
Adaptive Sensitive Reweighting to Mitigate Bias in
Fairness-aware Classification

Emmanouil Krasanakis

CERTH-ITI, Thessaloniki, Greece

maniospas@iti.gr

Eleftherios Spyromitros-Xioufis

CERTH-ITI, Thessaloniki, Greece

espyromi@iti.gr

Symeon Papadopoulos

CERTH-ITI, Thessaloniki, Greece

papadop@iti.gr

Yiannis Kompatsiaris

CERTH-ITI, Thessaloniki, Greece

ikom@iti.gr

ABSTRACT
Machine learning bias and fairness have recently emerged as key

issues due to the pervasive deployment of data-driven decision

making in a variety of sectors and services. It has often been ar-

gued that unfair classifications can be attributed to bias in training

data, but previous attempts to “repair” training data have led to

limited success. To circumvent shortcomings prevalent in data re-

pairing approaches, such as those that weight training samples of

the sensitive group (e.g. gender, race, financial status) based on their

misclassification error, we present a process that iteratively adapts

training sample weights with a theoretically grounded model. This

model addresses different kinds of bias to better achieve fairness

objectives, such as trade-offs between accuracy and disparate im-

pact elimination or disparate mistreatment elimination. We show

that, compared to previous fairness-aware approaches, our method-

ology achieves better or similar trades-offs between accuracy and

unfairness mitigation on real-world and synthetic datasets.

CCS CONCEPTS
•Computingmethodologies→Cost-sensitive learning; •The-
ory of computation→ Boosting; •Applied computing→ Law;
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1 INTRODUCTION
As machine learning systems are currently deployed in an ever-

growing number of services that affect people’s lives, fairness con-

cerns have become increasingly important. Such concerns are well

justified, since automated decision-making systems can be biased

against sensitive groups, if not properly constrained. For example,

training a logistic regression classifier on the ProPublica COMPAS

dataset of crime recidivism [33] yields differences between black

and white defendants that amount to 17% for false positive and
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25% for false negative rates. Hence, it is understandable why legal

measures are in place to explicitly protect the right of minorities to

not be subjected to different policies [1].

Fairness concern formulations compare aspects of a classifier

between sensitive and non-sensitive groups (see Subsection 2.1).

The measure of choice often depends on the respective legal setting,

as well as on whether the ground truth is biased. For example, if

the ground truth is historically unbiased, it is preferable to mitigate

misclassification differences between sensitive and non-sensitive

groups [44].

Researchers have previously recognized that classification bias

is often caused by data rather than classifiers [13, 31]. For example,

Kamishima et al. [29] categorize sources of unfair labeling as preju-

dice stemming from correlations between features and a sensitive

attribute, underestimation due to inadequate convergence of the

training algorithm and negative legacy of (historical) human biases

in labeling training data. Hence, it has often been argued that we

should look for ways to remove bias from training data (instead of

constraining the training process), either through massaging the

training labels [24] or reweighting training samples according to

an estimated probability that they belong to a sensitive group [25].

Methods based on removing bias from training data usually fail

to perform on par with the state-of-the-art (e.g. covariance-based

models by Zafar et al. [41, 44]). However, we argue that this hap-

pens not due to an inherent inability to treat datasets, but rather

due to methodological deficiencies in previous approaches. In Sub-

section 2.4 we discuss some of the most common deficiencies, such

as preprocessing limitations, heuristic statistical models and inabil-

ity to justify all types of fairness-aware edits. If those deficiencies

are appropriately handled, we expect dataset editing methods to

perform on the same level or even better than state-of-the-art, since

they directly work on the source of bias instead of its outcome.

In this paper we propose an adaptive sensitive reweighting mech-

anism and a weight estimation model that do not suffer from these

shortcomings. Our approach assumes that there exists an (unob-

servable) underlying set of class labels corresponding to training

samples that, if predicted, would yield unbiased classification with

respect to a fairness objective. It then searches for sample weights

that make weighted training on the original dataset also train to-

wards those labels, without explicitly observing them. To obtain

those weights our approach employs a non-linear probability infer-

ence model, which we call CULEP, standing for Convex Underlying
Label Error Perturbation. This model can be trained to convert
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classification error to a probability that the estimated labels ap-

proach the desired underlying labels. We then use it to infer train-

ing weights based on classifier outputs and iteratively retrain the

classifier on these new weights.

This bias mitigation mechanism encapsulates both fairness- and

classifier-related information and thus allows a more precise sto-

chastic analysis. Furthermore, it avoids concerns that arise from

label editing approaches, since training is still conducted on the

original labels. Finally, in Subsection 4.4 we explain that different

CULEP parameters can help achieve different fairness goals, such

as obtaining designated trade-offs between accuracy and various

fairness metrics, such as those outlined in Subsection 2.2.

The novelty of our approach lies in the ability of CULEP to

help an iterative reweighting process recognize sources of bias and

diminish their impact without affecting features or labels. This

way, the classification model is trained on original (possibly biased)

dataset labels while still achieving designated fairness goals.
1
The

CULEP model improves previous reweighting mechanisms with re-

gards to estimating compliance between estimated and underlying

labels and can be used to mitigate various types of unfairness.

2 BACKGROUND
Throughout this work, we consider binary classifiers that produce

label estimations ŷi ∈ {0, 1} for samples i of features xi and labels

yi ∈ {0, 1}. A certain group of samples S is recognized as sensitive
compared to its non-sensitive complement S′ based on a sensitive

real-world attribute, such as gender, race or financial status. Bias

arises when a statistical property for the distribution of {ŷi , i ∈ S}
is different for the distribution of {ŷi , i ∈ S′}. Fairness-aware
classification methods attempt to mitigate such differences.

