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Abstract—This paper deals with content-based large-scale
image retrieval using the state-of-the-art framework of VLAD
and Product Quantization proposed by Jegou et al. [1] as a
starting point. Demonstrating an excellent accuracy-efficiency
trade-off, this framework has attracted increased attention from
the community and numerous extensions have been proposed.
In this work, we make an in-depth analysis of the framework
that aims at increasing our understanding over its different
processing steps and boosting its overall performance. Our
analysis involves the evaluation of numerous extensions (both
existing and novel) as well as the study of the effects of several
unexplored parameters. We specifically focus on a) employing
more efficient and discriminative local features, b) improving the
quality of the aggregated representation, and c) optimizing the
indexing scheme. Our thorough experimental evaluation provides
new insights into extensions that consistently contribute and
others that do not to performance improvement, and sheds
light into the effects of previously unexplored parameters of the
framework. As a result, we develop an enhanced framework that
significantly outperforms the previous best reported accuracy
results on standard benchmarks and is more efficient.

Index Terms—Image retrieval, indexing, image classification.

I. INTRODUCTION

THIS paper deals with large-scale image retrieval that is

defined as the problem of finding in a large database of

images (e.g. 100 million), those that depict the same object

or scene with a query image under variations such as 3D

viewpoint and lighting changes, object deformations, or the

presence of occlusions and clutter. This definition includes

but is not limited to near- and partial-duplicate images. Near-

duplicates are edited (scaled, format changed, etc.) versions of

the same image and partial-duplicates are padded or cropped

near-duplicates [2]. A large-scale image retrieval system has

many important applications, ranging from object retrieval [3],

[4] to location and landmark detection [5], copyright violation

detection [6], representative image selection [7], and more

recently visual meme discovery in social media [8].
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Until recently, state-of-the-art methods in large-scale image

retrieval relied on the bag-of-words (BoW) representation [3],

[9]. According to this, local features (usually SIFT [10])

are extracted from each image and each feature is assigned

to the nearest visual word from a visual vocabulary. The

result of this process is a high-dimensional and sparse his-

togram vector for each image. Such vectors are compared

with standard similarity measures (e.g. cosine) and can be

searched efficiently using established text-retrieval techniques

such as inverted list structures. Several attempts have been

made to improve the accuracy of BoW, with soft-assignment

[11] and Hamming-Embedding (HE)[12] being among the

most successful methods. In soft-assignment each feature is

mapped to a weighted set of visual words, thus enriching the

representation at the cost of increased memory requirements.

HE augments the inverted list structure with a binary signature

that encodes the approximate location of each feature in

the Voronoi cell. This approach not only increases BoW’s

accuracy but is also faster. Motivated by the facts that BoW

ignores spatial information and the cost of full geometric

verification is prohibitive, [12], [13] derived methods that

embed spatial information for each feature in BoW’s inverted

list structure. Such methods can boost the accuracy of BoW,

especially for partial duplicate image retrieval [14] but this

comes again at the cost of increased complexity and memory

requirements.

Despite their success, BoW-based methods cannot scale to

more than few million images (on a single machine) due

to computational and memory constraints [1], [15]. In an

attempt to address the scalability issues, prior art has focused

on compressing the BoW vectors [16]–[18]. However, to

approximate the initial accuracy of a high-dimensional BoW

vector, these methods require thousands of bytes per image.

Recently, a number of more scalable approaches have been

developed [1], [19], [20] that employ more discriminative vec-

tor representations than BoW and combine them with powerful

compression techniques. One of the most successful frame-

works of this type, with respect to the accuracy-efficiency

trade-off, is presented in [1]. This framework still relies on

SIFT features but replaces BoW with the highly discriminative

Fisher Vector [20] representation or its simpler variant, named

VLAD (Vector of Locally Aggregated Descriptors) [19]. Using

these optimized vector representations, significantly better

results are obtained, compared to a BoW vector with similar

dimensionality. Beyond the optimized vector representation,

the success of the framework is due to a powerful indexing
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scheme that jointly optimizes dimensionality reduction and

indexing. First, Principal Component Analysis (PCA) is ap-

plied to significantly reduce the dimensionality of the vectors

while having a negligible impact in accuracy for a moderate

amount of reduction. Subsequently, the reduced vectors are

indexed and searched efficiently using the recently proposed

Product Quantization (PQ) method [21], which was shown

to outperform a number of state-of-the-art indexing methods

including Spectral Hashing [22] and FLANN [23].

The framework of [1], hence denoted as VLAD+PQ, has

demonstrated very good results in terms of search accu-

racy, significantly outperforming previous state-of-the-art ap-

proaches [18]–[20] when a similar efficiency setup is em-

ployed. For instance, the performance of BoW with a vocabu-

lary of 20K visual words can be obtained using only 128 bits

per image. With such a small code size, 100 million images

can fit in approximately 2 GB of RAM and be searched in 250

ms on a single core. However, such an aggressive compression

results in a significant decrease of the initial search accuracy.

In this paper, we attempt to further improve the accuracy

of this framework, with special focus on extremely efficient

setups in terms of memory usage and query response times. To

this end, we perform an in-depth, end-to-end analysis of the

framework and show that its performance can be significantly

improved by incorporating extensions and optimizing the

individual processing steps of its pipeline.

We initially focus on employing better local features and

compare (in Subsection V-A) the performance of VLAD

vectors generated using SURF [24], SIFT, RootSIFT [25]

and CSURF features. CSURF is a new SURF-based color

feature presented in Subsection III-A. The results indicate

that SURF and CSURF are not only more efficient but also

lead to significantly increased accuracy. Next, we attempt

to improve the quality of the vectorized representation by

applying two types of feature filtering methods described in

Subsection III-B. Methods of the first type are inspired from

[2] and perform filtering based on the richness of feature struc-

ture, while methods of the second type are inspired from [26]

and perform filtering based on a feature-vocabulary relation.

As shown in SubsectionV-B, while some of these methods

can offer small improvements when full-dimensional VLAD

vectors are employed, this is not the case with PCA-projected

vectors. These results are interesting as they contradict the

results presented in [26].

Subsequently, we move our focus towards improving the

vector aggregation and dimensionality reduction steps. In

Subsection V-C we evaluate the mean-aggregation strategy

proposed in [27] for VLAD and find that it results in a

significant performance degradation compared to the standard

aggregation method of VLAD. Subsections III-E and III-F

study the recently proposed whitening and multiple vocabulary

aggregation methods [15]. Both methods were mainly studied

within the context of BoW vectors with particular success

but several details remain unclear regarding their applicability

on VLAD. The thorough empirical analysis presented in

Subsections V-E and V-F sheds light into these issues and

shows that both methods can offer significant performance

improvements. We also study the effects of important vector
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Fig. 1: Steps of the feature extraction and indexing pipeline.

Different options for each step are presented, with the selected

appearing in bold.

generation parameters such as vocabulary size and projection

length in Subsection V-D.

Finally, we focus on improving the performance of the

PQ indexing scheme by studying the effects of previously

unexplored parameters in Subsection V-H. Additionally, in

Subsection V-I we show that besides large-scale image re-

trieval, the studied VLAD extensions can offer significant

improvements in large-scale image classification.

Our main contributions are as follows:

• By combining the above improvements, we manage to

significantly outperform the previous best reported accu-

racy results on standard benchmarks and at the same time

improve the efficiency of the VLAD+PQ framework.

• The thorough experimental study we conducted increases

our understanding of the effects of previously unexplored

parameters of the studied framework.

• We evaluate numerous existing and new extensions and

provide insights into working and non-working ones.

• We make publicly available an efficient open-source im-

plementation1 of the image processing, aggregation and

indexing methods as well as an implementation of our

experimental testbed that facilitates easy reproduction of

our experimental results2.

To the best of our knowledge, this is the first work that contains

such an extensive empirical study, covering all the individual

steps of the studied large-scale image retrieval framework.

II. BACKGROUND

This Section introduces the VLAD+PQ framework [1] along

with some alternative choices for its different processing steps.

