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Location extraction, also called “toponym extraction,” is a field covering geoparsing, extracting spatial repre-

sentations from location mentions in text, and geotagging, assigning spatial coordinates to content items. This

article evaluates five “best-of-class” location extraction algorithms. We develop a geoparsing algorithm using

an OpenStreetMap database, and a geotagging algorithm using a language model constructed from social

media tags and multiple gazetteers. Third-party work evaluated includes a DBpedia-based entity recognition

and disambiguation approach, a named entity recognition and Geonames gazetteer approach, and a Google

Geocoder API approach. We perform two quantitative benchmark evaluations, one geoparsing tweets and

one geotagging Flickr posts, to compare all approaches. We also perform a qualitative evaluation recalling

top N location mentions from tweets during major news events. The OpenStreetMap approach was best

(F1 0.90+) for geoparsing English, and the language model approach was best (F1 0.66) for Turkish. The

language model was best (F1@1km 0.49) for the geotagging evaluation. The map database was best (R@20

0.60+) in the qualitative evaluation. We report on strengths, weaknesses, and a detailed failure analysis for

the approaches and suggest concrete areas for further research.
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1 INTRODUCTION

Social media provides a real-time source of information with global spatial coverage that sup-
ports the daily activities of professionals in a wide variety of areas. Journalists are increasingly
(Silverman 2014) turning to user-generated content from social media sites such as Twitter and
Facebook to find eyewitness images and videos during breaking news events. Civil protection
agencies are using social media (Earle et al. 2011) to create real-time crisis maps, plotting eye-
witness damage assessments and cries for help, which can both focus ongoing relief activities and
provide much-needed information to concerned friends and relatives of those involved. Businesses
are using social media analytics (Chung 2014; Lassen et al. 2015) to assess the impact of product
launches, mapping sentiment and getting feedback from customers discussing their experiences
via social media. Any problem that needs to geospatially map information from social media posts
will need a location extraction solution, which is typically implemented using geocoding, geop-
arsing, or geotagging in some form or another.

Geocoding, geoparsing, and geotagging are types of information extraction, which is itself a
subset of information retrieval. Geocoding is the act of transforming a well-formed textual repre-
sentation of an address into a valid spatial representation, such as a spatial coordinate or specific
map reference. Geoparsing does the same for unstructured free text and involves location extrac-
tion and location disambiguation prior to the final geocoding. Geotagging assigns spatial coordi-
nates to media content items, typically by building statistical models that, given a piece of text,
can provide an estimate of the most likely location (spatial coordinate) to which the text refers.

It should be noted also that in the literature the term “location” is used interchangeably with
the term “toponym,” such as with “toponym disambiguation.” We use the term “location” in this
article to mean a place name (e.g., London) and consider it synonymous with the terms “location
phrase” and “location mention.” We use the term “disambiguated location” to mean an unambigu-
ous location in the context of a geographic database of some type (e.g., London, UK, 51°30′26′′N
0°7′39′′W). We use the term “spatial coordinate” to mean a general reference to a coordinate such
as a longitude/latitude point on a map. Sometimes “location identification” is used in the liter-
ature, which we consider to mean geoparsing without location disambiguation. Also, “location
estimation” is sometimes used, which we consider to be geotagging to a spatial area such as a grid
cell.

Social media content sometimes contains a geotag to indicate either the location where it was
created or the location of the subject matter. Analysis has shown (Middleton et al. 2014) that about
1% of Twitter posts contain a geotag during events such as natural disasters. In the Yahoo! Flickr
Creative Commons 100 Million (YFCC100m) dataset (Thomee et al. 2016), about 48% of posts have
a geotag, although this percentage does not likely reflect the actual rate of geotagged images in
the platform. Furthermore, a recent study has revealed that the number of geotagged photos in
social media platforms such as Twitter and Flickr has tapered off (Tasse et al. 2017). Even in cases
where a geotag is available, location extraction from text can still add value. Geotags can be many
kilometers away from where the subject matter is located, such as long-range photographs of
the Eiffel Tower. Moreover, the textual description of media posts can contain contextual location
mentions that cannot be inferred from a geotag alone (e.g., “Obama in Washington making a speech
about China”).

There are today several commercial geocoding services, each based on an underlying map data-
base, which can take well-formatted location descriptions and return map references to them.
The problem with social media posts is that, unless posts originate from automated services such
as news feeds or earthquake alerts, they are not well-formed text and therefore need some sort of
parsing before they can be used with a geocoding service. There is also a problem with rate-limited

ACM Transactions on Information Systems, Vol. 36, No. 4, Article 40. Publication date: June 2018.



Location Extraction from Social Media 40:3

remote geocoding services, of which the throughput in practice is much lower than the real-time
volumes of posts common from social media sites such as Twitter.

Geoparsing can be used to process the types of unstructured text seen in social media posts and
requires both location identification and location disambiguation. Approaches to location identifi-
cation typically involve either named entity recognition (NER), usually based on linguistic proper-
ties such as part-of-speech tags, or named entity matching (NEM) based on a gazetteer, geospatial
database, or tag set of known tokens associated with locations. The choice of gazetteer or data-
base will depend on the spatial resolution the geoparsing is trying to operate within, ranging from
the level of administrative regions, such as cities, down to street and building levels. Geotagging
methods, however, are developed based on large corpora of geolocated social media posts, typi-
cally with a focus on popular locations, and can include vernacular names often missing from map
databases, and even take advantage of nongeographical names and terms that are indicative of a
certain location (festivals, local dishes, etc.).

Location disambiguation takes a set of possible location matches for a text token and selects the
most likely ones based on available contextual evidence such as co-occurring mentions of other
locations or post geotags. The approaches for location identification and disambiguation can often
support each other, and hybrid approaches are not uncommon. Geotagging involves a combination
of location identification and disambiguation, presented as a geotagging problem. Geotagging is
often applied to estimate the location of an image or video, optionally using additional context
beyond text labels such as semantic information extracted from image and video content. Section 2
provides a good overview of the types of geoparsing and geotagging approaches used today.