2.1 Types of Unfairness
As outlined by Zafar et al. [44], classification unfairness is often

expressed through the notions of disparate treatment, disparate

impact and disparate mistreatment. Fairness objectives aim to elim-

inate these types of unfairness.

Disparate treatment elimination reflects the ability of a trained

classifier to yield the same outputs ŷi for features xi regardless of
whether the sample belongs to the sensitive group S or not:

P(ŷi |xi , i ∈ S) = P(ŷi |xi ) (1)

Effectively, this fairness objective requires samples with similar fea-

tures to be similarly classified. For example, if gender is a sensitive

attribute for a classifier, males and females with otherwise similar

features should be assigned to the same class under the principle

of disparate treatment elimination.

A simple way to avoid disparate treatment is refraining from

using information about the sensitive group for classification. This

avoids discrimination or reverse discrimination [38], but the accu-

racy cost can sometimes be too high [28].

Disparate impact elimination reflects the ability of a classifier

to achieve statistical parity [25, 27, 28], i.e. assign the same portion

1
Learning training weights is hardly a new concept in machine learning, but usually

weights are learned to help boost weak learner accuracy [40] and only seldom to satisfy

other training objectives [16, 21, 34].

of users to a class for sensitive and non-sensitive groups:

P(ŷi = 1|i ∈ S) = P(ŷi = 1|i < S) (2)

For example, if financial status is a sensitive attribute for term de-

posit predictions [37], disparate impact elimination would ensure

that the portion of positive predictions is the same between low-

income and high-income clients.

Disparatemistreatment elimination reflects the ability of a clas-

sifier to achieve equal misclassification rates across sound ground
truth labels (i.e. not suffering from dataset construction problems,

such as historical biases) [41, 44]. For example if race is a sensitive

attribute for prediction of criminal behavior [33], disparate mis-

treatment elimination would ensure the same error rate between

white and non-white defendants.

Recent works [7, 31] have shown that it is impossible to simulta-

neously satisfy all notions of disparate mistreatment elimination,

unless the classifier is 100% accurate. More commonly adopted are

the disparate mistreatment elimination constraints of equal false

positive rates (FPR) and equal false negative rates (FNR):

P(ŷi , yi |yi = 1, i ∈ S) = P(ŷi , yi |yi = 1, i < S) (3a)

P(ŷi , yi |yi = 0, i ∈ S) = P(ŷi , yi |yi = 0, i < S) (3b)

2.2 Metrics
Following earlier fairness-aware approaches, in this work we mea-

sure classifier performance using accuracy, i.e. the proportion of

correctly classified samples, disparate impact using the p% rule and

disparate mistreatment using the difference between sensitive and

non-sensitive FPR and FNR.

The p% rule [2] is an empirical rule which does not allow sen-

sitive group identification to be lower than a set percentage of

non-sensitive group identification:

pRule = min

{
P
(
ŷi = 1|i ∈ S

)
P
(
ŷi = 1|i < S

) , P (ŷi = 1|i < S
)

P
(
ŷi = 1|i ∈ S

) } (4)

This metric is correlated to the Calders-Verwer measure [5] which

calculates the disparity between those two percentages. Since these

two measures share the same optimal point, we prefer reporting the

pRule , for which there exists a set legal context. More specifically,

the Uniform Guidelines on Employee Selection Procedures require

at least 80% rule adherence [2].

To measure disparate mistreatment, it is common to measure

how deviation from set goals differs between the sensitive and

non-sensitive group. In alignment with the common disparate mis-

treatment elimination conditions outlined in Eq. 3, we employ the

following measures of disparate mistreatment:

DF PR = P(ŷi , yi |yi = 1, i ∈ S) − P(ŷi , yi |yi = 1, i < S) (5a)

DFNR = P(ŷi , yi |yi = 0, i ∈ S) − P(ŷi , yi |yi = 0, i < S) (5b)

To report the overall disparate mistreatment, we combine those

two metrics into the quantity:

|DF PR | + |DFNR | (5c)

2.3 Previous Work
Works aiming to reduce classification unfairness can be catego-

rized in the following approaches: a) preprocessing training data, b)

training under fairness constraints, c) attempts to ‘fix’ posteriors.
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Approaches based on training data preprocessing aim to remove

disparate impact from training data, under the assumption that

the disparate impact of the trained classifier follows the disparate

impact of training data. Such approaches include massaging the

dataset [3, 13, 16, 24–26] by changing class labels that are identified

as mislabeled due to bias and reweighting (usually heuristically)

training samples so that more importance is placed on sensitive

ones [3, 11, 25]. Concerning massaging techniques, it must be noted

that altering labels for training, even under bias concerns, can result

in legal implications [1].

Approaches training under fairness constraints select a disparate

impact or mistreatment metric and attempt to properly adjust the

training rules, either via editing the rules themselves [4, 44] (e.g. by

inserting an appropriate regularization term towards fairness) or by

introducing appropriate linear program constraints [6, 11, 18, 39, 42–

44] that reflect the desired optimization goals.

Finally, certain approaches attempt to edit posteriors in a way

that satisfies fairness constraints [9, 10, 12, 20]. Such strategies are

typically centered around some form of group-based thresholding.

It must be noted that such systems require information about the

sensitive group to make an appropriate decision. Although Hardt et

al. [20] argue that privacy concerns can be alleviated by remotely

obtaining the different decision-making rules between sensitive

and non-sensitive groups and locally applying the appropriate rule,

such practices may still be inapplicable under certain legal settings,

since they introduce disparate treatment.

2.4 Discussion on Dataset Editing Deficiencies
In this subsection we discuss three common shortcomings across

previous dataset editing fairness-aware mechanisms.