As shown in Fig. 1 there are four main steps involved in the

process of transforming an input image into a small fixed-

length code: (a) local feature extraction, (b) vectorization,

i.e. the aggregation of local features in a single vector, (c)

dimensionality reduction, and (d) quantization and indexing.

Steps (a), (b) are described in Subsection II-A and steps (c),

(d) in Subsection II-B.

A. Feature Extraction and Vectorization

The presented study explores the performance of systems

that rely on the extraction of local features which are aggre-

gated using some pooling method to create a global image

representation. Compared to systems that use global features

1https://github.com/socialsensor/multimedia-indexing
2http://www.socialsensor.eu/results/software/79-image-search-testbed

https://github.com/socialsensor/multimedia-indexing
http://www.socialsensor.eu/results/software/79-image-search-testbed
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such as GIST [28], systems based on local features are

more robust to geometric transformations and typically exhibit

better performance. Among local features, SIFT have shown

excellent performance and are established as the features of

choice for most systems. However, their increased computation

time has motivated the design of alternative, more efficient

features, with SURF being among the most successful, as they

can be computed several times faster, while being comparable

with respect to repeatability, distinctiveness, and robustness.

Regardless of the type of local features, the feature ex-

traction step generates a set L of D-dimensional feature

vectors x = [x1, .., xD] for each image. Usually, hundreds to

thousands of vectors are extracted. To make large-scale search

tractable, an aggregation method is usually employed that

summarizes L into a single, fixed-length vector representation.

Until recently, BoW has been the most popular method of this

type. In BoW, a codebook C = {c1, ..., ck} of k visual words

is computed offline (typically by applying k-means clustering

on a large set of features). Then, given the set of local features

extracted from an image, each feature is quantized to its

closest cluster centroid. The BoW vector is the k-dimensional

histogram of the distribution of visual words in an image.

Recently, a number of new representations emerged [19],

[20], [29] that encode higher order statistics, compared to

BoW, of the distribution of features to visual words. The

studied framework is based on VLAD, a state-of-the-art

method presented in [19]. As in BoW, a codebook is first

computed and each feature is quantized to its closest centroid.

However, instead of simply counting the features assigned to

each centroid, VLAD records their position relatively to it by

accumulating the residual vectors x − ci of the features x
assigned to each visual word ci into a vector:

vi =
∑

x∈Lci

x− ci (1)

where Lci ⊆ L is the set of features assigned to ci. The

VLAD vector v is the concatenation of all vi and is therefore

d=k×D-dimensional. As a final step, v is first power- and then

L2-normalized. Power-normalization discounts the influence

of large components (usually coming from visual bursts) [1]

by raising each component of v to a power of a ∈ [0, 1],
whereas L2 normalization makes the representation invariant

to the number of features extracted from each image. Very

recently, intra-normalization [30] and residual-normalization

[31] were proposed as alternative schemes to address the

problems of burstiness and unequal contribution of individual

features, respectively. Intra-normalization consists of applying

L2 normalization separately on each vi and then L2 normaliz-

ing the entire vector (power normalization is omitted), while in

residual-normalization the residual vector x−ci of each feature

x from its nearest visual word ci is separately normalized to

unit length and power+L2 normalization is still applied on the

entire VLAD. Both schemes were found to outperform the

power+L2 normalization scheme. However, we opt for using

the normalization scheme of [1] (power+L2 normalization

with a=0.5) throughout this paper for the following reasons:

a) according to [30] intra-normalization is consistently better

than power+L2 normalization only for well adapted visual

vocabularies which are difficult to obtain in very-large scale

and dynamic setups (as discussed in Subsection III-B2), b)

residual-normalization was compared in [31] only against

power+L2 normalization with a=0.2 instead of a=0.5 sug-

gested as near-optimal in [1].

VLAD is significantly more accurate than BoW when a

representation of equal dimensionality is used and at the

same time it is cheaper to compute as it requires a much

smaller visual vocabulary. Lately, [1] showed that VLAD

can be considered as a simplified version of Fisher Vector

(FV) [20]. Empirical results, however, suggest that although

FV yields better performance than VLAD when full-vectors

are used, VLAD performs equally well and in some cases

better when vector dimensionality is reduced by PCA [1].

This ability of VLAD to retain an excellent accuracy after

heavy dimensionality reduction together with its slightly more

efficient computation compared to FV, makes it an ideal

representation for large-scale image retrieval systems.

B. Dimensionality Reduction, Indexing and Search

Using the 128-dimensional SIFT descriptor and a small

vocabulary of k = 64 centroids results in 8192-dimensional

VLAD vectors or 32KB of memory per image. This size is

prohibitive for large-scale search applications due to memory

and search efficiency constraints. To address these issues,

compression and binarization techniques are usually employed

(e.g. Locality-Sensitive Hashing (LSH) [32], Spectral Hashing

(SH) [22]) to transform the vectors into binary codes that

have a small memory footprint (all images can fit in main

memory) and can be searched efficiently. The adopted frame-

work follows a similar approach. First, the dimensionality

of VLAD vectors is significantly reduced with PCA and

then PQ [21] is applied to compress the projected vectors.

PQ significantly outperforms other state-of-the-art binarization

schemes in terms of accuracy for the same efficiency setting.

Quantization is used to reduce the cardinality of a repre-

sentation space by mapping a d-dimensional vector x ∈ R
d

to a vector q(x) ∈ C = {c0, c1, .., ck−1}. C is a finite set of

reproduction values ci ∈ Rd that correspond to the centroids

of a k-means clustering and q maps each vector to its closest

centroid. A quantizer with k centroids encodes each vector

with B = log2(k) bits. Given a query vector y, a set of

database vectors X = {x1, ..., xn} and a quantizer q(.), the

nearest neighbors of y in X can be efficiently found using

the Asymmetric Distance Computation (ADC) approach [21].

In ADC, each vector xi ∈ X is replaced by its reproduction

value ci, while the query vector y is not encoded. The nearest

neighbors of y are found by computing the distance of y
to every centroid and returning the database vectors that are

quantized to the closest centroid. To achieve good vector ap-

proximation, however, a large number of centroids is required

e.g. 264, producing a 64bit code. With such a large number

of centroids, learning a k-means quantizer, assigning vectors

to centroids, storing the centroids in memory and searching

are intractable. PQ is a technique that makes this problem

tractable by defining a large quantizer as the Cartesian product

of smaller quantizers. A d-dimensional vector x (in this case
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a PCA-projected VLAD vector) is first split into m subvectors

x1, ..., xm of equal lengths d∗ = d/m and each subvector is

quantized using a separate quantizer. Thus, a product quantizer

q is defined as a function q(x) = (q1(x
1), ..., qm(xm)) that

maps a vector x to a tuple of m indices, one for each subvector.

While each individual quantizer qj has only ks reproduction

values, the set of centroids induced by q is k = (ks)
m. To dis-

tinguish between different PQ schemes the notation m× bs is

used, specifying a product quantizer with m subquantizers that

encode each vector with bs = log2 ks bits. The total number

of bits used to encode a vector in this case is B = mbs. Using

PQ and the ADC approach, the nearest neighbor is found by

computing NN(y) = argmini
∑

j∈[1,m] ||y
j − qj(x

j
i )||

2. In

order to search efficiently in X , the distances between each

subvector yj of a query image y and the ks centroids of the

respective subquantizer qj are computed and stored in look-up

tables before scanning the database. While PQ+ADC enables

fast, approximate nearest neighbor search and a remarkable re-

duction in memory requirements, the search is still exhaustive.

In order to scale to billions of vectors, [21] proposed a non-

exhaustive variant that combines ADC with an inverted file

structure (IVFADC). Compared to PQ+ADC, PQ+IVFADC

requires an additional memory of approximately 4 bytes per

image due to the overhead of the identifiers that need to

be explicitly stored. However, PQ+IVFADC is significantly

faster than PQ+ADC in very large databases and also more

accurate because it encodes the residual of each vector from

the centroid of a coarse quantizer rather than the vector itself.

III. STUDIED ASPECTS & EXTENSIONS

This section describes and motivates the issues studied in

this empirical study. These issues pertain either to extensions

or to parameter exploration in different steps of the frame-

work. The discussion is structured along the following: a)

local features, b) feature filtering techniques, c) aggregation

strategies, d) vocabulary size and target dimensionality of

PCA, e) whitening, f) multiple vocabulary aggregation, and

g) PQ parametrization.