This article presents a comparative study among five “best-of-class” location extraction algo-
rithms. Author-developed approaches are based on (1) entity matching using an OpenStreetMap
(OSM) database and (2) a language model using a combination of a large social media tag dataset
and multiple gazetteers. Third-party developed approaches are based on (3) DBpedia-based entity
recognition and disambiguation, (4) named entity recognition and GeoNames gazetteer lookup,
and (5) named entity recognition and the Google Geocoder API.

Our geoparsing quantitative benchmark experiments use a manually labeled Twitter dataset
covering thousands of tweets during four major news events. We evaluate the precision and recall
when extracting location mentions without disambiguation, working at resolutions down to street
and building level. Our dataset includes within it labeled tweets shared with us by Carnegie Mel-
lon University, allowing comparison of results to previously published work on the Christchurch
earthquake event (Gelernter and Balaji 2013).

Our geotagging quantitative evaluation uses the standard Yahoo! Flickr Creative Commons 100
Million (YFCC100m) dataset (Thomee et al. 2016) containing millions of geotagged Flickr posts. We
evaluate the precision and recall of our location extraction methods using a geotagging problem
formulation, working at a 1km2 spatial precision.

Lastly, we perform a case-study-driven qualitative evaluation, taking more than 1 million tweets
crawled from three recent news stories and ranking extracted locations by mention count. We
examine the recall for each algorithm of ground-truth locations mentioned in published verified
news stories at the time of each event.

The contribution of this article includes both original algorithm work and detailed evaluation on
benchmark datasets. Two author-developed location extraction algorithms are presented, both of
which have been extended from previously published work to include additional original features.
The map-database algorithm has been extended from Middleton et al. (2014) and Middleton and
Krivcovs (2016) to add location disambiguation heuristics, making use of textual context including
location co-occurrences and parent region mentions, spatial proximity to geotags, person name
filters, and token subsumption strategies. Its novelty lies in the use of the geographic shape
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information and metadata from OpenStreetMap to disambiguate locations and boost geoparsing
precision. The lm-tags-gazetteer algorithm is based on a language model and has been extended
from Kordopatis et al. (2015b), Kordopatis et al. (2016), and Kordopatis et al. (2017) to include
a location-labeling step, which leverages multiple gazetteers to improve the quality of the
location prediction model. The proposed approach resulted in a relative improvement of 4.5% in
the geotagging performance (P@1km) compared to the best results reported in the previously
published versions of the algorithm. Its novelty lies in the effective combination of multiple data
sources (i.e., Flickr image metadata, OpenStreetMap, and GeoNames) in a single probabilistic
location language model.

The results published in this article represent a valuable benchmark for other researchers to
compare against. All benchmark datasets are freely available, and we encourage other researchers
to benchmark their location extraction approaches on our labeled data against the results in this
article. The author-developed algorithms are also available via open-source releases. The map-

database algorithm has never been evaluated before on a geotagging problem formulation, and the
lm-tags-gazetteer algorithm has never been evaluated before on a geoparsing problem formulation.
Both algorithms have never been evaluated on our case-study-driven evaluation before. Our final
contribution is a detailed analysis and discussion of the strengths and weakness of our approaches,
providing insights to other researchers who might be considering developing their own location
extraction approaches.

We report on related work in Section 2 including a discussion of the limitations in the state of
the art. In Section 3, we describe details on the methods used by each of the algorithms evaluated
in this article. Sections 4 and 5 provide evaluation results and discussion, and we conclude in
Section 6 highlighting a few areas where we think further research might lead to improvements
on the best-of-class approaches outlined in this article.

2 RELATED WORK

2.1 Geocoding Services

Commercial geocoding services such as the Google Geocoding API,1 OpenStreetMap Nominatim,2

and Bing Maps API3 allow users to post a textual phrase and get back a likely location refer-
ence that matches it, along with a longitude and latitude spatial coordinate. These services expect
well-formed text with super-regions provided for disambiguation. For example, sending the text
“London, UK” to the Google Geocoder API will result in a spatial coordinate for the center of Lon-
don, a bounding box for London, and some metadata such as the full set of UK administrative
super-regions for London. Location disambiguation is generally weak or nonexistent in geocod-
ing services due to a lack of available context. For example, sending the text “Winchester” to the
Google Geocoder API will result in eight places called “Winchester” in the United States, Google’s
default locale. Only when one allows his or her browser to share its location (e.g., Southampton
in the UK) will the result be further disambiguated to suggest, e.g., the city of Winchester, Hamp-
shire, in the United Kingdom, which is closer to the browser location and therefore more likely to
be right.

Commercial geocoding services are also subject to rate limits that prevent them from scaling
up to handle high-throughput applications, such as processing real-time social media streams.
At the time of this writing, the Google Geocoder API allows 2,500 free requests per day, with
100,000 allowed for premium users, and 50 requests per second. Typical breaking news events

1https://developers.google.com/maps/documentation/geocoding.
2http://wiki.openstreetmap.org/wiki/Nominatim.
3https://www.microsoft.com/maps/choose-your-bing-maps-API.aspx.
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generate much higher volumes of content than these limits can handle. For example, recent Twitter
crawls (Wiegand and Middleton 2016) of the November 2015 Paris shootings event captured about
6,000,000 posts during the first 6 hours of the event. Geocoding datasets of this size in real time
with rate-limited geocoding services is not feasible, even if one was able to extract well-formatted
location references from each tweet’s text.

2.2 Geoparsing

Geoparsing from free text is a well-studied field in information retrieval, with applications in-
cluding automated image tagging, web page annotation, and social media analytics. Approaches
can be broadly categorized as either named entity recognition or named entity matching. Named
entity recognition approaches are usually based on linguistic annotations, such as part-of-speech
(POS) tags or bag-of-word feature vectors, which are then either used as training data for building
supervised classifiers or input to hand-crafted linguistic grammars to classify and extract location
mentions. Named entity matching uses a lookup index of known location names and variants, ei-
ther from a gazetteer such as GeoNames4 or from a geospatial database such as OpenStreetMap,5

to identify possible location mentions along with heuristics to reduce false positives (FPs). These
approaches can be combined, with gazetteer-based entity matching used to geocode an entity
recognition result.