Limitations of preprocessing. Dataset editing approaches are

commonly formulated by defining types of bias in the training

data and then trying to statistically eliminate them. This process

is indeed suitable for mitigating simple dataset-related biases, but

fails to take into account more intricate sources of unfairness. For

example, there may exist weaker feature correlations (e.g. through a

chain of correlation of unobserved features, which may require ex-

ternal explanatory attributes to identify [4]) that cause bias against

only a subset of the sensitive group. Furthermore, certain data could

cause biases to only certain types of classifiers. For example, linear

classifiers may have difficulty eliminating non-linear types of bias.

Since biases emerge through systems of high complexity, which

often tend to exhibit non-linear behavior, it is difficult to identify

them through simple stochastic analysis and develop specific elimi-

nation strategies using only training data. Instead, it could be more

informative to directly observe the effect of biases on the classifier

and suitably perform adjustments while training. Following this

line of thought, in this work, we propose an adaptive scheme, which

iteratively adapts training data until stable behavior is achieved

with respect to the classifier trained on this data.

Heuristic statistical models. Another shortcoming of dataset

editing approaches is the introduction of ad hoc assumptions on

the nature of unfairness, the most prominent one being that classi-

fier bias closely follows the bias of training data. Although there

often exists a high degree of correlation between the two, other

structural difficulties may cause inadequate bias elimination or

introduction of inverse bias, even if statistically optimal methods

are employed to remove dataset bias. As a result, statistical mod-

els often arrive at a minimum condition that guarantees correct

but not necessarily full treatment of training bias. For example,

it is common practice to assume that higher prediction errors of

robust classifiers indicate mislabeled data [16], but we show (see

Subsection 4.2) that this -otherwise intuitive- assumption discards

cases where classification error relates differently to mislabeling for

sensitive and non-sensitive groups. In Subsection 4.3 we propose a

statistical model that takes such differences into account and can

be trained to satisfy various fairness objectives.

Inability to justify disparate mistreatment elimination. Dis-
parate mistreatment is an emerging fairness concern that is at-

tributed to difficulties in reaching similar misclassification rates

between groups rather than direct dataset biases. Since we can-

not attribute such concerns to biased data, it is difficult to justify

a disparate mistreatment elimination method which attempts to

treat the dataset. Furthermore, since disparate mistreatment is not

necessarily caused by disparate impact, constructing datasets un-

biased with respect to disparate impact does not treat disparate

mistreatment. In other words, the relation between dataset bias

and disparate mistreatment remains unclear to date. This detriment

is more apparent when trying to develop massaging approaches

that edit dataset labels with a target other than disparate impact

elimination; to the authors’ knowledge, there exists no clear (ethical

or legal) justification to develop disparate mistreatment elimination

procedures in a label editing process, as it cannot be attributed to

any previously proposed source of dataset bias. For example, even

in the well-formulated partial dataset repair mechanism of Feldman

et al. [13], it becomes impossible to legally justify further label edit-

ing to remove disparate mistreatment, since dataset-related bias has

already been treated. In this work, we try to bypass such limitations

through a reweighting scheme, thus discovering sample weights

that train towards desired objectives instead of editing training

labels towards the same objectives.

3 ADAPTIVE SENSITIVE REWEIGHTING
3.1 Training Objective
Our analysis is conducted on a binary probabilistic classifier, which

produces probability estimates P̂(Y = yi ) = 1 − P̂(Y , yi ) for
samples i (with features xi ) and each class label Y ∈ {0, 1}. Such a

classifier estimates class labels as:

ŷi = argmax

Y ∈{0,1}
P̂(Y = yi ) = argmin

Y ∈{0,1}
P̂(Y , yi ) (6)

For ease of understanding, we prefer referring to the estimated label

error P̂(Y , yi ), since for a well-calibrated classifier, P̂(ŷi , yi )
approaches the misclassification error P(ŷi , yi ), which is usually

the desired minimization target of the learning process.

As previously described, this work assumes that unfairness is

often caused by skewed group and label distributions in the dataset.

However, the available ground truth may not always suffer from

biases but yield disparate mistreatment due to other reasons, such as

correlations between the sensitive group and certain attributes. To

avoid confusion, we propose a common formulation for different

fairness goals on a classifier. For training samples i , features xi
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Figure 1: Probabilistic classifier training.

and class labels yi , there exist underlying (i.e. unobservable) class
labels ỹi that yield estimated labels ŷi which conform to designated

fairness and accuracy trade-offs.

In this setting, training goals are twofold: a) make the classifier

yield accurate predictions, i.e. minimize P̂(ŷi , yi ) and b) make

classifier predictions approach the underlying labels, i.e. minimize

P̂(ŷi , ỹi ).2 Obviously, there is difficulty in simultaneously training

towards both of these objectives when data labels and underlying la-

bels do not coincide. Training towards data labels could be achieved

through the scheme demonstrated in Fig. 1 and training towards un-

derlying labels could be achieved through the scheme demonstrated

in Fig. 2.

Figure 2: Directly training on observable desired labels. This
can be ethically or legally questionable.

Furthermore, estimating the underlying labels and directly using

them for training can be argued to be an act of data falsification

under certain legal settings. Therefore, not only should training be

conducted on the original data labels, it is also desirable to fully

abstain from any observation of underlying labels. In this respect,

the scheme demonstrated in Fig. 2 is inadequate.

2
Probability maximization is equivalent to loss minimization: for the loss Li calculated
for sample i we can formulate Li ∝ P̂ (ŷi , yi ). We prefer a probabilistic formulation,

since it allows us to infer conditional relations in a theoretically sound manner.