A. Local Features

The type of local features being employed is probably the

most critical design choice in the VLAD+PQ pipeline as it

heavily affects the system’s response time but also the quality

of search results (as we show in Section V-A). VLAD was

originally combined with SIFT features in [19] whereas a com-

parison between SIFT and PCA-SIFT presented in [1] showed

that SIFT features lead to slightly better results for VLAD.

Revisiting the issue of applying PCA on SIFT features, [31]

found that better results can be obtained when only centering

and rotation to a new uncorrelated basis are applied. Recently

in [30], [31], SIFT were replaced by RootSIFT features [25],

leading to significant accuracy gains. Despite their widespread

use in VLAD-based systems, both SIFT and features derived

from SIFT such as PCA-SIFT and RootSIFT suffer from

increased computation time which can severely impact the

system’s overall response time. For example, extracting SIFT

from a medium-sized (512x384) image on a single-core takes

350 ms on average, while vectorization and search against a

database of 10 million images with the VLAD+PQ framework

requires less than 100 ms.

Motivated by this limitation, in [33] we studied the replace-

ment of SIFT with SURF features and found that SURF in

addition to being about three times more efficient, compare

favorably with respect to accuracy to reference results of

the VLAD+SIFT combination from [1]. In Section V-A we

perform an extended evaluation that includes: a) SURF, b)

SIFT, c) RootSIFT and d) a new SURF-based color feature

color feature that is described in the next paragraph.

CSURF: Lately, color extensions of SIFT features [34] have

shown increased discriminative power compared to standard

SIFT and have beem widely adopted for image and video

classification. However, there are very few works that consider

color features in the domain of large-scale image retrieval (e.g.

[35]) and, to the best of our knowledge, no one has evaluated

the use of color features in the context of retrieval with VLAD.

This is not surprising given the previous discussion on SIFT’s

efficiency and the fact that color extensions require even more

extraction time and memory. To make the use of color features

in the domain of large-scale image retrieval more practical,

we propose a SURF-based, efficient color feature, CSURF.

The idea of combining SURF with color information has

previously appeared in [36] where a “Color-SURF” descriptor

was evaluated in the context of image matching through

matching of the corresponding descriptor sets and was found

better than SURF in a popular benchmark. “Color-SURF” is

the concatenation of the original SURF descriptor with a color

kernel histogram that is calculated around each interest point.

In order to compute the distance between two such descriptors,

a different distance measure (Euclidean/Bhattacharyya) is used

to compare each component (SURF/color histogram) of each

vector. Therefore, applying k-means clustering on “Color-

SURF” as required by VLAD is not straightforward. Here,

we design a different SURF-based color descriptor, CSURF,

that follows the successful and more principled paradigm of

RGB-SIFT [34] on how to incorporate color information while

maintaining the invariance properties of the descriptor.

In order to extract CSURF, the image is first transformed

to grayscale and interest points are computed using the stan-

dard SURF algorithm. Then, instead of computing the SURF

descriptor of each interest point on the intensity channel,

CSURF computes three SURF descriptors, one on each color

band. The final CSURF descriptor is their concatenation.

Calculated in this way, CSURF is equivalent to RGB-SIFT

[34] but using the SURF algorithm for keypoint detection and

description. However, differently from RGB-SIFT where each

band’s descriptor is normalized independently to unit length,

we apply L2-normalization on the entire descriptor only. The

intuition is that by normalizing the entire descriptor, we retain

relative color intensity information that is lost otherwise. In

contrast to “Color-SURF”, CSURF can be compared using

the Euclidean distance and are therefore directly pluggable to

the VLAD pipeline.

B. Feature Filtering
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1) Filtering based on the richness of feature structure: In

[2], a near-duplicate image detection framework was proposed

that, departing from quantization-based approaches, based its

search on raw SIFT features. Among the main contributions

of that work was the introduction of a filtering technique

that discards SIFT features with poor internal structure such

as those extracted from homogeneous or near-empty image

regions. To measure the richness of internal structure of a SIFT

feature, [2] uses the Shannon entropy that is calculated by

treating each SIFT feature as 128 samples of a discrete random

variable. It was shown that SIFT features that generate false

matches exhibit relatively smaller entropy values (on average)

than those generating true matches. Thus, by discarding such

features the false positive rate is drastically decreased and a

single match between the remaining features of two images is

sufficient for establishing near-duplicity.

Motivated by these results, we explore whether such filtering

techniques can also improve the accuracy of image retrieval

frameworks that employ feature pooling methods. To the best

of our knowledge, this has not been done before. Specifically,

we apply entropy-based filtering to discard poorly structured

SURF features (which are found to outperform SIFT in

Section V-A) and then perform VLAD aggregation using only

the retained ones. We also evaluate variance as an alternative

filtering criterion, again treating the components of each fea-

ture vector as samples of a discrete random variable. Variance

measures the spread of a distribution and its use is motivated

by the fact that entropy cannot distinguish between two values

of a (discretized) SIFT or SURF feature that lie very close

(e.g. 1 and 2) and two values which are maximally apart

(e.g. 1 and 128). For instance, the features F1 = [1, 2, ..., 1, 2]
and F2 = [1, 256, ..., 1, 256] have the same entropy. However,

the structure of the second is obviously richer. Both filtering

methods, along with random filtering are evaluated against no

filtering in Section V-B1.

2) Filtering based on a feature-vocabulary relation: At-

tempting to improve the quality of the VLAD representation,

[26] and [37] proposed methods that deal with outlier features,

i.e features that lie close to the boundaries of the Voronoi cells

formed by a specific visual vocabulary. [37] proposes a soft

assignment technique that assigns each feature to k ≥ 1 near-

est centroids, with k being dynamically selected according to

a nearest neighbor distance ratio. After assignment, weighted

vector differences are calculated with nearest centroids receiv-

ing larger weights. A computationally more efficient approach

is proposed in [26], where outlier features are omitted from

the computation of VLAD. This method, denoted here as

dist, discards all features whose distance from their closest

visual word is above the Cth percentile of the distribution of

distances, of features assigned to this visual word. Percentiles

for each visual word, are computed offline and outlier features

are filtered during VLAD computation. The intuition behind

both methods is that outlier features reduce the repeatability

of VLAD since a small amount of distortion may cause them

to be quantized to a different visual word, and as a result,

a considerably different VLAD vector may be generated. On

the other hand, we notice that in contrast to features lying

close to cluster centroids (such as those coming from visual

bursts), outlier features are less frequent and perhaps more

discriminative. In Section V-B2 we evaluate the dist method

as well as two new filtering methods, std and ratio, that are

based on the same intuition. std retains only features whose

distance from the closest visual word is at least a standard

deviations smaller than their average distance from all visual

words, while ratio retains only features whose distance from

the closest visual word is at least b times smaller than their

distance from the second closest visual word.

C. Aggregation Strategy

As described in Section II-A, after the assignment of local

features to visual words, VLAD uses a summation formula (1)

to aggregate the residual vectors vi of the features assigned

to each visual word ci . [27] proposed an alternative formula,

denoted as mean aggregation, for aggregating the differences:

vi = 1
|Lci

|

∑
x∈Lci

x − ci. The difference with the original

VLAD formula, denoted here as sum aggregation, is that the

sum is normalized by the number of feature vectors quantized

to each visual word ci. We notice that by not normalizing the

sum, the sum aggregation formula incorporates information

about the number of features quantized in a particular visual

word. A vi with a large norm indicates that many features are

assigned to a similar position in the Voronoi cell defined by ci.
On the other hand, by using mean aggregation this information

is lost, as graphically illustrated in the Appendix. Despite

being counter-intuitive, [27] showed that mean aggregation

significantly outperforms sum aggregation. In that study, how-

ever, the methods were tested only on full-dimensional VLAD

vectors and performance was measured using an image-level

ROC curve analysis, a non-standard method. In Section V-C,

we reevaluate the effectiveness of this extension on both

full-dimensional and PCA-projected VLAD vectors, using a

standard evaluation protocol and draw different conclusions.

