
96
1

0.
99
6

0.
99
6

0.
99
5

0.
99
4

0.
99
4

0.
99
5

0.
98
4

m
av
en
1

30
0.
99
7

0.
99
2

0.
98
9

0.
95
6

0.
99
8

0.
99
7

0.
99
6

0.
99
5

0.
99
2

0.
99
2

0.
98
2

m
av
en
2

10
0.
99
8

0.
99
8

0.
99
8

0.
99
3

0.
99
7

0.
99
8

0.
99
8

0.
99
8

0.
99
8

0.
99
8

0.
99
7

m
av
en
2

20
0.
99
7

0.
99
7

0.
99
7

0
.9
91

0.
99
7

0.
99
7

0.
99
7

0.
99
7

0.
99
7

0.
99
7

0.
99
6

m
av
en
2

30
0.
99
7

0.
99
7

0.
99
7

0.
99
0

0.
99
7

0.
99
7

0.
99
8

0.
99
7

0.
99
7

0.
99
7

0.
99
6

A
ve
ra
ge

0.
89
7

0.
90
3

0.
90
5

0.
89
8

0.
89
6

0.
89
7

0.
90
1

0.
90
4

0.
90
9

0.
91
2

0.
90
8

T
he

hi
gh
es
tv

al
ue

is
bo
ld
ed

AutoGF: Runtime Graph Filter Tuning for Community Node Ranking 199

Ta
bl
e
3

Te
st
se
tN

D
C
G
of

co
m
m
un
ity

no
de

ra
nk
s
fo
r
ad
-h
oc

fil
te
rs
an
d
th
os
e
ob
ta
in
ed

th
ro
ug
h
ru
nt
im

e
tu
ni
ng

on
th
e
sa
m
e
m
ea
su
re

A
d-
ho
c

A
ut
ot
un
e

C
om

.
E
xa
m
pl
es

(%
)