To solve these contradictions, we propose selecting weightswi
for training samples i that make weighted training on data labels

equivalent to unweighted training on underlying labels. This way,

we can focus on estimating weights wi that help achieve desig-

nated fairness objectives without observing underlying labels. In

other words, we try to minimize both weighted error on observed

labels as well as the distance between weighted observed labels and

unweighted underlying labels:

min

∑
i
wi P̂(ŷi , yi )

min

∑
i

(
wi P̂(ŷi , yi ) − P̂(ŷi , ỹi )

)
2

For simplification purposes, in this paper we set the second mini-

mization goal to 0 and attempt to analytically derive the weightswi
rather than tuning towards them with a gradient-based method, as

per Eq. 7. In future work, training towards minimizing differences

between underlying and weighted estimation could be conducted

in place of analytical calculation, so as to make convergence more

robust against noise.

min

∑
i
wi P̂(ŷi , yi ) (7a)

wi P̂(ŷi , yi ) = P̂(ŷi , ỹi )∀i (7b)

Contrary to previous works on treating dataset bias, we assume

that P̂(ŷi , ỹi ) cannot be estimated through simple sample- or

group-specific dependencies. Instead, in Section 4 we propose a

model which, in addition to knowledge of whether samples i belong
to the sensitive group, employs conditional probabilities to make

more informed estimations based on P̂(ŷi , yi ). Such a model al-

lows the classifier to satisfy all previously outlined goals, namely

estimating the underlying labels while training on an appropri-

ately weighted original training label objective. This is more clearly

demonstrated in Fig. 3.

Figure 3: Training on unobservable desired labels.

Such a process shifts the focus of the training scheme to dis-

covering a probability estimation model P̂(ŷi , ỹi ) that can train
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towards the desired goals rather than searching for the underlying

labels themselves. This is a substantial improvement compared to

heuristically defining label editing procedures.

3.2 Why Unobserved Underlying Labels?
Essentially, the training objectives in Eq. 7 are equivalent to train-

ing the classifier on underlying labels. However, if we adequately

estimate P̂(ŷi , ỹi ) using only P̂(ŷi , yi ), we can train for those

labels using only the original training labels yi . Previous works
(e.g. the original massaging approach of Calders et al. [3]) try to

infer and directly utilize underlying labels. However, we refrain

from doing so, as not directly observing those labels yields three

significant advantages.

Firstly, the classifier cannot be accused of being trained on fal-

sified data. This practice can be ethically or legally questionable,

however well-intended the ‘falsification’ as a form of label editing

is. Instead, the classifier is trained over the labels yi for weights
that help it achieve its target objective, which is a widely accepted

process in machine learning.

Secondly, we can select models for the estimation P̂(ŷi , ỹi )
that allow training towards objectives that could not be formulated

as deficiencies in training data. In fact, training objectives include

unbiased underlying label discovery instead of training data label

discovery. Since discovered underlying labels are not directly uti-

lized in training, we can then select probability estimation models

that train towards objectives other than simple disparate impact,

such as disparate mistreatment or fairness and accuracy trade-offs.

Thirdly, there is no need to introduce massaging-like heuristics

about how relabeling should be distributed across classes and/or

groups. This way, the underlying label distribution becomes more

important than identifying which sample labels are biased. This

property is important, as the relation between data and certain

notions of unfairness is not yet clear, but there exist clear definitions

on whether a label distribution adheres to a notion of fairness.

3.3 Training Algorithm
To simultaneously adjust training weights alongside classifier train-

ing using Eq. 7, we adopt a classifier-agnostic iterative approach, in

which we first fully train a classifier based on uniform weights and

then appropriately readjust those weights, repeating these steps

until convergence. This process is specified in Algorithm 1.

Algorithm 1 Adaptive Sensitive Reweighting

function reweight(classifier C, data D, sensitive group S)
wi ← 1∀i ∈ D
wi,prev ← 1 +

√
ϵ ∀i ∈ D

while
∑
i ∈D (wi −wi,prev )2 ≥ ϵ do

train C on samples i = (xi ,yi ) ∈ D and weights
wi∑
j∈D w j

use C to obtain P̂(ŷi , yi ).
estimate P̂(ŷi , ỹi ) using P̂(ŷi , yi ) ∀i ∈ D
wi,prev ← wi ∀i ∈ D
wi ← P(ŷi , ỹi )/P(ŷi , yi )∀i ∈ D (see Section 4)

return trained classifier C , {wi }

As per our previous formulation, we directly set new weight esti-

mations rather than partially editing existing ones. We do so under

the assumption that the adaptation model fails to converge only if

the underlying probability estimation model does not adequately

model the desired underlying labels. Otherwise, as long as the esti-

mator model is convex, locality is preserved and thus the updating

process should eventually converge to points or tracks of optimal

weights. We experimentally assert this behavior in Subsection 6.1.

Recent works [17, 44] have occasionally proposed similar itera-

tive methods as baselines to compare themselves to. However, our

work differs in that it employs an inferred rather than a heuristic

model to produce bias-related probabilities (see Section 4).

4 UNDERLYING LABEL ERROR ESTIMATION
4.1 Motivation
In the previous section’s methodology, it is important to accurately

model the error P̂(ŷi , ỹi ) of classified labels ŷi deviating from

underlying labels ỹi as a function of the classifier error P̂(ŷi , yi )
for original training labels yi .

To do so, we propose a model that performs convex perturbations

of classifier error to parameterize the deviation between original

and underlying labels for sensitive and non-sensitive group samples.

This model can then be used to estimate weights that help achieve

various fairness objectives. In this section we explain why this

process is superior to simpler error-based weighting (e.g. boosting)

and why it can be fine-tuned towards the more common fairness

objectives.