D. Vocabulary Size and PCA

The accuracy of full VLAD vectors increases with increas-

ing vocabulary sizes, as shown in [1]. Specifically, exper-

iments with vocabularies up to k = 4096 centroids were

performed indicating a sub-linear relationship between the

number of centroids and mean Average Precision (mAP) on

the Holidays dataset. However, there are two reasons that

make large vocabularies unsuitable for large-scale retrieval

with VLAD+PQ. The first reason is increased complexity:

with large vocabularies it takes more time to assign features to

centroids. The second reason has to do with accuracy: larger

vocabularies produce higher-dimensional vectors that have a

higher projection error when dimensionality reduction is ap-

plied. Note that, although optional, dimensionality reduction is

a crucial step of the VLAD+PQ pipeline since the quantization

error incurred by PQ (at the final step of the VLAD+PQ

pipeline) is an increasing function of a vector’s length. In

Section V-D we extensively study the effect of dimensionality

reduction with PCA on VLAD+SURF vectors generated from

vocabularies of various sizes and projected to various lengths.

A similar study was previously presented in [1] but was less

extensive (fewer vocabulary sizes and projection lengths were
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tested) and focused on VLAD vectors that aggregate PCA-

SIFT features.

E. Whitening

It has been noted in [38] that visual words do not occur

independently as implicitly assumed by common similarity

measures used to compare BoW vectors. In fact, it was

shown that visual word dependencies are common in large

datasets and that by ignoring them the similarity between two

image vectors can be over-counted, resulting in poor retrieval

performance. Recently, [15] proposed a whitening operation

that is performed jointly with dimensionality reduction to

limit the impact of the co-occurrences problem on BoW

and VLAD vectors. Given an image vector x, the vector

is first PCA-projected and truncated to d′ components, and

subsequently whitened and L2 normalized to a new vector

x′ =
diag(λ−0.5

1
,...,λ

−0.5

d′
)Mx

||diag(λ−0.5

1
,...,λ

−0.5

d′
)Mx||

, where M is the d′ × d PCA

matrix and λi is the eigenvalue associated with the ith largest

eigenvector. In [15] it was shown that BoW vectors projected

to 128 dimensions using this joint dimensionality reduction

and whitening step give significantly better results compared

to BoW vectors projected to 128 dimensions with plain PCA.

In Section V-E, we study (for the first time) the impact of

whitening on VLAD vectors projected to various lengths and

generated using various vocabulary sizes.

F. Vocabulary Sensitivity - Multiple Vocabularies

To deal with the problem of vocabulary sensitivity, i.e.

the fact that the similarity between two VLAD vectors is

highly dependent on the visual vocabulary used to generate

these vectors, [31] introduced a cluster center adaptation

method. This method tries to maintain a vocabulary whose

cluster centers are consistent with the current collection in

the sense that the mean of all vectors assigned to a cluster

over the entire collection is the cluster center. This is done

by first moving the cluster centers to maintain consistency

and then re-computing all the VLAD vectors according to

the new cluster centers. In [31], this method is shown to

improve the performance of full VLAD vectors compared

to using a static visual vocabulary learned on a different

collection. However, there are practical reasons that make this

method incompatible with a large-scale framework. First, the

VLAD re-computation step has a significant computational

cost, especially as the collection’s size increases. Second, when

dimensionality reduction is applied the improvements incurred

by vocabulary adaptation are diminished [31] since the adapted

vectors can be considerably different than those used to learn

the PCA matrix. The same holds for the subsequent application

of PQ.

A better technique to deal with vocabulary sensitivity is

presented in [15] where multiple vocabularies are used to alle-

viate quantization artifacts in the context of BoW and VLAD.

The use of multiple visual vocabularies is a known technique

for improving the quality of BoW vectors. A simple strategy

consists of generating a set of different BoW vectors, one from

each vocabulary, and then concatenating them into a single

vector (as done e.g. in [3]). As shown in [15], in addition to

reducing efficiency and increasing the memory requirements,

the improvement in search quality offered by such methods is

limited, mainly due to the redundancy introduced by multiple

vocabularies. To address these problems, [15] proposed a

joint dimensionality reduction of the multiple vectors. First,

multiple (BoW or VLAD) vectors are produced independently

and concatenated to a single vector that is L2 normalized.

Then, the joint dimensionality reduction and whitening method

described in Section III-E is applied. By exploiting the addi-

tional information provided by multiple vocabularies and at

the same time removing the redundancy between them, this

approach was shown to improve the performance of BoW and

VLAD vectors reduced to 128 dimensions.

In Section V-F we perform a detailed analysis on the effec-

tiveness of this method, specifically for VLAD. Concretely, we

extend the experiments performed in [15] by comparing the

performance of PCA-projected and whitened VLAD vectors

coming from different combinations of multiple vocabularies

with the performance of VLAD vectors coming from single

vocabularies of the same total complexities. Furthermore, we

perform experiments on more datasets and study additional

projection lengths. Our extended analysis provides answers

to the following questions regarding the applicability of this

method on VLAD that are not conclusively answered in [15]:

• Is the use of multiple vocabularies beneficial compared

to using a single vocabulary of the same complexity?

• How far can we go when considering multiple vocabular-

ies? E.g. for a fixed total complexity of 256 visual words,

which of vocabulary setups is better: 2×128 or 128×2?

• Do the observations hold for larger projection lengths?

G. Product Quantization Optimization

All previous sections focused on issues related to the

generation of a high quality, yet compact vectorized image

representation. As discussed in Section III-D, the compactness

requirement is imposed by the fact that the subsequent quan-

tization scheme incurs smaller quantization error on vectors

of smaller dimensionality. To deal with this trade-off, [1]

proposed the minimization of the mean squared approximation

error as an objective criterion for optimizing the dimension

d′, having a fixed constraint on the number of bits B used

to represent each vector. The optimal projection length d′

is found by trying different values and selecting the one

that minimizes this criterion on a learning set. However, the

selected value of d′ using this criterion is not necessarily

optimal with respect to a retrieval quality measure such as

mAP. Furthermore, in [1] there is no discussion on what

values to use for m and ks (remember that B=m log2 ks) and

only two arbitrary quantization schemes (16x8 and 256x10)

of different code sizes are evaluated. The effect of these

parameters for a fixed code size is studied in [21] but only in

the context of searching fixed-length local (SIFT) and global

(GIST) vectors. [21] concludes that quantization schemes with

small values for m (number of subquantizers) and large values

for ks (number of centroids) are better than having many

subquantizers with few bits. Note, however, that ks cannot be
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TABLE I: Summary of aspects and extensions studied in the experimental evaluation.

Aspect Summary Related Work(s) Sec. Discussed / Tested

local features SURF vs SIFT vs RootSIFT vs CSURF [25], [30], [31], [33] III-A / V-A

feature filtering
richness of structure, methods: entropy / variance [2] III-B1 / V-B1
feature-vocabulary relation, methods: dist / std / ratio [26], [37] III-B2 / V-B2

aggregation method sum vs mean aggregation [27] III-C / V-C
vocabulary size & PCA the effect of k with respect to d′ [1] III-D / V-D
whitening the effect of whitening with respect to k and d′ [15] III-E / V-E
multiple vocabularies the effect of multiple vocabularies with respect to k and d′ [15], [31] III-F / V-F
product quantization the joint effects of d′,m, ks and large scale experiments [21] III-G / V-H
classification improvements in large scale image classification -/V-I

very large (e.g. larger than 213) since this would prohibitively

increase both the quantization cost and the memory required

for storing the resulting product quantizer.

In Section V-H, we attempt to shed more light into the

joint effects of d′, m and ks for a fixed code size. Besides

these parameters, we evaluate the merits of applying a random

orthogonal transformation on PCA-projected and whitened

VLAD vectors before proceeding with PQ. This transformation

was shown to improve the search results when applied to

PCA-projected (but not whitened) VLAD vectors in [19] as it

manages to balance the energy of the subvectors. Finally, we

conduct large-scale experiments on a dataset of 10M images

and compare PQ+ADC with the non-exhaustive PQ+IVFADC

search variant in terms of accuracy and efficiency.