The earliest approaches to location entity recognition identified event locations from large text
documents by analyzing co-occurrence of dates and noun phrase patterns (Swan and Allan 1999).
More recently, named entity recognition of locations in social media messages has been specifically
addressed. This is a challenging area due to the short text length and wide variety of grammatical
styles in social media posts (Bontcheva et al. 2013). Typical approaches include conditional random
fields (CRFs) coupled with named entity recognition (Ritter et al. 2011) and entity disambiguation
using a reference corpus such as DBpedia (van Erp et al. 2013). Regression trees (Cheng et al. 2010)
have been trained on tweet datasets with a combination of stemming and stop word removal.
A best-of-class entity recognition approach is the one presented in Gelernter and Balaji (2013),
which employs POS tagging, named entity recognition, a set of global and local gazetteers, and
some heuristics such as spell checking and acronym processing. Our article reports results from a
benchmark evaluation using the same Christchurch earthquake tweet dataset that Gelernter and
Balaji (2013) used, allowing direct comparison of our results to this previous work.

For named entity matching, various gazetteers are reported as being used in the literature. The
GeoNames gazetteer is perhaps the most popular choice, typically combined with heuristics such
as person name filters (Gelernter et al. 2013) or demographic filters (Tahsin et al. 2016) to bias
location selection to the largest area, along with DBpedia. Use of full map databases such as Open-
StreetMap is possible (Middleton et al. 2014) using a location name index created from a combina-
tion of the planet-wide OpenStreetMap database and multilingual heuristics for token expansion
of place types (e.g., ‘ . . . street’ expands to ‘ . . . street’ and ‘ . . . st.’). This OpenStreetMap named en-
tity matching approach (Middleton et al. 2014) is one of the approaches tested in our benchmarks
and represents a best-of-class named entity matching approach.

2.3 Location Disambiguation

Early work (Smith and Crane 2001) on location disambiguation, also called toponym disambigua-
tion, used heuristics to prune false matches and disambiguate possible location choices. For exam-
ple, common person names, person titles such as “Mr.” and generic place types such as “river” were

4http://www.geonames.org.
5https://www.openstreetmap.org.
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used to remove false positives. For location disambiguation, contextual super-region mentions and
the proximity of locations to a centroid computed from confident location matches was used.

More recently, various additional types of heuristics and contextual data have been used to
disambiguate locations. This includes co-occurring and super-region mentions, place types, text
capitalization, demographic data, and semantic context where available (Want et al. 2010). A geo-
referenced version of WordNet has been used (Buscaldi and Rosso 2008) to calculate a concep-
tual density function for disambiguation. Other approaches include entity disambiguation with
machine-learning techniques such as Expectation-Maximization (Davis et al. 2012) and Random
Forest (Lee at al. 2015; Rafiei and Rafiei 2016). The GNIS6 gazetteer has also been used (Amitay
et al. 2004) for entity matching, exploiting contextual mentions of super-regions and an aggre-
gated location centroid for location disambiguation.

Disambiguation of local place names can be particularly challenging. A recent analysis (Cai
and Tian 2016) of local place names within a US city showed that about 17% of locations were
either vernacular names or vague and hard to disambiguate. The difficult problem of geotagging
vernacular place names has been examined (Pasley et al. 2007) with only limited success.

In support of location disambiguation, there is also the field of geosemantics (Lieberman and
Goad 2008), which looks at contextual information relating to geoparsed location mentions, such
as position modifiers or time references, for subsequent position refinement. Techniques such as
spatial role learning (Kordjamshidi et al. 2012; Bastianelli et al. 2013), where phrases for position
modifiers and landmarks are extracted, are helpful when references to a location include context
such as “2 miles north of New York.” Temporal extraction (Verhagen et al. 2010) can help to dis-
ambiguate location mentions if an event context is known.

2.4 Geotagging

Geotagging has a similar aim to geoparsing, but only a spatial point reference is sought without the
need to parse an explicit reference to a known location. This has led to the development of various
probabilistic and machine-learning approaches based on spatial grids that hold text statistics for
different regions of the world. Geodesic grids have been computed from Wikipedia pages (Wing
and Baldridge 2011) to train a naïve Bayes classifier, and for tweets (Paraskevopoulos and Palpanas
2016), where city grids are used in combination with a TF-IDF statistical measure.

Additional features such as time zones (Mahmud et al. 2014) or friend locations (Compton et al.
2014) can be used to geotag the likely home city of Twitter profiles. The spatial proximity of loca-
tions in documents can be used to statistically disambiguate geotagging results, such as in multi-
lingual travel guidebooks (Moncla et al. 2014). Spatial proximity can also be used for supervised
classifiers, such as Awamura (2015), where a support vector machine (SVM) is trained on a com-
bination of bag-of-words features, spatial proximity, and temporal features extracted from the
tweets.

For street- and building-level geotagging, language models have been tried, such as Flatow et al.
(2015), where grids are learned from datasets of tweets. The approach of Serdyukov et al. (2009)
records location mentions in a graph structure, encoding both spatial and semantic relations, and
models the probability of a location given the presence of a tag. A boosting coefficient is applied
if the tag matches a location in the GeoNames gazetteer, allowing tags for popular place and land-
mark names to be weighted higher. Lastly, spatially aware term selection for geotagging has been
examined (Laere et al. 2014), comparing techniques such as kernel density estimation and use of
Ripley’s K statistic to smooth spatial occurrences of tags in Flickr posts and Wikipedia articles and
showing significant performance gains for subsequent geotagging.

6https://nhd.usgs.gov/gnis.html.
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Standard benchmark datasets exist with labeled web and/or social media posts suitable for eval-
uating geotagging. For example, the YFCC100m dataset (Thomee et al. 2016) contains 100 million
public Flickr photos/videos, many of which have a geotag. The MediaEval workshop runs a regular
Placing Task series (Choi et al. 2014) with challenges for researchers to try out algorithms on this
dataset. We make use of the YFCC100m dataset as one of our benchmarks, running an updated
version of the winning MediaEval 2016 placing task algorithm (Kordopatis et al. 2016) to repre-
sent a best-of-class geotagging approach. This use of a language model and gazetteer is similar to
Serdyukov et al. (2009), but our approach includes a number of feature selection and weighting
steps that ultimately lead to considerable gains in terms of geotagging accuracy (Kordopatis et al.
2017).