4.2 Weighting by Error is Inadequate
Previous attempts on sensitive reweighting (e.g. baselines employed

by [17, 44]) propose that weights in Eq. 7a should be proportional

to classifier error. However, by solving Eq. 7b this leads to:

wi ≈ P̂(ŷi , yi ) ⇔ P̂(ŷi , ỹi ) ≈ P̂2(ŷi , yi )

Furthermore, this assumption ignores differences in classifier

error stemming from matching vs. non-matching dataset and un-

derlying labels. The Bayes rule yields:

P̂(ŷi , ỹi )
= P̂(ŷi , yi |yi = ỹi )P̂(yi = ỹi )
+ P̂(ŷi , yi |yi , ỹi )P̂(yi , ỹi )

(8)

Therefore, since P̂(yi = ỹi )+P̂(yi , ỹi ) = 1, the proposed condition

can always hold true only if:

P̂(ŷi , yi |yi = ỹi ) ≈ P̂(ŷi , yi |yi , ỹi ) ≈ P̂(ŷi , yi )

However, the above conditions are impossible to uphold for every

dataset, since any sequence of datasets on which misclassification

progressively becomes independent of desired underlying labels (e.g.

progressively becomes unbiased) converges to the contradictory

P̂(ŷi , yi |yi = ỹi ) ≈ P̂(ŷi , yi |yi , ỹi ) ≈ P̂(ŷi , yi ) , P̂2(ŷi ,
yi ). In other words, the previously proposed heuristic cannot always
be met with success in removing bias.
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4.3 Convex Underlying Label Error
Perturbation (CULEP) Model

In this work, we recognize that conditional classifier error can be

different when underlying labels coincide with original labels com-

pared to when they do not; if classifier error would be overestimated

compared to its estimation under the condition that original and

underlying labels coincide, then it would be underestimated under

the condition that they do not coincide and conversely. In other

words:(
P̂(ŷi , yi |yi = ỹi )−P̂(ŷi = yi )

) (
P̂(ŷi , yi |yi , ỹi )−P̂(ŷi , yi )

)
< 0

To satisfy this property, we propose estimating those conditional

probabilities by perturbing classifier error of training samples i . To
do so, we multiply it with values obtained through a non-decreasing

convex function Lβi
(
pi ) ≥ 0, Lβi

(
0) = 1 of perturbation parame-

ters pi ∈ [−1, 1], whose Lipschitz constant is proportional to βi .
3

Without loss of generality, we model perturbation parameters as

|pi | = P̂(ŷi , yi ), where their signs depend on whether conditional

probabilities are overestimated or underestimated. Since probability

spaces are continuous, whether to overestimate or underestimate

original and underlying label coincidence during perturbations

should be maintained throughout training samples. Adopting the

±,∓ notation
4
the above can be written as:

P̂(ŷi , yi |yi = ỹi ) = Lβi
(
± P̂(ŷi , yi )

)
P̂(ŷi , yi )

P̂(ŷi , yi |yi , ỹi ) = Lβi
(
∓ P̂(ŷi , yi )

)
P̂(ŷi , yi )

The sensitive groupS and the non-sensitive groupS′ can adhere
to different misclassification biases, which skew error in different

ways (e.g. the coefficient of variation for classifier error for females

mislabeled as males may be different for males mislabeled as fe-

males). Hence, we select different Lipschitz constants between those

groups to produce different perturbations:

βi =

{
βS if i ∈ S
βS′ if i < S

}
Finally, conditional probability estimations require the probabil-

ity of biased or inadequate labeling. These probabilities may differ

between the sensitive and non-sensitive groups (e.g. dataset con-

struction may have been impartial between males and only biased

against females) and can be affected by many unknown social- and

dataset-related parameters. However, as long as these parameters

remain approximately constant during dataset creation (e.g. because

all data were gathered from the same regions during the same time

period), their cumulative effect also remains approximately con-

stant. Hence, data mislabeling would occur with a fixed probability,

depending on whether samples belong to the sensitive group and

can be modeled as two Bernoulli processes, one for sensitive group

samples with mean value qS and another for non-sensitive group

samples with mean value qS′ :

P̂(yi , ỹi ) = qi =
{
qS if i ∈ S
qS′ if i < S

}
3
If the derivative of a function exists, its Lipschitz constant coincides with the deriva-

tive’s supremum. Convex functions, such as exp(βip), are Lipschitz-continuous in
bounded sets [22].

4± represents either the positive or the negative sign and ∓ its opposite sign.

Substituting the above in Eq. 7b we obtain:

wi P̂(ŷi , yi ) = P̂(ŷi , ỹi )
⇔ wi P̂(ŷi , yi )

= Lβi
(
± P̂(ŷi , yi )

)
P̂(ŷi , yi )qi

+ Lβi
(
∓ P̂(ŷi , yi )

)
P̂(ŷi , yi )(1 − qi )

This Convex Underlying Label Error Perturbation (CULEP) model

obtained through the previous propositions can be rewritten as:

wi = αiLβi
(
P̂(ŷi , yi )

)
+ (1 − αi )Lβi

(
− P̂(ŷi , yi )

)
βi =

{
βS if i ∈ S
βS′ if i < S

}
≥ 0 αi =

{
αS if i ∈ S
αS′ if i < S

}
∈ [0, 1]

(10)

For each selection of (qi ,±), parameters αi can be calculated as

αi = qi or αi = 1−qi depending on the sign of ±. Therefore, when
tuning Eq. 10, it suffices to search only for values of αi instead of

both the values of qi and the sign of ±.

4.4 Achieving Fairness with the CULEP Model
In this subsection, we discuss how the CULEP model allows us to

select parameters in Eq. 10 such that we can train towards accuracy,

disparate impact elimination and disparate mistreatment elimina-

tion objectives. As a result, it is possible to tune those parameters

(see Subsection 5.4) to satisfy various such objectives or trade-offs

between them.

Accuracy objectives. Training towards maximal accuracy of the

classification model is achieved when all training weights are equal,

i.e.wi = 1∀i ⇔ βS = βS′ = 0.

Disparate mistreatment objectives. As αi → 1we obtainwi →
Lβi

(
P̂(ŷi , yi )

)
and hence place higher importance onmisclassified

samples. Whereas as αi → 0 we obtain wi → Lβi
(
− P̂(ŷi , yi )

)
and hence place higher importance on correctly classified samples.