IV. EXPERIMENTAL SETUP

This section describes our experimental setup. Subsec-

tion IV-A explains the evaluation protocol and presents the

evaluation measures and the datasets used for learning and

benchmarking while Subsection IV-B discusses details related

to image processing. Table I serves are as a reference for the

aspects and extensions studied in Section V.

A. Evaluation Protocol and Datasets

Since the studied extensions and paremeter settings concern

steps of a sequential processing pipeline (see Figure 1), it is

expected that choices made on earlier steps of the pipeline (e.g.

type of local features/feature filtering) may affect the settings

and/or methods that lead to optimal performance in subsequent

steps. Therefore, the full optimization of the pipeline requires

exhaustive exploration of all different combinations of meth-

ods and parameters. To reduce the complexity of the analysis

and keep the load of the experiments reasonable we make the

following main relaxed assumptions:

(a) A more discriminative vectorized representation will

lead to a more discriminative binary signature after the applica-

tion of PQ, compared to a less discriminative representation of

the same length. This reasonable assumption was also adopted

(implicitly) in [1], [15] and allows us to exclude PQ from

experiments on extensions and parameter settings that concern

previous steps of the pipeline.

(b) When an extension or selection of parameters improves

significantly the performance at an earlier step of the pipeline,

we adopt this choice for subsequent steps. For instance, given

the dominance (Subsection V-A) of SURF in terms of accuracy

compared to other local features (CSURF is excluded due to

TABLE II: Datasets used in evaluation. #n denotes the number

of images, #q denotes the number of images treated as queries.

Name Use #n #q Source

Holidays retrieval 1491 500 [12]
Oxford retrieval 5063 55 [5]
Paris retrieval 6412 55 [11]
UKB retrieval 10200 10200 [3]

Flickr50K distractors 50K - [39]
ImageNET10M distractors 10M - [40]

Flickr100K learning 100K - [39]

increased computational complexity), we use VLAD+SURF

for the subsequent sets of experiments. However, in cases

where the performance differences are marginal we double

check whether an increase in accuracy is propagated to sub-

sequent steps (e.g. in Subsection V-B).

Experiments are conducted on the following four widely

used benchmark collections for image retrieval:

Holidays [12] contains 500 groups of personal holiday pho-

tos as well as groups of photos taken to test the robustness of a

representation to various transformations (rotations, viewpoint

and illumination changes, blurring, etc.). One image in each

group is treated as the query and the correct retrieval results

are the other images of the group. The collection includes a

large variety of scene types (natural, man-made, water and fire

effects, etc.). Retrieval accuracy is measured in terms of mAP.

Oxford [5] and Paris [11] consist of images collected from

Flickr by searching for particular Oxford and Paris landmark

buildings, respectively. Both collections have been manually

annotated to generate a comprehensive ground truth for 11

different landmarks, each represented by 5 possible queries.

This gives a set of 55 queries over which an image retrieval

system can be evaluated. Differently from Holidays, all images

of these collections are in “upright” orientation because they

are displayed on the web. Retrieval accuracy is measured by

mAP in both datasets, treating each query image as not present

in the database in the query that involves it3.

UKB [3] is an image recognition benchmark that contains

10200 images of 2550 distinct objects (4 images per object).

Performance is measured by querying the database once for

each image and counting the average number of relevant

images (including the query itself) ranked in the top 4 positions

(4 × Recall@4).

3Note that the evaluation software provided with the Oxford dataset treats
query images as positive examples, giving significantly higher mAP scores
since the query image is always returned in the first position.
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TABLE III: Retrieval performance of full as well as PCA-projected (d′=128) VLAD vectors using different types of features.

The best result in each dataset is marked with an asterisk for full vectors and typeset in bold for PCA-projected vectors.

Dataset
VLAD+SIFT VLAD+RootSIFT VLAD+SURF VLAD+CSURF

d =8192 d′ =128 d =8192 d′ =128 d =4096 d′ =128 d =12288 d′ =128

Holidays (mAP) 0.561 0.534 0.589 0.547 0.649 0.638 0.717* 0.697
Oxford (mAP) 0.243 0.131 0.242 0.124 0.328* 0.238 0.256 0.167
Paris (mAP) 0.207 0.083 0.203 0.068 0.321* 0.180 0.296 0.254
UKB (4×R@4) 2.794 2.896 2.896 2.849 3.196 3.237 3.520* 3.482

To evaluate the accuracy at a more challenging retrieval

scenario where more images can be confused with those in

the set of relevant images for each query, we merge each

collection with additional images that act as distractors. For

this purpose, we use a subset of 50K images (Flickr50K) from

the MIR Flickr 1M collection [39] for most experiments. To

evaluate the accuracy and the efficiency of the framework on

a very large scale, in Section III-G we use a larger set of

10M distractor images (ImageNET10M) that contains images

downloaded from ImageNET [40] (fall 2011 release URLs).

Finally, Flickr100K, another subset from the MIR Flickr 1M

collection (disjoint from all previous datasets), is used for

performing the various learning tasks (visual vocabularies,

PCA matrices, product quantizers). We believe that the choice

of an independent learning dataset, better reflects the accuracy

of a real system where relevant images are only a small

fraction of the overall image database. All datasets are listed

in Table II.

B. Image Pre-processing & Feature Extraction

All images used in the evaluation were first scaled to a

maximum size of 512 × 384 pixels prior to feature extrac-

tion. This down-scaling amounts to an almost 4-fold size

reduction for the images of the four benchmark collections,

while most distractor images are already around this size. As

shown in Subsection V-G, the use of larger images leads to

significantly improved accuracy. However, larger images also

increase feature extraction time. Furthermore, compared to

other studies where collection images are usually larger than

distractor images, we believe that using approximately equal

sizes for collection and distractor images represents a more

challenging evaluation scenario.

For feature extraction, we used the high-quality open-source

implementations of SURF and SIFT provided in BoofCV4.

For SIFT, BoofCV implements the feature detection and the

description algorithms as described in [10] (with minor algo-

rithmic changes) while for SURF it slightly deviates from the

original algorithms implementing the SURF-S [41] version.

V. EXPERIMENTAL RESULTS

A. Comparison of Local Features

Table III shows the results obtained on Holidays, Oxford,

Paris and UKB with full and PCA-projected (d′=128) VLAD

vectors generated using SIFT, RootSIFT, SURF and CSURF

features. In all cases, a visual vocabulary of k = 64 visual

words is used.

4http://boofcv.org

TABLE IV: Extraction times for different types of features on

512x384 images (results averaged over 100 images). Extrac-

tion was performed using one core of an i5 2.4 GHz processor.

Feature: SIFT/RootSIFT SURF CSURF

Time (ms): 350.6 135.7 205.6

We observe that the VLAD+SURF combination signifi-

cantly outperforms both VLAD+SIFT and VLAD+RootSIFT

in all datasets, when full vectors are used. This is an interesting

result since the main motivation for using SURF in place of

SIFT was SURF’s better extraction efficiency (see Table IV).

Investigating this issue further, we noticed that the version

of SURF implemented in BoofCV (SURF-S [41]) applies

several algorithmic improvements on the original algorithm,

resulting in improved stability and runtime performance. Ad-

ditionally, the results show that, compared to VLAD+SIFT

and VLAD+RootSIFT, VLAD+SURF retains a higher per-

centage of its initial accuracy when dimensionality reduction

is applied. Being half-dimensional than SIFT (D=64 versus

D=128), SURF result in more compact VLAD vectors that

are more amenable to dimensionality reduction.

With respect to VLAD+CSURF, while it achieves the best

overall performance on Holidays and UKB, it is outperformed

by VLAD+SURF on Oxford and Paris. A closer examination

of the images of the four datasets shows that the query images

of Holidays and UKB exhibit a larger chromatic variability

(i.e. each query is chromatically distinct) compared to the

query images of Oxford and Paris. Therefore, exploiting color

information is more useful in these datasets, while in Oxford

and Paris shape is the most distinctive factor.