2.5 Limitations in the State of the Art

We have found that the approaches we reviewed vary considerably in terms of the real-time
throughput that they can support. Using a commercial geocoding service is not scalable for third
parties, since rate-limited access imposes severe restrictions on throughput even for paying cus-
tomers. To do location extraction for typical real-time Twitter loads (i.e., sampled search API
throughput or even firehose throughput), algorithms need to process posts in parallel. Only a
few approaches (e.g., map-database) have reported results from practical experiments paralleliz-
ing their work. From the authors’ own experience with Apache Storm deployments of geoparsing
services, the bottlenecks for parallelization are POS tagging, named entity recognition, and (de-
pending on implementation) language and topic model execution. For real-world social media
post throughput, more than 10 nodes are required on a cluster deployment to overcome these bot-
tlenecks with brute-force parallelization. Entity matching can be very efficient if good indexing
techniques are used.

A consistent theme from the literature is that street and building name extraction performs
worse than region name extraction. The reason for this is that street names, and especially build-
ing names, are not as unique as region names. This means it is much more important to exploit
contextual clues when making an extraction and disambiguation decision. Region names are rela-
tively unique and therefore much easier to identify. We consider that the improved use of contex-
tual clues and a deeper understanding of the linguistic context where they are used is a key area
for improvement over the current state of the art today.

Older approaches tended to work with a single dataset and were unable to handle the rich variety
of abbreviations and vernacular names that exist in many locations of the world. Recently, there is
a clear trend in the literature toward using multiple interconnected data sources (e.g., social media
tags and gazetteers). We believe that this trend is likely to continue and can foresee progress being
made in approaches that exploit new information sources such as personal mobile devices and
connected data from the Internet of Things (IoT). The more context that is available to associate
with a user’s post, the better the chance of getting location extraction and disambiguation correct.
The authors’ language model approach in particular is helping to progress the state of the art in
this direction.

3 METHODOLOGY

In this section, we describe our named entity matching algorithms using OpenStreetMap (map-

database) and a language model approach using a combination of Flickr social media tags and vari-
ous gazetteer resources (lm-gazetteer, lm-tags, lm-tags-gazetteer). We benchmark our two novel ap-
proaches against three other standard approaches: geocoding (google-geocoder), entity recognition
(ner-gazetteer), and entity extraction (linked-data). The map-database approach described here is a
substantial improvement on the original work published in Middleton et al. (2014) with the addition
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40:8 S. E. Middleton et al.

Fig. 1. Information flow pipeline for named entity matching using OpenStreetMap (map-database). In our

evaluation, geotag context was not provided for disambiguation since geotags were used as ground truth.

of location disambiguation strategies. The lm-tags-gazetteer approach is an extension of the geo-
tagging approach first published in Kordopatis et al. (2015b) and further analyzed in Kordopatis
et al. (2017), and now includes a location-labeling step to fuse tag-based location predictions with
gazetteer resources. The google-geocoder approach uses named entity extraction to identify possi-
ble locations in text and then sends it to the Google Geocoder API to get a location reference. The
linked-data approach uses the linked data DBpedia spotlight service7 (Daiber et al. 2013) to extract
location entities. Finally, the ner-gazetteer approach uses GeoLocator8 (Zhang and Gelernter 2014),
which is based on entity recognition and entity matching from a GeoNames gazetteer.

3.1 Named Entity Matching Using OpenStreetMap: Map-Database

We have developed an entity matching approach that exploits region, street, and building data
found in the planet OpenStreetMap database. The overall information flow for this approach can
be seen in Figure 1. In an offline step, we preprocess all the location geometry held within the
400+GB planet OpenStreetMap PostGIS PostgreSQL database, generating a much smaller and more
efficient database containing global region data and local street and building data for explicitly pre-
processed focus areas of interest (e.g., all streets and buildings in the city of Southampton). The
online geoparsing algorithm loads to an in-memory cache location names and geometry and per-
forms entity matching in real time. Entity matches are disambiguated using available linguistic and
geospatial context prior to ranking in order of confidence. The map-database software is packaged
as geoparsepy9 and is freely available from the Python Package Index (PyPi).

The preprocessing of OpenStreetMap locations involves several steps. First, a location lookup is
performed via a PostgreSQL PostGIS query to get a set of locations to be preprocessed. A spatial
filter can be applied to limit the location names that are preprocessed. The location lookup can be
spatially wide (e.g., any administrative region in the world) or more focused (e.g., all streets and

7https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki.
8https://github.com/geoparser/geolocator.
9https://pypi.python.org/pypi/geoparsepy.
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buildings in a city). Location names and the associated geometry are returned, along with refer-
ences to any geometrically overlapping super-regions. The resulting smaller SQL table contains
rows for each location, with columns for OSM ID, all OSM name variants including abbreviations
and multilingual translations, super-region IDs, and the location polygon/line/point geometry.

The choice of focus area for location lookup and spatial filter is based on prior knowledge about
which locations will be relevant. If there is no prior knowledge, then no spatial filter is selected,
and a default location lookup of all global locations with an OpenStreetMap admin level of “city”
or larger is used; this provides more than 300,000 location names. If a focus area is known (e.g.,
Christchurch, New Zealand), then all streets and buildings in the focus area are loaded in addition
to the global lookup. The focus area can also be used to specify the spatial filter to remove irrel-
evant matches (e.g., a New Zealand spatial filter will prevent irrelevant matches about locations
in China). Choosing a good location lookup will allow matching of relevant streets and buildings,
whereas choosing a good spatial filter will remove irrelevant matches and false positives. In the
experiments we report in this article, we used location lookups to load street and building names
but did not apply any spatial filter since all global location names were considered viable matches.