Therefore, αi ∈ [0, 1] interpolate between the importance of correct

vs. incorrect classification for each sample. As βi →∞, these trade-
offs dominate classifier training pertaining to respective samples.

Based on these observations, we recognize two cases of disparate

mistreatment with respect to the signs of DF PR and DFNR :

a) DF PRDFNR > 0, i.e. false positives and false negatives are either

both overestimated or both underestimated for the sensitive group.

In this case, as (αS ,αS′) → (0, 1) more importance is placed on

sensitive compared to non-sensitive group sample misclassifica-

tion. The opposite happens as (αS ,αS′) → (1, 0). This means that

|DF PR | and |DFNR | are reduced as values of αi move towards one

of those two antipodal points. Large enough βS and/or βS′ can
magnify this effect in a way that minimizes either of those metrics

or trade-offs between them.

b) DF PRDFNR < 0, i.e. false positives and false negatives are not

overestimated or underestimated simultaneously for the sensitive

group. In this case, we obtain opposite increments to DF PR and

DFNR as either (αS ,αS′) → (0, 0) or (αS ,αS′) → (1, 1). Similarly

to before, for large enough βS and/or βS′ , |DF PR | and |DFNR | or a
trade-off between them can be minimized as ai move towards one

of those two antipodal points.

Disparate impact objectives. Positive discovery is more sensitive

either towards higher or lower misclassification weights for each
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group. Hence, there exist parameters αS ,αS′ that either increase
or decrease positive discoveries. Therefore, there also exist large

enough βS , βS′ that maximize the pRule .
Summarizing the above, we can see that the CULEP model intro-

duces four degrees of freedom (one for each of its parameters), with

regards to positive or negative importance of misclassification rates

and the degree of this importance for sensitive and non-sensitive

groups. Therefore, those parameters are able to place different im-

portances on accuracy and mitigation of sensitive and non-sensitive

group differences on quantities correlated with misclassification

(e.g. disparate mistreatment metrics) or discovery (e.g. disparate

impact metrics).

5 EXPERIMENTS SETUP
5.1 Datasets
To assert the validity of our approach, we experiment with two

synthetic datasets suffering from disparate mistreatment previously

proposed by Zafar et al. [41], as well as with three well-known real

world datasets: the Adult income dataset [32], the Bank market-

ing dataset [37] from the UCI repository [35] and the ProPublica

COMPAS dataset [33] of criminal recidivism.

The two synthetic datasets suffering from disparatemistreatment

comprise 10,000 samples with 2 features, a binary sensitive label

and a binary classification label. Their features are obtained through

bivariate normal distributions, chosen so that their sensitive labels

yield DF PRDFNR < 0 and opposite-sign DF PRDFNR > 0, respec-

tively, for a logistic regression classifier. This way, we can explore

the ability of our approach to handle the two different cases of

disparate mistreatment recognized in Subsection 4.4. The synthetic

dataset with opposite signs of disparate mistreatment between FPR

and FNR, which we call SynthOpp, is constructed by sampling the

following distributions 2,500 times each:

xi,yi=1,i<S ∼ N ([2, 0], [5, 1; 1, 5])
xi,yi=1,i ∈S ∼ N ([2, 3], [5, 1; 1, 5])
xi,yi=0,i<S ∼ N ([−1,−3], [5, 1; 1, 5])
xi,yi=0,i ∈S ∼ N ([−1, 0], [5, 1; 1, 5])

The synthetic dataset with same signs of disparate mistreatment

between FPR and FNR, which we call SynthSame, is constructed by

sampling the following distributions, 2,500 times each:

xi,yi=1,i<S ∼ N ([1, 2], [5, 2; 2, 5])
xi,yi=1,i ∈S ∼ N ([2, 0], [10, 1; 1, 4])
xi,yi=0,i<S ∼ N ([0,−1], [7, 1; 1, 7])
xi,yi=0,i ∈S ∼ N ([−5, 0], [5, 1; 1, 5])

The Adult dataset comprises 48,842 test samples with 14 features

and a binary label indicating whether income is above 50K. For this

dataset, we consider gender as the sensitive feature.

The Bank dataset comprises 41,188 samples with 20 features and

a binary label, indicating whether a client has subscribed to a term

deposit. For this dataset, ages less than 25 and more than 60 years

are considered sensitive.

We select a subset of the COMPAS dataset previously used for

fairness experiments [44], which comprises 6,150 samples with

five features (age category, gender, race, priors count and charge

degree) and a binary label indicating whether the defendant reof-

fended within two years. The race is considered as the sensitive

attribute and, to make it binary, we follow earlier approaches in se-

lecting only Black and White individuals. It must be noted that the

selected features aim to facilitate fairness experiments comparable

to previous approaches rather than high predictive accuracy.

5.2 Fairness Objectives
Fairness-aware classifiers are usually able to train towards miti-

gating various fairness metrics. At the same time, they need to

preserve the accuracy (acc) of the base classification model as much

as possible. Otherwise, it could be possible for their outputs to be

misleading.

When a classifier targets multiple objectives [19], it can employ

either linear scalarization, where a linear trade-off is set between

the objectives, or ϵ-constraints, which bound individual objectives.

Since there usually exist legal bounds for disparate impact (e.g. the

80% rule) but not for mistreatment, it is easier to formulate disparate

impact as an ϵ-constraint and disparate mistreatment as linear

scalarization. However, Miglierina et al. [36] theoretically show

the duality between those two types of objectives. Furthermore,

it is easier to tune the parameters of Eq. 10 in a linear than in a

constrained space. Therefore, we opt for relaxing training bounds

by setting linear scalarization goals for all fairness objectives.