Overall, the results of this subsection suggest that SURF

constitutes an excellent replacement for SIFT and RootSIFT

in the context of VLAD since it leads to consistently increased

search accuracy and at the same time it can be extracted much

faster. In cases where color is expected to be a discriminative

factor CSURF constitutes an even better alternative, at the cost

of increased extraction time and a larger representation size.

Since we focus on very efficient settings, we employ SURF

for the rest of the experiments.

B. The Effect of Feature Filtering Methods

1) Filtering based on the richness of feature structure: In

this experiment we study the effect of the entropy-based and

variance-based filtering methods presented in Section III-B1.

Since SURF take values in a continuous range, in order to

calculate entropy we first discretize them by applying equal

width binning separately on each component of the descriptor.

http://boofcv.org
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Fig. 2: Filtering results using full VLAD vectors on Holidays.
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Fig. 3: Filtering results using PCA-projected (d′=128) VLAD

vectors on Holidays (top) and Oxford (bottom).

We use 128 bins whose ranges are computed on a set of

200K SURF features (different numbers of bins have also been

evaluated with similar results). Using images from Flickr100K,

we compute appropriate thresholds values for both entropy

and variance so that approximately 20%, 10% and 5% of

the features are discarded. We also use random filtering to

discard the same percentages of features. Figure 2 shows mAP

results on Holidays when 4096-dimensional (k = 64) VLAD

vectors are used, for different percentages of features retained

and with different levels of distractors. We observe that all

filtering methods operate worse as the percentage of filtered

features increases, with the exception of variance and 6000

distractors where there is a slight increase in performance

when retaining 90% of the features (compared to 95%). Both

entropy-based and variance-based filtering give better results

than random filtering on all operating points, indicating that

both criteria are good at detecting less-discriminative features.

Furthermore, the proposed variance-based filtering always
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Fig. 4: Outlier rejection results using PCA-projected (d′=128)

VLAD vectors on Holidays (top) and Oxford (bottom).

outperforms entropy-based filtering suggesting that variance is

indeed a better filtering criterion than entropy. Comparing the

results with those obtained without filtering, we observe that

all filtering methods perform worse than no filtering with zero

additional distractors. However, as the number of distractors

increases, variance-based filtering (discarding 5% or 10% of

the features) gives the best results.

Figure 3 shows mAP results on Holidays and Oxford when

PCA-projected (d′=128) VLAD vectors are used, for different

percentages of features retained. In this case, all filtering

methods give similar results that are worse than no filtering.

This can be attributed to the fact that features with poor

internal structure are always assigned to a subset of visual

words that fail to explain the variability in the data and as

a result their influence is discounted after the application of

PCA. Since the use of low-dimensional, PCA-projected VLAD

vectors is essential for good accuracy of very efficient PQ

schemes (as we show in Section V-H), we conclude that

entropy and variance-based filtering are not appropriate for

large-scale retrieval and are therefore not considered for the

rest of the experiments.

2) Filtering based on a feature-vocabulary relation: In this

experiment we evaluate the outlier feature rejection methods

described in Section III-B2. For the dist method, [26] reports

that C=90 was experimentally found to give the best results.

Here, we additionally report results using C=85 and C=95.

The percentile values for each visual word are computed on

Flickr100K. Similarly, the a and b parameters of the std and

ratio methods are tuned to reject approximately 5%, 10% and

15% of the features (this amounts to to a=1.39, 1.36 and 1.34

and b=0.98, 0.99 and 0.995 respectively).

Figure 4 shows mAP results on Holidays and Oxford when
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TABLE V: Sum vs. mean aggregation (mAP).

Dataset
Dimensionality

128 1024 full

sum mean sum mean sum mean

Holidays 0.633 0.554 0.679 0.598 0.649 0.601
Holidays+50K 0.498 0.396 0.567 0.474 0.522 0.475

Oxford 0.243 0.191 0.310 0.228 0.327 0.246
Oxford+50K 0.175 0.096 0.230 0.115 0.226 0.128

Paris 0.290 0.201 0.327 0.234 0.350 0.272
Paris+50K 0.164 0.085 0.196 0.104 0.209 0.116

PCA-projected (d′=128) VLAD vectors are used, for different

percentages of features retained, with zero and 50K additional

distractors. In contrast to the results of [26], we see that the

dist method performs worse than no filtering for all C values

on both datasets. The same holds for std and ratio. A possible

explanation for the different results compared to [26] is that in

our experiment, we use an independent dataset for learning the

percentiles (this represents a more realistic scenario). Also the

evaluation in [26] was performed using an image-level ROC

curve analysis, a non-standard method. Overall, our evaluation

suggests that filtering outlier features does not have an impact

on retrieval accuracy.

C. Sum versus Mean Aggregation

In this experiment we compare the performance of mean-

aggregated VLAD vectors with the performance of the original

sum-aggregated VLAD. Table V shows the results obtained

on Holidays, Oxford and Paris (with zero and 50K additional

distractors) using both PCA-projected and full-dimensional

vectors. Our results contradict those presented in [27]. We

see that in all cases, the originally proposed VLAD method

outperforms the extension that uses mean aggregation. These

results are in agreement with the discussion of Section III-C,

where we argued that by normalizing the sum, the mean

aggregation formula discards information about the number

of features assigned to a similar position in the Voronoi cell.

D. Vocabulary Size and PCA

In this experiment we study the impact of vocabulary

size on the quality of the VLAD+SURF representation. In

order to keep the assignment cost low and to reduce the

impact of dimensionality reduction in accuracy (as explained

in Section III-D), we limit our analysis on vocabulary sizes

up to k=512 centroids.

Figure 5 shows the retrieval performance on Holidays using

VLAD+SURF vectors of varying vocabulary size. As ex-

pected, accuracy increases with vocabulary size. Interestingly,

using VLAD+SURF vectors and k=512 we obtain a mAP

score of 68.8% that is similar to the one obtained in [1] where a

significantly more expensive setting was used: FV+PCA-SIFT

with k=4096.

Figure 6 shows mAP results obtained on Holidays and

Oxford using PCA-projected VLAD+SURF vectors produced

from vocabularies of different sizes. We report results for

vectors with up to 1024 dimensions that are more suitable for

large-scale retrieval. The results confirm that larger vocabulary
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Fig. 5: VLAD+SURF vectors of varying vocabulary size, mAP

on Holidays.
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Fig. 6: PCA-projected VLAD+SURF vectors produced from

vocabularies of different sizes, mAP on Holidays (top), mAP

on Oxford (bottom).

sizes suffer more from dimensionality reduction. The largest

vocabulary (k=512), gives worse results than most of the

smaller vocabularies for all projection lengths on both datasets.

The best results are obtained using k=128 (followed closely by

k=256) for all projection lengths. Interestingly, with d′=1024 a

68.7% mAP is obtained on Holidays that is similar to the best

score obtained using full dimensional VLAD+SURF vectors

(k=512 and d=32768). Also, using only d′ = 128 dimensions,

a 63.7% mAP is obtained that is 12.7% higher than the best

mAP (56.5%) reported in [1] for the same dimensionality. Note

that with this size, 1M vectors can fit in 1GB of main memory.

By comparing Figures 5 and 6 (top) we see that for vocab-

ulary sizes smaller than k = 256 and a small dimensionality

reduction we achieve better accuracy than using full vectors

produced from the same vocabulary. This phenomenon was

also observed in [1], but it was not explained. Here, we provide

a justification of this increase in performance, extending the

analysis presented in [15] for BoW vectors. Similarly to BoW,
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VLAD are usually compared using cosine similarity that is

equivalent to the inner product when the vectors are L2

normalized. In case that no features are assigned to a par-

ticular visual word ci, the corresponding vector of aggregated

differences vi will be the vector of all zeros ~0. Given two

images a and b and the corresponding VLAD vectors va and

vb, and assuming that vai = ~0, the contribution of visual word

ci to the cosine similarity of va and vb will be the same

when either vbi = ~0 or vbi 6= ~0. This way, the information

that two visual words are jointly missing from two images is

not taken into account although it can be a strong indication of

similarity, especially for small vocabularies. [15] showed that

by subtracting the mean BoW vector (calculated on a learning

set) from the original BoW vector, the similarity measure

is improved. By applying PCA this centering is performed

implicitly. This explains the observed increase in accuracy

(compared to using full vectors) for smaller vocabularies and

a limited reduction. For larger vocabularies and/or heavier

reductions, the positive effect of centering is cancelled by the

large projection error.