pp
r0
.5

pp
r0
.8
5

pp
r0
.9

pp
r0
.9
9

hk
2

hk
3

hk
5

hk
7

se
le
ct

tu
ne

tu
ne
L
B
FG

SB

am
az
on
0

10
0.
97
0

0.
97
6

0.
97
8

0.
98
5

0.
97
0

0.
97
1

0.
97
5

0.
97
8

0.
98
5

0.
98
7

0.
98
3

am
az
on
0

20
0.
96
8

0.
97
6

0.
97
9

0.
98
4

0.
96
7

0.
97
0

0.
97
5

0.
97
8

0.
98
4

0.
98
7

0.
98
3

am
az
on
0

30
0.
96
5

0.
97
6

0.
97
8

0.
98
3

0.
96
4

0.
96
8

0.
97
4

0.
97
8

0.
98
3

0.
98
7

0.
98
2

am
az
on
1

10
0.
95
5

0.
96
2

0.
96
4

0.
97
2

0.
95
4

0.
95
6

0.
96
0

0.
96
3

0.
97
2

0.
97
2

0.
96
9

am
az
on
1

20
0.
95
4

0.
96
3

0.
96
6

0.
97
2

0.
95
3

0.
95
6

0.
96
2

0.
96
5

0.
97
2

0.
97
6

0.
97
1

am
az
on
1

30
0.
95
1

0.
96
3

0.
96
6

0.
97
0

0.
95
0

0.
95
5

0.
96
1

0.
96
6

0.
97
0

0.
97
6

0.
97
0

am
az
on
2

10
0.
91
2

0.
92
3

0.
92
7

0.
93
3

0.
91
0

0.
91
3

0.
92
0

0.
92
5

0.
92
0

0.
92
7

0.
93
4

am
az
on
2

20
0.
91
4

0.
92
8

0.
93
2

0.
93
3

0.
91
3

0.
91
7

0.
92
6

0.
93
1

0.
93
3

0.
94
1

0.
93
7

am
az
on
2

30
0.
91
2

0.
92
6

0.
92
9

0.
92
9

0.
91
0

0.
91
5

0.
92
4

0.
92
9

0.
92
9

0.
93
8

0.
93
3

ci
te
se
er
0

10
0.
89
6

0.
90
0

0.
90
2

0.
90
2

0.
89
4

0.
89
5

0.
89
7

0.
89
9

0.
90
2

0.
90
3

0.
90
4

ci
te
se
er
0

20
0.
92
2

0.
93
1

0.
93
3

0.
92
6

0.
92
0

0.
92
3

0.
92
8

0.
93
1

0.
92
6

0.
93
2

0.
93
4

ci
te
se
er
0

30
0.
91
5

0.
92
5

0.
92
6

0.
92
3

0.
90
7

0.
91
8

0.
92
3

0.
92
6

0.
92
3

0.
93
0

0.
92
9

ci
te
se
er
1

10
0.
90
5

0.
90
5

0.
90
5

0.
90
4

0.
90
5

0.
90
5

0.
90
4

0.
90
3

0.
90
4

0.
90
7

0.
90
7

ci
te
se
er
1

20
0.
90
1

0.
90
3

0.
90
4

0.
89
5

0.
90
0

0.
90
1

0.
90
3

0.
90
3

0.
90
3

0.
89
7

0.
90
5

ci
te
se
er
1

30
0.
89
2

0.
89
3

0.
89
2

0.
87
7

0.
89
1

0.
89
2

0.
89
3

0.
89
2

0.
89
2

0.
89
0

0.
88
9

ci
te
se
er
2

10
0.
86
9

0.
87
6

0.
87
8

0.
87
9

0.
86
7

0.
86
8

0.
87
2

0.
87
5

0.
86
8

0.
88
3

0.
88
1

ci
te
se
er
2

20
0.
88
7

0.
89
6

0.
89
7

0.
89
9

0.
88
6

0.
88
8

0.
89
0

0.
89
5

0.
88
6

0.
89
8

0.
90
0

ci
te
se
er
2

30
0.
89
4

0.
90
4

0.
90
5

0.
90
3

0.
89
3

0.
89
6

0.
90
2

0.
90
5

0.
90
5

0.
90
8

0.
90
8

m
av
en
0

10
0.
80
3

0.
78
6

0.
77
8

0.
72
3

0.
80
3

0.
80
4

0.
79
6

0.
77
4

0.
79
6

0.
81
3

0.
74
5

m
av
en
0

20
0.
73
8

0.
70
8

0.
69
3

0.
61
5

0.
74
3

0.
74
1

0.
72
4

0.
69
4

0.
74
3

0.
74
4

0.
63
7

m
av
en
0

30
0.
67
3

0.
63
7

0.
62
5

0.
55
4

0.
67
6

0.
67
4

0.
65
1

0.
62
9

0.
67
4

0.
67
0

0.
58
1

m
av
en
1

10
0.
81
2

0.
82
3

0.
82
1

0.
78
1

0.
80
7

0.
81
7

0.
82
8

0.
83
0

0.
82
8

0.
86
3

0.
81
4

m
av
en
1

20
0.
80
6

0.
81
4

0.
81
2

0.
76
7

0.
78
8

0.
80
0

0.
81
7

0.
81
8

0.
81
8

0.
83
1

0.
80
1

m
av
en
1

30
0.
77
0

0.
77
4

0.
77
3

0.
72
8

0.
76
7

0.
77
5

0.
78
0

0.
77
3

0.
77
3

0.
82
5

0.
76
2

m
av
en
2

10
0.
90
4

0.
90
7

0.
90
6

0.
84
5

0.
90
3

0.
90
8

0.
91
1

0.
90
9

0.
91
1

0.
93
5

0.
88
9

m
av
en
2

20
0.
86
3

0.
86
4

0.
86
1

0.
78
5

0.
86
2

0.
86
7

0.
86
9

0.
86
5

0.
86
9

0.
90
3

0.
84
0

m
av
en
2

30
0.
81
2

0.
81
2

0.
80
8

0.
72
9

0.
81
1

0.
81
6

0.
81
8

0.
81
3

0.
81
8

0.
86
1

0.
78
6

A
ve
ra
ge

0.
88
0

0.
88
3

0.
88
3

0.
86
3

0.
87
8

0.
88
2

0.
88
5

0.
88
3

0.
88
8

0.
89
9

0.
87
7

T
he

hi
gh
es
tv

al
ue

is
bo
ld
ed

200 E. Krasanakis et al.

Fig. 2 Parameters hi of filters with high AUC on citeseer0 with 30% examples

Fig. 3 Parameters tuned on citeseer0 and citeseer1 with 10 and 20% examples

6 Conclusions and Future Work

This work introduces a runtime graph filter selection scheme for community node
ranking based on known member nodes. Selection involves either choosing between
promisingfilters or tuning theparameters of a generalizedfilter form.For the latter,we
introduced a novel algorithm that meshes parts of previous alternatives to satisfy both
scalability and a wide parameter search breadth needed by graph filters. We verified
the efficacy of our approach with experiments across real-world graph communities,
where we found that, given enough example community members to satisfy robust
evaluation by withholding a few of them, our methodology (especially tuning) yields
filters with similar or better AUC and NDCG than alternatives. Thus, we recommend
its adoption in practice.