In particular, the Adult and Bank datasets are commonly consid-

ered to suffer from disparate impact and thus we train the CULEP

model towards eliminating disparate treatment while preserving

accuracy:

max(acc + pRule)
On the other hand, the COMPAS and synthetic datasets are con-

sidered to contain sound ground truth and thus we place more

emphasis on overall disparate mistreatment elimination, as previ-

ously discussed in Subsection 2.2. For our experiments, we consider

accuracy to be equally important to each fairness constraint:

max(2acc − |DF PR | − |DFNR |)

5.3 Validation
For Adult and Bank dataset experiments we perform a 70 : 30

random split and for the COMPAS and synthetic dataset experi-

ments we perform a 50 : 50 random data split to obtain training

and test data. These splits are used by previous works exploring

those datasets and thus allow our results to be comparable across

approaches. In both cases, we use the training set to tune the CULEP

model on Algorithm 1 and then train the base classifier on the train-

ing set. We use the evaluation set only to calculate the accuracy

and disparate impact and mistreatment elimination of the resulting

classifier. For robustness, we again follow the validation methodol-

ogy of previous approaches, which repeat this process 5 times and

report the average measures across experiments.

We employ logistic regression without regularization as our base

classifier of choice. To speed up training time we normalize numeric

attributes in real-world datasets by dividing with their mean value.

We encode nominal attributes using a one-hot scheme to convert

them to binary arrays. Finally, CULEP conditional probabilities are

modeled as Gaussian processes, which is a popular generic model
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in stochastic analysis, as it often arises in all sorts of physical and

theoretical systems:

Lβi (p) = exp(βip)

5.4 Training the CULEP Model
The CULEP model outlined in Eq. 10 is non-linear parametric model

and thus tuning needs to be accurate. Furthermore, Algorithm 1,

can exhibit non-smooth behavior, since a different number of ad-

justments can arise from different parameter selections. Hence, to

optimize CULEP parameters, we employ the DIvided RECTangles

(DIRECT) method [14, 15, 23], which is guaranteed to yield globally

optimal solutions in Lipschitz-continuous objective spaces. Since

aS ,aS′ lie in [0, 1] as either probabilities or complements of prob-

abilities, bS ,bS′ are non-negative constants and exp(βp) quickly
converges to higher variation coefficients for larger β , we search for
optimal parameters in the space (aS ,aS′ ,bS ,bS′) ∈ [0, 1]2×[0, 3]2.
Each combination of parameters is evaluated with a full run of

Algorithm 1 on the training set.

5.5 Compared Methods
Zafar et al. previously tested various fairness-aware approaches

for disparate impact elimination on the Adult dataset [44] and

disparate mistreatment elimination on the COMPAS dataset [41].

We compare our method with those they report to yield superior

results to the rest. These ‘best’ methods also happen to use logistic

regression. The methods compared in our experiments are:

• ASR+CULEP. Adaptive Sensitive Reweighting using the

CULEP model as described throughout this paper, which can

be used to mitigate disparate impact and mistreatment. Our

implementation is available online.
5

• Covariance. Models proposed by Zafar et al. [41, 44] em-

ploying covariance to approximate linear program constraints

that mitigate disparate impact [41] and mistreatment [44].

• Group Thresholding. Model proposed by Hardt et al. [20]

for disparate mistreatment elimination.

• Regularizer. Approach proposed by Kamishima et al. [28]

to remove prejudice-related disparate impact. It suffers from

disparate treatment, since it takes into account whether sam-

ples are sensitive during classification.

6 RESULTS
6.1 Exploring Convergence
In this subsection, we explore the convergence of Algorithm 1

towards optimal weights and the impact on the objective function.

This way, we can get a general idea about convergence speed, as

well as the effect of multiple iterations in our scheme.

To explore convergence after selecting CULEPmodel parameters,

we measure the objective functions formulated in Subsection 5.2

for each dataset on training data. We also measure the root mean

square weight edits on each iteration of Algorithm 1:√
1

N
∑
i (wi −wi,prev )2

where N is the number of training samples.

5
https://github.com/MKLab-ITI/adaptive-fairness

As rootmean square edits approach zero, Algorithm 1 approaches

(locally) optimal weights. On the other hand, if root mean square

edits approach a fixed constant, the adaptive scheme alternates

between similar weights in a locally unstable way which is close to

a global optimum. Hence, we can consider that weights converge

to a stable state as long as weight edits approach a fixed value.

In Fig. 4 we can see that weight edits converge in very few it-

erations for the studied datasets. However, they do not stabilize

immediately but need a small number of repetitions to converge to

a fixed value. Furthermore, we can see that, after weights converge,

the objective functions yield substantial improvements compared

to the first iteration. These findings align with our hypothesis that

single-step methodologies are insufficient to fully discover appro-

priate weights and that more iterations should be performed.
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Figure 4: Objective and weight editing across datasets for
each iteration in Algorithm 1 using the trained CULEP
model to re-estimate underlying label error (disparate treat-
ment was avoided for the synthetic datasets).

ASR retrains the base classifier only a few times (∼ 5) before con-

verging. Furthermore, DIRECT training achieves precise estimation

up to the fifth decimal point (which empirically suffices) for the

four CULEP parameters within at most ⌈log
2
(3/0.000005)⌉24 = 320

evaluations of ASR. Therefore, ASR+CULEP trains the base classi-

fier at most 320 · 5 = 1, 600 times. Although this computational cost

could be prohibitive for more complex base classifiers, it scales lin-

early without further approximations and hence is suited to simpler

classifiers, such as logistic regression.