E. The Effect of Whitening

In this experiment we study the effect of whitening on

VLAD vectors. Figure 7 shows results for Holidays and

Oxford 5. On Holidays, we see that whitening improves the ac-

curacy of 128-dimensional vectors for most vocabulary sizes.

The best mAP result for 128-dimensional vectors without

whitening is 63.7% while with whitening we obtain 65.7%, a

3% relative improvement. The situation is similar on Oxford

where for 128-dimensional vectors, whitening improves the

results for all vocabulary sizes. Here, the relative improvement

is even larger (18%), as the previous best mAP result of

25.4% increases to 30.0%. The picture is different for 1024-

dimensional vectors, where, while a significant improvement is

observed on Oxford for all vocabulary sizes, on Holidays, the

best accuracy is obtained without whitening. This difference is

probably due to the abundance of visual word co-occurrences

(the problem that whitening tries to address) on Oxford [38].

As a general trend, we observe that in both datasets whiten-

ing has a more positive impact for 128-dimensional vectors

and for larger vocabularies (k=256 and k=512). A related

observation was made in [15], where it was suggested that for

large projection lengths, whitening may have a negative impact

because it magnifies the noise of the low-energy components.

For VLAD+SURF vectors generated from a k=512 vocabulary

(d=32768), d′=1024 is still a small projection length. In con-

clusion, we suggest that whitening should always be performed

jointly with PCA on VLAD vectors when we are interested in

low-dimensional representations.

F. Multiple Vocabularies

In this experiment we evaluate the multiple vocabulary ag-

gregation method described in Section III-F. As in Section V-D

we consider vocabularies with a maximum total number of

5Results for additional projection lengths and under the presence of
additional distractor images are provided in the supplementary material.
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Fig. 7: Retrieval performance (mAP) obtained with 128-

dimensional (left) vs. 1024-dimensional (right) VLAD vectors

produced with vocabularies of different sizes, with and without

whitening on Holidays (top) and Oxford (bottom).

TABLE VI: Multiple vocabulary setups.

Total complexity 32 64 128 256 512
S

et
u

p
s

2x16 4x16 8x16 16x16 32x16
2x32 4x32 8x32 16x32

2x64 4x64 8x64
2x128 4x128

2x256

k=512 visual words to keep the assignment complexity reason-

able. Table VI lists the evaluated multiple vocabulary setups. In

order to obtain a different learning set for each vocabulary in a

multiple vocabulary setup, we take different random samples

of 100K features from a set of approximately 70M SURF

features extracted from Flickr100K.

Figures 8a and 8b show results on Holidays using a single

and multiple vocabularies of different sizes to generate 128-

and 512-dimensional VLAD vectors respectively. Figures 8c

and 8d show the corresponding results on Oxford6. The

best results for both datasets and projection lengths are ob-

tained using multiple vocabulary aggregation. Specifically, the

4x128 setup is the top performer in all cases, increasing the

performance of the best single vocabulary setup by 3.7%

(0.5%) for 128-dimensional vectors and by 4.4% (5.0%) for

512-dimensional vectors on Holidays (Oxford). However, we

can see that extreme setups (i.e. many small vocabularies)

perform worse than more conservative setups, even worse than

single vocabulary setups of the same total complexity. This

performance trend is different to the one observed in [15] with

BoW vectors where performance improved with increasing

number of vocabularies (of a fixed total complexity). Finally,

we observe that the relative improvements are larger for 512-

6Results for additional projection lengths are provided in the supplementary
material.
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Fig. 8: Multiple vocabularies experiment on Holidays and

Oxford with vectors projected to 128 and 512 dimensions.

dimensional vectors compared to 128-dimensional in both

datasets. Comparing these results with the results of Figure 5

where full vectors are used, we observe that using only 128-

dimensional vectors, we achieve a similar mAP (69%) as

with 32768 dimensional full VLAD vectors. Also this result

TABLE VII: Comparison against the state-of-the-art on short

vectors. Accuracy is measured by mAP on Holidays and

Oxford and by 4×R@4 on UKB. Results with an asterisk

on Oxford indicate that Paris was used for learning instead of

an independent dataset.

Representation k Holidays Oxford UKB

1
2

8
d

v
ec

to
rs

BoW+PCASIFT [1] 20K 45.2 15.9 2.95
VLAD+PCASIFT [1] 64 55.7 25.7 3.35
FV+PCASIFT [1] 64 56.5 24.3 3.33
mBOW+SIFT [15] 4x8K 56.7 41.3* 3.19
mVLAD+SIFT [15] 4x256 61.4 3.36
VLADai+ROOTSIFT [30] 256 62.5 44.8*
VLAD*+ROOTSIFT [31] 64 32.5*
VLAD+CSURF 64 73.8 29.3 3.50
mVLAD+SURF 4x128 71.8 38.7 3.32

is significantly better than the 61.4% mAP reported in [15]

for 128-dimensional VLAD vectors coming from a k =4x256

multiple vocabulary setup.

G. Comparison with the state-of-the-art on short vectors

In this section we compare our optimized VLAD represen-

tation with reference state-of-the-art results, after modifying

the experimental setup that we used in previous subsections

to match the setup most commonly used in similar studies.

Specifically, we: a) use larger, 1024x768 dimensional images

for all datasets and b) calculate mAP on Oxford using the pro-

vided evaluation software which treats query images as pos-

itive examples. Table VII shows results on Holidays, Oxford

and UKB, obtained using 128-dimensional vectors of various

types. The last 2 rows correspond to our PCA-projected and

whitened VLAD+CSURF and multiple vocabulary aggregated

VLAD+SURF vectors (mVLAD+SURF).

On Holidays we improve the previous best reported

result [30] by 18% with VLAD+CSURF and by 15%

with mVLAD+SURF. On Oxford, our mVLAD+SURF and

VLAD+SURF representations obtain mAP scores that are

59% and 21% better than the best result reported in [1]

using an independent learning dataset (better results have been

reported in [15] and [30] but using Paris for learning). Finally,

VLAD+CSURF improves the state-of-the-art [15] by 4% on

UKB while mVLAD+SURF obtains slightly lower results.

H. Product Quantization and Large-Scale Experiments

In this experiment we study the parameters of PQ discussed

in Section III-G. PQ is applied on PCA-projected and whitened

VLAD vectors generated using four vocabularies of size

k=128 that were found to give the best results in Section V-F.

To study the joint effects of d′, m and ks we use three

m×ks schemes (6x13, 8x10, 10x8) that allocate approximately

the same number of bits (78 and 80), and for each scheme

we evaluate the performance using six different projection

lengths d′ = {20/24, 48/50, 96/100, 120, 240, 480}7. Note

that with such a small memory footprint, up to 100M vectors

can be stored in 1GB of memory. Figures 9a, 9b and 9c

7The alternative d′ values (e.g. 20/24) are used because d′ should be an
exact multiple of m.
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Fig. 9: mAP results using 6x13, 8x10 and 10x8 PQ schemes

and uncompressed PCA-projected VLAD vectors, for dimen-

sionality reduction to varying dimensions d′.

show mAP results on Holidays, Oxford and Paris respectively.

In all datasets, we observe a great variation with respect to

d′, with the best results obtained with d′ between 48 and

100. With such a small quantization code, larger dimensional

vectors incur a significant quantization loss. With respect to

the parameters m and ks, we observe that all quantization

schemes exhibit similar accuracy near the optimal d′. These

results are different from [21] (where for a fixed code size

quantization schemes with smaller values for m were found

better) and in favor of schemes with smaller ks values due to

the fact that they are more efficient. Furthermore, experimental

results provided in the supplementary material, suggest that

the random transformation step is helpful only for projection

lengths d′ > 100 while for smaller d′ the results are similar

to not applying random transformation.