The smaller preprocessed PostgreSQL PostGIS table is loaded into memory by the online geop-
arse algorithm on startup. A set of heuristics are applied to each OSM location name to perform
location name expansion and create a set of n-gram location phrases. A multilingual corpus of
street and building types, based on OSM feature types, is then used to compute obvious variations
for common location types (e.g., “Southampton University” and “Southampton Uni”). Unigram
location names that are nonnouns usually result in false positives, so they are filtered using a mul-
tilingual WordNet corpus lookup (e.g., “ok” abbreviation for Oklahoma is also used as a common
adjective, “it’s ok”). Location phrases are filtered using a multilingual stop word corpus and heuris-
tics are applied to help detect OpenStreetMap labeling mistakes that occasionally appear. Once all
location n-gram phrase variants are computed, an inverted index is generated so phrases can be
looked up quickly and the OSM ID and geometry retrieved. A typical location cache for global
regions will contain 300,000+ locations and need 8+GB of RAM. Multilingual support is provided
based on corpora for English, French, German, Italian, Portuguese, Russian, and Ukrainian.

For online geoparsing, text is first cleaned and tokenized. We use the Natural Language Process-
ing Toolkit’s (NLTK’s) (Bird at al. 2009) Punkt sentence tokenizer and Treebank word tokenizer.
For entity matching, all possible n-gram tokens in a sentence are matched using the inverted loca-
tion phrase cache. A corpus of common person names is used to perform a prefix check, avoiding
false positives where a valid location name is actually part of a full name (e.g., Victoria Derbyshire
!=Derbyshire). The final result is, for each location phrase, a set of possible location matches ready
for disambiguation. Disambiguation is an important step since a location name like “London” will
get tens of matches across the globe ranging from the most likely (i.e., London, UK) to the pretty
unlikely (i.e., London, Rusk County, Texas, US).

Location disambiguation is based on the accumulation of evidential features to create a confi-
dence score. We first check for token subsumption, rejecting smaller gram phrases over larger ones
(e.g., “New York” will prefer New York, US, to York, UK). Spatial proximity of other location men-
tions is then checked, with nearby parent regions and nearby locations adding to the confidence
of any specific match (e.g., “New York in USA” will prefer New York, US, to New York, BO, Sierra
Leone). If a geotag is available with a post, we prefer locations that are close by or overlapping to
the geotag. Finally, a location with a higher OSM admin level is preferred to a location with a lower
one (e.g., “New York” will prefer New York, US, to New York, BO, Sierra Leone). Once confidence
scores are computed, the highest confidence location match is returned for each location phrase,
with multiple options returned if several location matches have the same confidence value.

ACM Transactions on Information Systems, Vol. 36, No. 4, Article 40. Publication date: June 2018.



40:10 S. E. Middleton et al.

Fig. 2. Information flow pipeline for location extraction using social media tags and gazetteer (lm-tags-

gazetteer).

We used the OpenStreetMap 10-point admin-level classification (e.g., country, region, city, sub-
urb) for disambiguation in favor of demographic statistics (e.g., population size), which other re-
searchers (Purves et al. 2007; Leidner 2008) have used. We found that in OpenStreetMap, and other
gazetteers such as Geonames, the population size data is often years out of date, with locations be-
ing updated on an ad hoc basis. This means one location might have a smaller population size than
another just because the two figures are reported 10 years apart. We also believe that population
density is probably more important than absolute population size when it comes to disambiguation
based on the likelihood of a location being talked about. Overall, we found that the OpenStreetMap
admin-level classification is always correct and easily available and provides a reliable indication
of the relative importance of a location to a geographic region.

For the work in this article, we preprocessed each of the cities featured in our evaluation datasets
(i.e., New York, Milan, Christchurch, Paris, Brussels, Midyat) in addition to the global administra-
tive regions. We did not use any geotag disambiguation since the geotags were used as ground
truth. When multiple location options were returned with the same confidence score, we selected
a random choice.

3.2 Location Extraction Using Social Media Tags and Gazetteer: lm-tags-gazetteer

We have extended the winning method of the MediaEval 2016 Placing Task (Kordopatis et al. 2016)
to explore the use of social media tags and gazetteer information for location label extraction.
A language model is first built on a corpus of geotagged Flickr posts and/or gazetteer data by
analyzing their metadata and building a term-cell spatial map. Several refinements are then applied
to the language model for selection and weighting of textual terms, which are highly indicative of
specific locations. Figure 2 illustrates the information flow pipeline for this approach. The source
implementation is freely available.10

10https://github.com/MKLab-ITI/multimedia-geotagging.
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Fig. 3. Four examples of locality computation on a 3 × 3 toy grid, where cells represent the bounding boxes

of the underlying geographic partition. In all cases, a set of nine users are assumed to have used tag t, and

only their distribution to the grid cells is different.

We first apply a preprocessing step on the tags and titles of the dataset Flickr posts used for
training. This involves URL decoding,11 lowercase transformation, and tokenization into a term
set. Multiword tag phrases are both included in their initial form (e.g., “new york”) and further
split into atomic tokens, which are added to the item’s term set (e.g., “new,” “york”). All symbols,
accents, and punctuation in the terms are removed. Terms consisting only of numeric characters
or less than three characters and stop words12 are discarded. The remaining terms are used as
features to build the language model as in Popescu et al. (2013).

We divide the earth’s surface into (nearly) rectangular cells with a side length of 0.01◦ for both
latitude and longitude, corresponding to a distance of approximately 1km near the equator. Then,
language model training is performed by calculating the term-cell probabilities based on the user
mentions of each term in each cell. The cell with the greater aggregate term-cell probabilities for a
given query text is then considered to be the most likely cell and is used as the basis for geotagging.

After the initial construction of the language model, a feature selection and weighting step is ap-
plied to reduce the size of the model and increase its robustness. Two scores are extracted for each
term of the language model, namely, the locality and spatial entropy scores. For feature selection
only the locality score is used; however, both scores contribute to feature weighting.