6.2 Results for Disparate Mistreatment
Our experiments for disparate mistreatment attempt to explore

mistreatment elimination both when disparate treatment is avoided

and when it is not. In the first case, we do not include information

about the sensitive group in the training and validation datasets,

whereas in the second case we do. It must be noted that not all clas-

sifier and datasets can account for disparate treatment. For example,

in the COMPAS dataset, removing the sensitive group feature, i.e.

race, yields inadequate levels of prediction for the explored dataset,

whereas group thresholding approaches inherently require infor-

mation about the sensitive group. Although Hardt et al. [20] argue

that thresholding can be performed without information disclosure

(e.g. locally), avoiding disparate treatment may still be important

in certain legal settings. Our ASR+CULEP model is compared to

previous ones based on its ability to eliminate overall disparate

mistreatment (i.e. minimize both |DF PR | and |DFNR |).
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Disparate Treatment Avoiding Disparate Treatment

COMPAS SynthOpp SynthSame SynthOpp SynthSame

Fairness Approach acc DF PR DFNR acc DF PR DFNR acc DF PR DFNR acc DF PR DFNR acc DF PR DFNR
None 66% 17% -25% 78% -16% 19% 80% 25% 14% 78% -16% 19% 80% 25% 14%

ASR+CULEP 2acc − |DFPR | − |DFNR | 65% -1% -1% 81% 0% 0% 77% 0% -16% 77% 0% -1% 75% 0% -13%

Covariance [41] 66% 3% -11% 80% 1% 2% 77% 14% 6% 75% -1% 1% 69% -1% 6%

Group Thresholding [20] 65% -1% -1% 79% 0% -1% 67% 2% 0% - - - - - -

Table 1: Disparate mistreatment elimination for logistic regression on both |DF PR | and |DFNR | constraints for disparate treat-
ment (i.e. the sensitive group is a feature) and avoiding disparate treatment.

In Table 1 we can see that, when information about the sensitive

group is available, ASR+CULEP outperforms covariance-based con-

straints in eliminating disparate mistreatment and yields equally

favorable results to group thresholding. On the COMPAS dataset

it reduces overall mistreatment by 12% more in exchange for 1%

accuracy compared to covariance-based methods and yields iden-

tical results to group thresholding. It also performs slightly better

in all respects on the SynthOpp dataset and manages to maintain

high accuracy on the SynthSame dataset while reducing overall

mistreatment 4% more compared to covariance-based constraints.

Table 1 also shows that, when avoiding disparate treatment,

ASR+CULEP produces better accuracy vs. overall mistreatment

elimination trade-offs compared to covariance-based linear con-

straints. In particular, it yields slightly better (∼1%) overall disparate
mistreatment elimination while better preserving accuracy on the

SynthOpp dataset and trades 6% overall disparate mistreatment to

gain 6% accuracy on the SynthSame dataset.

Considering all comparisons, ASR+CULEP is only inferior to

other methods in eliminating mistreatment on the SynthSame

dataset. However, this can be attributed to the choice of optimiza-

tion goals while training the CULEP model. Indeed, in every in-

stance where residual mistreatment is worse compared to other

methods, significantly higher accuracy is retained to compensate.

6.3 Results for Disparate Impact
Table 2 demonstrates the ability of ourmethodology to eliminate dis-

parate impact compared to state-of-the-art approaches. ASR+CULEP

is able to achieve higher pRule for smaller accuracy trade-off than

the best two previous approaches on the Adult dataset and yields

better pRule than Covariance but worse than the Regularizer ap-

proach on the Bank dataset. Hence, it has merit, especially if dis-

parate treatment is important (Regularizer employs disparate treat-

ment to make results more fair). In this case, compared with Co-

variance, it attains 6% pRule gain for the same accuracy on the

Adult dataset and 16% pRule gain for 2% accuracy loss on the Bank

dataset.

It must be noted that smaller ASR+CULEP accuracies result from

the fairness objective acc+pRule , which incentivizes small accuracy

losses in favor of significant fairness improvements. However, this

method is superior in that it allows higher margins in optimizing

towards pRule and yield better trade-offs for this objective.

7 CONCLUSIONS AND FUTUREWORK
In this work we presented an Adaptive Sensitive Reweighting (ASR)

scheme that uses a convex model (CULEP) to estimate distributions

Adult Bank

Fairness Approach pRule acc pRule acc

None 27% 85% 31% 91%

ASR+CULEP acc + pRule 100% 82% 99% 89%

Covariance [44] 94% 82% 83% 91%

Regularizer [28] 85% 83% 100% 91%

Table 2: Adult dataset disparate impact elimination for logis-
tic regression.We compare ourmethod to the highest pRule
obtained by other methods.

of underlying labels with which to adapt weights. Our method can

be applied on multiple types of fairness objectives and can also

avoid disparate treatment. Experiments on logistic regression clas-

sifiers show that it performs similarly to covariance-based methods

in trading-off accuracy and bias if disparate treatment is avoided.

If we do not avoid disparate treatment and provide information

about the sensitive group in evaluation data though, our approach

performs better than these methods in trading-off disparate im-

pact and mistreatment elimination for small accuracy losses and is

comparable (even superior in some aspects) to methods specifically

designed to take advantage of disparate treatment.

Our results indicate that there is merit in further developing non-

heuristic dataset editing mechanisms as competent alternatives

to existing fairness-aware approaches - i.e. such approaches are

equally valid to existing ones.

For future work, we propose exploring ways to faster train or es-

timate the CULEP model parameters or adjust them during the

training process, as well as developing methods with theoreti-

cally guaranteed convergence by training towards optimal sample

weights rather than analytically deriving them. Furthermore, our

methodology can be tested on more datasets, including multiclass

and regression tasks. Finally, since recent works [8, 30] argue that

stochastic methods can be inefficient in removing differences per-

taining to certain sub-groups, further work should be conducted

to examine whether the proposed CULEP model also suffers from

the same limitations and, if so, extend it to multimodal distribution

formulations, which can adequately model subgroups.
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