Large-scale Experiments on Holidays+ImageNET10M: Fig-

ure 10 shows the performance of various large-scale sys-
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Fig. 10: mAP results on Holidays + ImageNET10M

tems on datasets of increasing size (10K, 100K, 1M, 10M)

constructed by combining the images of Holidays and Ima-

geNET10M. We report results for the following systems:

1) VLAD-k4x128-d′96w: our VLAD+SURF with k=4x128,

reduced to d′=96 with PCA+whitening.

2) FV-k64-d′96: FV+PCA-SIFT with k=64, reduced to d′=96

with PCA, results from [1].

3) VLAD-k4x256-d′128w: VLAD+SIFT with k=4x256, re-

duced to d′=128 with PCA+whitening, results from [15].

4) VLAD-k4x128-d′48w-PQ8x10: our VLAD+SURF with

k=4x128, reduced to d′=48 with PCA+whitening and encoded

to 80 bits using the 8x10 PQ scheme.

5) FV-k64-d′96-PQ16x8: (2) encoded to 128 bits using the

16x8 PQ scheme, results from [1].

6) VLAD-k4x256-PQ128: (3) encoded to 128 bits using PQ

(d′ and PQ scheme not given), results from [15].

7) VLAD-k4x128-d′48w-IVFPQ8x10: (4) combined with in-

verted lists (IVFADC w=64/8192).

8) FV-k64-d′96-IVFPQ16x8: (5) combined with inverted lists

(IVFADC w=64/8192), results from [1].

Looking at the results obtained using uncompressed VLAD

vectors (triangles), we observe that our 96-dimensional repre-

sentation is significantly better than both the 128-dimensional

representation of [15] and the 96-dimensional representation

of [1] for all distractor levels. Looking at the results using

PQ encoded vectors and ADC search (circles), we observe

that we outperform other state-of-the-art systems that use 128

bits per image by using only 80 bits. When no additional dis-

tractors are present, our VLAD-k4x128-d′48w-PQ8x10 sys-

tem obtains a 57.6% mAP while FV-k64-d′96-PQ16x8 and

VLAD-k4x256-PQ128 obtain 50.6% and 53.1%, respectively.

Looking at the results using PQ encoded vectors and IVFADC

search (squares), we observe that our VLAD-k4x128-d′48w-

IVFPQ8x10 system, which uses only 80 bits per image,

obtains slightly better results than FV-k64-d′96-IVFPQ16x8

which uses 128 bits per image. Interestingly, we notice that

PQ+ADC schemes outperform PQ+IVFADC schemes for up

to 100K distractors. This suggests that PQ+ADC should be
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TABLE VIII: Classification performance (mAP) of different

image representations.

Method d d′ mAP

BOW 500 500 0.111
VLAD 32768 128 0.192
VLAD+ 32768 128 0.233
cVLAD+ 24576 128 0.259

preferred over PQ+IVFADC for small-medium databases since

it also has comparable or better efficiency as discussed below.

Timings: With our single core implementation, search-

ing the 10M dataset using 96-dimensional vectors takes (on

average): 3.7 s when no encoding is used, 744 ms with

the PQ+ADC 8x10 scheme and only 24 ms with the non-

exhaustive PQ+IVFADC 8x10, 64/8192 scheme. For smaller

datasets (up to 100K with our setup) ADC is slightly faster

than IVFADC. We observed that the main overhead of IV-

FADC for small databases is the calculation of multiple (w)

lookup tables (that negates the benefit of scanning a small

subset of the database) and not the assignment to the coarse

quantizer as mentioned in [21].

I. Classification Experiments

Although our primary focus is on image representations

for example-based large-scale retrieval, we expect that the

improvements reported so far for VLAD can be of interest

for large-scale image classification as well. To evaluate our

hypothesis, we conducted classification experiments on the

NUS-WIDE [42] dataset. NUS-wide is among the largest

benchmark datasets for image classification containing 260K

images from Flickr with manual ground truth annotations for

81 concepts. An interesting property of the dataset is that each

image can be annotated with multiple concepts rendering the

problem into a multi-label classification one. For all images

we extract the following three types of vectors:

1) VLAD: original VLAD vectors (as described in [1]) using

SIFT features and a single k=256 visual vocabulary, reduced

to d′=128 with PCA.

2) VLAD+: improved VLAD vectors (as described in this

paper) using SURF features and multiple k=4x128 visual

vocabularies, reduced to d′=128 with PCA+whitening.

3) cVLAD+: improved VLAD vectors (as described in this

paper) using CSURF features and a k=128 visual vocabulary,

reduced to d′=128 with PCA+whitening.

Additionally, we use baseline Bag-of-Words (BoW) features

provided along with NUS-WIDE (see [42] for details). Prior to

learning, all types of vectors (including BoW) are normalized

to unit length. For multi-label classification we apply the One-

vs-All approach (implementation from Mulan [43]) coupled

with Logistic Regression (implementation from LibLINEAR

[44]). Performance for each dataset is measured in terms of

mAP, using the original train-test splits. The results are re-

ported in Table VIII. All VLAD based representations perform

impressively better that the BoW baseline. We also see that

VLAD+ achieves a large 21.4% increase over standard VLAD.

Finally, using the new CSURF descriptor, cVLAD+ achieves

the best overall performance that is 233% better than the

performance of BoW.

VI. CONCLUSIONS

Through a comprehensive study of the VLAD+PQ frame-

work, we constructed 128-dimensional vectors that obtain

significantly better accuracy than the state-of-the-art on three

popular image retrieval benchmarks and 80-bit compressed

image signatures that outperform less efficient setups on

the Holidays benchmark. Furthermore, we showed that the

proposed modifications lead to significant improvements on

the image classification domain. Aside the above performance

improvements, we believe that the extensive experimental

study presented here and the accompanying experimental

testbed offer valuable insights to image retrieval researchers

and practitioners on the role of different feature extraction,

aggregation and indexing steps involved in the VLAD+PQ

framework. More specifically, the following practical conclu-

sions are drawn from our empirical study:

• SURF constitutes an excellent replacement for SIFT (and

RootSIFT) in the context of VLAD since it leads to

consistently increased search accuracy and at the same

time it can be extracted much faster. In cases where

color is expected to be a discriminative factor CSURF

constitutes an even better alternative.

• Feature filtering techniques based on either the richness

of feature structure or the feature-vocabulary relation do

not improve the VLAD representation.

• The originally proposed sum-aggregated VLAD outper-

forms the mean-aggregated extension.

• Whitening should always be performed jointly with

PCA on VLAD vectors when we are interested in low-

dimensional representations.

• When appropriate multiple vocabulary setups are used,

the multiple vocabulary aggregation technique can offer

significant improvements over using a single vocabulary.

• When aggressive compression is applied, the selection of

PQ parameters m and ks (for a constant number of bits)

has negligible impact on accuracy. Thus, schemes with

smaller ks values should be preferred due to being more

efficient. On the other hand, there is great variation in

accuracy with respect to d′ and thus its value should be

carefully selected.

• PQ+IVFADC should be preferred over PQ+ADC for

datasets larger than 100K images as it is more accurate

and has better efficiency.

APPENDIX

A GRAPHICAL ILLUSTRATION OF SUM VERSUS MEAN

VLAD AGGREGATION

Figure 11 shows (on the left) a visual vocabulary with three

visual words and the quantized (2-dimensional) features of

two hypothetical images. On the right we see a graphical

illustration of the VLAD signatures of the images using

sum (right-top) and mean (right-bottom) aggregation. The

aggregated residual for each visual word ci is depicted with

an arrow vi starting from the origin. The distance between
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Fig. 11: Graphical illustration of sum versus mean aggregation.

two VLAD signatures depicted in this way is the sum of

the Euclidean distances between the corresponding aggregated

residuals. Looking at the quantized features of each image

we observe that the two images differ significantly since the

majority of the features of image x are quantized in c1 while

the majority of the features of image o are quantized in

c2. While this difference is captured by the sum-aggregated

VLAD signatures, the mean-aggregated VLAD signatures of

the images are identical due to the fact that mean-aggregation

discards information about the number of features quantized

in each visual word.
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