In the future, we are interested in experimenting on more graphs, improving our
tuning algorithm, and theoretically probing its optimality. More robust evaluation
could also be devised to autotune from fewer known community members.

Acknowledgements This work was partially funded by the European Commission under contract
number H2020-951911 AI4Media.

References

1. Abu-El-Haija, S., Kapoor, A., Perozzi, B., Lee, J.: N-gcn: Multi-scale graph convolution for
semi-supervised node classification. In: Uncertainty in Artificial Intelligence, pp. 841–851.
PMLR (2020)

2. Al-Roomi, A.R.: Unconstrained Single-Objective Benchmark Functions Repository (2015).
https://www.al-roomi.org/benchmarks/unconstrained

3. Andersen, R., Chung, F., Lang, K.: Local partitioning for directed graphs using pagerank.
Internet Math. 5(1–2), 3–22 (2008)

4. Bahmani, B., Chowdhury, A., Goel, A.: Fast incremental and personalized pagerank. Proc.
VLDB Endow. 4(3) (2010)

https://www.al-roomi.org/benchmarks/unconstrained

AutoGF: Runtime Graph Filter Tuning for Community Node Ranking 201

5. Benelallam, A., Harrand, N., Valero, C.S., Baudry, B., Barais, O.: Maven central dependency
graph (2018)

6. Bradley, A.P.: The use of the area under the roc curve in the evaluation of machine learning
algorithms. Pattern Recogn. 30(7), 1145–1159 (1997)

7. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained
optimization. SIAM J. Sci. Comput. 16(5), 1190–1208 (1995)

8. Chung, F.: The heat kernel as the pagerank of a graph. Proc. Nat. Acad. Sci. 104(50), 19735–
19740 (2007)

9. Finkel, D.E., Kelley, C.: Additive scaling and the direct algorithm. J. Glob. Optim. 36(4),
597–608 (2006)

10. Galántai, A.: Convergence of the Nelder-Mead method. Numer. Algorithms, 1–30 (2021)
11. Getoor, L.: Link-based classification. In: Advanced Methods for Knowledge Discovery from

Complex Data, pp. 189–207. Springer (2005)
12. Grover, A., Leskovec, J.: node2vec: scalable feature learning for networks. In: Proceedings of

the 22nd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining,
pp. 855–864 (2016)

13. Huang, Q., He, H., Singh, A., Lim, S.N., Benson, A.R.: Combining label propagation and
simple models out-performs graph neural networks. arXiv:2010.13993 (2020)

14. Järvelin, K., Kekäläinen, J.: Ir evaluation methods for retrieving highly relevant documents.
In: ACM SIGIR Forum, vol. 51, pp. 243–250. ACM, New York, NY, USA (2017)

15. Klicpera, J., Bojchevski, A., Günnemann, S.: Predict then propagate: graph neural networks
meet personalized pagerank. arXiv:1810.05997 (2018)

16. Kloster, K., Gleich, D.F.: Heat kernel based community detection. In: Proceedings of the
20th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp.
1386–1395 (2014)

17. Koch, P., Golovidov, O., Gardner, S., Wujek, B., Griffin, J., Xu, Y.: Autotune: a derivative-free
optimization framework for hyperparameter tuning. In: Proceedings of the 24thACMSIGKDD
International Conference on Knowledge Discovery & Data Mining, pp. 443–452 (2018)

18. Krasanakis, E., Papadopoulos, S., Kompatsiaris, I., Symeonidis, A.: pygrank: a python package
for graph node ranking. arXiv:2110.09274 (2021)

19. Krasanakis, E., Schinas, E., Papadopoulos, S., Kompatsiaris, Y., Symeonidis, A.: Boosted seed
oversampling for local community ranking. Inf. Process. Manage. 57(2), 102053 (2020)