Feature selection is performed based on the locality score of terms (Kordopatis et al. 2017).
Locality is designed to capture the spatial distribution of term usage i.e., it quantifies how indicative
a term is for a given location. It is calculated based on the number of unique users that have used
the term across the spatial grid. First, for each cell c of the grid, the set of unique users Uc who
made use of term t is considered. Then, locality is computed using the following equation:

l (t ) =

∑
c ∈C |Uc | ( |Uc | − 1)

Nt

,

where Nt is the total number of unique users using tag t across the whole grid. Note that cells
where tag t is not used at all (|Uc| = 0) are not considered by the summation in the nominator.
Figure 3 illustrates some examples of locality computation over a 3 × 3 toy grid, making clear that
the more uniform the tag usage distribution is, the lower the resulting locality score. All terms
with a locality score of zero are discarded by the feature selection method.

The contribution of each remaining term (after feature selection) is further weighted based on its
locality and spatial entropy scores. Locality weights are generated in proportion to locality scores.
In particular, all terms are ranked based on their locality scores and the weights derive from the

11This was necessary because text in different languages was URL encoded in the YFCC100m dataset.
12https://sites.google.com/site/kevinbouge/stopwords-lists.
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relative position of each term in the ranked term distribution. Spatial entropy weights are com-
puted using a Gaussian weight function based on the term-cell entropy of terms (Kordopatis et al.
2015b). First, the spatial entropy of every term is calculated based on the term-cell probabilities.
Then, a Gaussian function is estimated from the mean and standard deviation of the spatial en-
tropy distribution. These weights are normalized by the maximum value in the distribution. The
linear combination of the two weights is used for the generation of a weight value for every term.

To tackle the problem of extracting a location label from the text of a new social media item, the
item’s term set is first determined using the same preprocessing step as described above. Afterward,
the resulting term set is fed directly to the language model to calculate the corresponding cell
probabilities (language model execution).

Representing cells by their centers, a simple incremental spatial clustering scheme is then applied
on the latitude/longitude pairs: if the ith cell is within range r from the closest one of the previous
i − 1 cells, it is assigned to its cluster; otherwise, it forms its own cluster. For every cluster, the
cell with the largest probability is considered as the cluster representative cell. In the end, for every
query item, the most likely cell and the representative cells of the clusters with more than ct cells
compose a set of “lookup cells.” This set is used as the source of areas to look for geographical
entities. We used r = 2km and ct = 4, as they were empirically found to yield the best results.

Having estimated the most likely geographic areas to contain the geographical entity of interest,
we then leverage large-scale open geotagged resources, including Foursquare (FS), OpenStreetMap
(OSM), and GeoNames(GN), for candidate location label retrieval. This is useful for collecting in-
formation related to local names (i.e., shop names, landmark names, etc.), addresses, and place
names that fall inside the borders of the cells composing the lookup set.

We provide cell locations to the Foursquare API to get a set of nearby venues. Venues usually
contain information about the name, address, and city of their respective point of interest. For
every cell, five queries are sent to the Foursquare API (one for every cell corner and one for the
center). For every returned venue, the values of the fields of the location of interest are stored in
a gazetteer and considered as candidate location labels for the corresponding cell.

We download the complete collection of OpenStreetMap geographic areas as a gazetteer. We
use only location metadata relevant to our task (i.e., names, addresses, cities/countries). Loca-
tions are organized based on the cells that they fall into. A similar process is applied to the Geo-
Names gazetteer where the alternative city names are used as candidate labels. For every cell in the
final lookup set, a set of lowercase labels is generated from the three sources (FS, OSM, and GN).

To query the model, location label matching is performed that applies entity matching between
the query text tokens and the label set for each lookup cell. Phrases are ranked by n-gram order,
highest preferred, to help avoid partial phrase false matches.

To allow a detailed analysis of the impact that different training data have on the performance
of the approach, three different language models were developed using different combinations of
source data when building the language model. The different setups are (1) tag based, where only
the tags and titles of the Flickr items contained in the YFCC100m dataset are used; (2) gazetteer

based, where only the OpenStreetMap and GeoNames datasets are used to build the language
model; and (3) tag-gazetteer based, where both sources are used to build the language model. The
experimental results of the different setups are discussed in Section 4.

3.3 Geocoding and Named Entity Recognition Approach: Geocoder

To allow benchmarking against a commercial geocoding service, we developed an algorithm using
simple named entity recognition and the commercial Google Geocoder API.13 The overall infor-
mation flow for this approach can be seen in Figure 4.

13https://developers.google.com/maps/documentation/geocoding/intro.
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Fig. 4. Information flow pipeline for location extraction using named entity recognition and Google

Geocoder API (geocoder).

The Google Geocoder API does not accept sentence input for geoparsing, only well-formatted
location names. It expects well-formatted lists of location super-regions such as “Amphitheatre
Parkway, Mountain View, CA.” The geocoded result is a JSON-formatted list of geocoded addresses
representing possible matches, including a longitude and latitude coordinate and well-formatted
address with all the super-regions included. There is no confidence data associated with entries
in this list, so the first result is assumed to be the best. This service is really intended to present a
list of geocoded locations to a user allowing a human choice to be made as to which one is really
meant by the text (e.g., for an online map search feature).

Our algorithm identifies named entities within a sentence using a combination of the Stan-
ford POS tagger and a regex pattern that matches a sequence of proper nouns. We allow comma
delimited noun phrases, so addresses with comma delimited super-regions can be passed intact
to the Google Geocoder API for a better result. For each sentence, noun phrases are ordered by
gram size, largest first, and lexical position, earliest first. Candidate noun phrases are sent to the
Google geocoder in this order, and the first successful geocoding result used as a “best guess” dis-
ambiguated location for the entity in question. A typical sentence will have 10+ possible noun
phrases to try, so there are many calls to the Google Geocoder API for every sentence. We cache
geocoding results to avoid geocoding a phrase more than once, helping to reduce the number of
requests to the API.

The Google Geocoder API is rate limited, with limits applying to a 24-hour period of use and
per-second request rates. At the time of writing, the rate limit for the free version of the Google
Geocoder API is 2,500 requests per 24 hours. We built the algorithm to pause when the rate limit
was met and to wait until it was enabled again. In practice, this severely limits the size of the
datasets we could geocode. For that reason, we only report in this article results using the geocoder

algorithm for the tweet datasets and a randomly sampled 5,000-post subset from the MediaEval
2016 Placing Task Dataset; these 11,387 posts took almost 2 weeks to geocode.

3.4 Linked Data Entity Extraction Approach: Linked-Data

For further comparison, we have also tested an approach based on DBpedia Spotlight (Daiber
et al. 2013),14 which is a REST-based web service that exposes the functionality of annotating

14https://github.com/dbpedia-spotlight/dbpedia-spotlight/wiki.
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Fig. 5. Information flow pipeline for location extraction using a linked data entity extraction approach and

DBpedia Spotlight service (linked-data).

and/or disambiguating DBpedia entities in text. We will refer to this approach as linked-data. Its
information flow can be seen in Figure 5.

The DBpedia Spotlight accepts any input text and performs named entity recognition to return
DBpedia URIs based on the detected entities in the input text. To do so, it uses Apache OpenNLP
for phrase chunking based on noun phrase and preposition phrases, and for identifying all named
entities. In addition, it selects the best candidates from the set of phrases generated from the previ-
ous step by resolving the overlap between candidates and filtering them based on a score threshold.
Then, it uses a generative probabilistic language model built on Wikipedia articles, in particular
based on article mention frequencies of entities. The language model produces a score for each en-
tity given a phrase and its surrounding context, and discards entity candidates with scores lower
than a certain value. The final output is the list of the resulting DBpedia entities.

To leverage DBpedia Spotlight for our problem, we limit the results returned by the service to
entities that are related to places or locations. Additionally, we set a confidence threshold equal
to 0.4 to ensure reliable results from the annotation process. The output of the service is a JSON-
formatted list of DBpedia entities. For geoparsing tweets, their text is provided to the annotation
service and a list of DBpedia entities is retrieved for each tweet. The name of each entity in the list
is considered the predicted location label. Similarly, the geotagging of posts in the MediaEval 2016
Placing Task dataset is performed by giving the tags and titles as input to the DBpedia Spotlight
and collecting the annotated entities. Afterward, since for this task a unique latitude/longitude
pair must be estimated, we selected the location of the DBpedia entity with the largest population
as the final estimate.

3.5 Named Entity Recognition and the Gazetteer Matching Approach: Ner-gazetteer

The last approach for comparison is the method described in Zhang and Gelernter (2014) that uti-
lizes the geoparse algorithm from Gelernter and Zhang (2013), which we refer to as ner-gazetteer.
We used the publicly available implementation of the method.15 The information flow of the ap-
proach can be seen in Figure 6.

The approach receives as input either text or a tweet in JSON format and returns geographical
objects that contain information about the detected locations. The method initially applies a pre-

processing step to the input text, which involves the Stanford NLP tool and a spell checker. From this
step, the input is chunked in phrases and the corresponding parts of speech are detected. The spell

15https://github.com/geoparser/geolocator3.
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Fig. 6. Information flow pipeline for location extraction using named entity recognition and gazetteer match-

ing approach (ner-gazetteer).

checker removes nouns that do not match with any words in a dictionary or gazetteer. The output
of the preprocessing is passed to three different parsers to identify location words, i.e., the named

location parser, named entity recognition parser, and rule-based parser. The recognized locations are
buildings, streets, toponyms, and abbreviations. Then, entity matching is performed between the
extracted locations and GeoNames entries to produce a set of candidate entities. The final location

disambiguation is performed based on an SVM trained on entries with features generated based
on information from GeoNames i.e., population, alternative names, and location type.

The application of this method on our data is straightforward. For geoparsing tweets, their JSON
representation is directly fed to the available software implementation and the name fields of the
returned locations are used as location estimates. Similar to the linked-data method, the tags and
titles of the post contained in the MediaEval 2016 Placing Task dataset are used as input and the
most populated location entity in the returned location set is considered as the estimated location
of the approach for the geotagging problem.

4 EVALUATION

This section outlines the experimental analysis of the algorithms described in Section 3. We per-
formed three different experiments and a failure analysis on the detailed results. The first experi-
ment examined geoparsing without location disambiguation, extracting location mentions from a
benchmark Twitter dataset containing a ground truth of manually labeled location mentions. The
second examined geotagging to a grid cell, extracting the spatial coordinates from a large dataset
of Flickr posts each associated with a ground-truth geotag. The last applied our approaches to a
case study involving ranking location mentions from a Twitter feed from several real-world news
events and comparing ranked location lists to ground-truth news reports.

Our experiments are designed to allow a relative performance comparison of the five considered
algorithms on a variety of problem formulations and datasets. We examine each result in detail and
highlight strengths and weaknesses between the algorithms. We also report on a failure analysis
across all three experiments. This analysis provides the reader with a deeper discussion of which
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Table 1. Breakdown of Events in Geoparse Benchmark Twitter Dataset

Event # Tweets
Crawler
Keywords Language Date

# Regions
Mentioned

# Streets
Mentioned

# Buildings
Mentioned

# Locations
Mentioned

Spatial
mention
Coverage

New York,
USA
Hurricane
Sandy

1996 flood
hurricane
storm

Mostly
English

Oct
2012

85 18 48 151 US
South
Coast

Christchurch,
NZ
Earthquake

2000 earthquake
quake
#eqnz

Mostly
English

Feb
2011

33 24 64 121 New
Zealand

Milan, Italy
Blackout

391 blackout Mixture
Englis
and
Italian

May
2013

17 8 10 35 Milan

Turkey
Earthquake

2000
Earthquake
quake
deprem

Mostly
Turkish

May
2012

51 0 0 51 Turkey

algorithms work better than others on different types of text expressions and different types of
location.