20. Leskovec, J., Adamic, L.A., Huberman, B.A.: The dynamics of viral marketing. ACM Trans.
Web (TWEB) 1(1), 5-es (2007)

21. Leskovec, J., Lang, K.J., Dasgupta, A., Mahoney, M.W.: Community structure in large net-
works: natural cluster sizes and the absence of large well-defined clusters. Internet Math. 6(1),
29–123 (2009)

22. Lyu, H.: Convergence of block coordinate descent with diminishing radius for nonconvex
optimization. arXiv:2012.03503 (2020)

23. McPherson,M., Smith-Lovin, L., Cook, J.M.: Birds of a feather: homophily in social networks.
Ann. Rev. Sociol. 27(1), 415–444 (2001)

24. Ortega, A., Frossard, P., Kovačević, J., Moura, J.M., Vandergheynst, P.: Graph signal process-
ing: overview, challenges, and applications. Proc. IEEE 106(5), 808–828 (2018)

25. Page, L., Brin, S., Motwani, R., Winograd, T.: The Pagerank Citation Ranking: Bringing Order
to the Web. Tech. rep. Stanford InfoLab (1999)

26. Papadopoulos, S., Kompatsiaris, Y., Vakali, A., Spyridonos, P.: Community detection in social
media. Data Min. Knowl. Disc. 24(3), 515–554 (2012)

27. Shuman, D.I., Narang, S.K., Frossard, P., Ortega, A., Vandergheynst, P.: The emerging field of
signal processing on graphs: extending high-dimensional data analysis to networks and other
irregular domains. IEEE Signal Process. Mag. 30(3), 83–98 (2013)

28. Stanković, L., Daković, M., Sejdić, E.: Introduction to graph signal processing. In: Vertex-
Frequency Analysis of Graph Signals, pp. 3–108. Springer (2019)

29. Tong, H., Faloutsos, C., Pan, J.Y.: Fast random walk with restart and its applications. In: Sixth
International Conference on Data Mining (ICDM’06), pp. 613–622. IEEE (2006)

http://arxiv.org/abs/2010.13993
http://arxiv.org/abs/1810.05997
http://arxiv.org/abs/2110.09274
http://arxiv.org/abs/2012.03503

202 E. Krasanakis et al.

30. Tooley, R.: Auto-tuning spark with Bayesian optimisation (2021)
31. Virtanen, P.,Gommers, R.,Oliphant, T.E.,Haberland,M., Reddy, T., Cournapeau,D., Burovski,

E., Peterson, P., Weckesser, W., Bright, J., van der Walt, S.J., Brett, M., Wilson, J., Millman,
K.J.,Mayorov,N., Nelson,A.R.J., Jones, E., Kern, R., Larson, E., Carey, C.J., Polat, İ., Feng,Y.,
Moore, E.W., VanderPlas, J., Laxalde, D., Perktold, J., Cimrman, R., Henriksen, I., Quintero,
E.A., Harris, C.R., Archibald, A.M., Ribeiro, A.H., Pedregosa, F., van Mulbregt, P., SciPy
1.0 Contributors: SciPy 1.0: fundamental algorithms for scientific computing in python. Nat.
Methods 17, 261–272 (2020)

32. Whang, J.J., Gleich,D.F., Dhillon, I.S.: Overlapping community detection using seed set expan-
sion. In: Proceedings of the 22nd ACM International Conference on Information &Knowledge
Management, pp. 2099–2108 (2013)

33. Whang, J.J., Gleich,D.F., Dhillon, I.S.: Overlapping community detection using neighborhood-
inflated seed expansion. IEEE Trans. Knowl. Data Eng. 28(5), 1272–1284 (2016)

34. Wu, F., Huberman, B.A.: Finding communities in linear time: a physics approach. Euro. Phys.
J. B 38(2), 331–338 (2004)

35. Yang, J., Leskovec, J.: Defining and evaluating network communities based on ground-truth.
Knowl. Inf. Syst. 42(1), 181–213 (2015)

36. Zareie, A., Sheikhahmadi, A.: A hierarchical approach for influential node ranking in complex
social networks. Expert Syst. Appl. 93, 200–211 (2018)

37. Zhang, T., Wu, B.: A method for local community detection by finding core nodes. In: 2012
IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining,
pp. 1171–1176. IEEE (2012)

	 AutoGF: Runtime Graph Filter Tuning for Community Node Ranking
	1 Introduction
	2 Background
	3 Tuning Graph Filters at Runtime
	4 Experiment Setup
	5 Experiment Results
	6 Conclusions and Future Work
	References