4.1 Geoparsing Benchmark Tweet Datasets

To examine geoparsing from text, we use the geoparse Twitter benchmark dataset (Middleton
et al. 2014), available from the University of Southampton Web Observatory.16 This open resource
is available to any researcher with an interest in benchmarking geoparse algorithms, with the
earliest Christchurch data evaluation reported in Gelernter and Mushegian (2013) and the earliest
evaluation of the other events in this dataset reported in Middleton et al. (2014). The dataset con-
tains a set of tweets, crawled during four news events at different times and in different countries,
with manually annotated location references for mentions of administrative regions, streets, and
buildings. Details for this dataset can be seen in Table 1.

It should be noted that this dataset has ground-truth labels suitable for geoparsing without
location disambiguation. The human annotators were asked to label the location phrases, so they
did not attempt to disambiguate locations or report spatial coordinates or map-database entries.

We ran all the algorithms on this dataset and computed location labels for each tweet. The
computed location labels for each tweet were manually scored by comparing each one to the
ground-truth label set provided with the dataset. If an extracted location name matched a location
name in the ground-truth set, we reported a true positive (TP) for that tweet. If any extracted
location name did not appear in the ground-truth set, even if another extracted location name
did appear, we reported an false positive (FP) for that tweet. Tweets with no extracted labels
were either a true negative (TN), if the ground-truth set was also empty, or a false negative (FN).
Variant names for a location (e.g., New Zealand and NZ) were permitted as a valid match since
the original ground-truth labels, created by human labelers, often used the shortest abbreviation
possible for a location name. We did not differentiate between region, street, and building location
granularity as we are interested in comparing geoparsing performance as a whole; Middleton et al.
(2014) have previously reported results on geoparsing performance at different levels of spatial
granularity.

16web-001.ecs.soton.ac.uk.

ACM Transactions on Information Systems, Vol. 36, No. 4, Article 40. Publication date: June 2018.



Location Extraction from Social Media 40:17

Fig. 7. Metrics for evaluation.

The benchmark dataset ground-truth labels contain some missing location errors. This is a
known issue with the dataset, resulting from the human labelers occasionally missing location
mentions or not specifying the full set of location mentions in the tweet (e.g., only reporting the
first location in a list of mentioned locations). We performed a meta-review of the tweets in the
dataset and identified all such missing labels. There were a total of 259 meta-review tweets with
a missed location in the dataset. Whenever any of our approaches correctly extracted a location
that matched a meta-review missing location, we reported results as if the approach had not ex-
tracted any location at all; this resulted in either a TN or FN result. The alternative was to report a
strict FP result, which would cause a misleadingly low precision score as all the meta-review miss-
ing locations are perfectly valid mentions of a location by a tweet. We followed this meta-review
procedure to ensure our results can be compared directly yet fairly with the original work from
Gelernter and Mushegian (2013). Our meta-review location label list is available, on request to the
authors, to any researcher who needs it in the future and will be included in future releases of the
geoparse Twitter benchmark dataset.

To remove any potential training bias, we filtered from the training set of Flickr posts used by
the lm-tag and lm-tag-gazetteer approaches any reference to hashtags or event-specific terms for
each of the four events (e.g., #EQNZ, #Milano, Sandy, Blackout). We also removed Flickr posts in
the temporal period of these events.

Once all the tweets were scored, we computed precision, recall, and F1 scores. The metrics used
are shown in Figure 7 and the obtained scores in Figure 8. Overall, we find that the map-database

approach is the most robust choice for English and Italian tweets with F1 scores between 0.90 and
0.97. It provided a high precision as it was able to use context in the tweets to remove many false
positives. The geocoder approach performed worst, due mostly to the Google geocoder matching
global locations to common phrases (e.g., “deprem” which is earthquake in Turkish) and names
(e.g., “Sandy”). Examples of common failure patterns are provided in Section 4.4.

The conclusion from the Turkish results is that the decision of which approach performs best
appears to be sensitive to whether there is a parser available for the target language.

4.2 Geotagging Benchmark Flickr Posts

To examine geotagging, we ran each of our approaches where identified location mentions in text
are returned as a spatial geotag for subsequent evaluation. For this work, we used the standard
Yahoo! Flickr Creative Commons 100 Million (YFCC100m) dataset (Thomee et al. 2016), used also
by the MediaEval 2016 benchmarking activity. This dataset has an in-built ground truth since each
Flickr post contains a geotag. We used the same test and training set split as MediaEval 2016, with
a training set size of ≈38.2M posts and test set size of ≈1.5M posts. The title, description, and tags
were all available to be used for location extraction. Details for this dataset can be seen in Table 2
or explored on the dataset website.17

17http://www.yfcc100m.org/globalstats.
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Fig. 8. Geoparsing results for benchmark Twitter posts broken down by event. The map-database approach

had the best precision (P 0.93–0.99) overall across the four events. The map-database also had the best overall

F1 score (F1 0.90–0.97). The lm-tags approach was a robust choice (F1 0.66) for the Turkey earthquake event.
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Table 2. Global Statistics for YFCC100m Dataset

and Our Training/Test Set Split

To evaluate the results, we computed the distance between the geotag calculated by each ap-
proach and the ground-truth geotag of the Flickr post. Any geotag within a 1km radius of the
ground truth was considered a TP; otherwise, it was an FP. If no geotag was returned, due to a
lack of confidence in the result, it was an FN. This allowed us to compute the P@1km result and
its associated recall and F1 scores.

Given the nature of Flickr, there is a potential social bias in the YFCC100m dataset where popular
locations are overrepresented in terms of post frequency. It is also likely that results from the “long
tail” of less frequently mentioned locations would become hidden in the mean P/R/F1 results for
each grid cell. To help assess the impact of this possible bias, we computed a 1km2 grid across the
globe and assigned to each grid square a randomly chosen post of which the geotag fell within
the square. We then used this reduced dataset of 286,564 posts, spatially balanced so each grid
square had a single post, to compute a P@1km_square result. We call this dataset a “geographically
normalized dataset.”

Last, we created a smaller random sample of 5,000 posts from the full dataset to allow us to
run the geocoder algorithm. The geocoder has to work within Google Geocoder rate limits and
geocoding 5,000 posts takes about a week, with the algorithm pausing each day until the 24-hour
rate limit is refreshed.

Results for all algorithms can be seen in Figure 9. For our algorithms, we selected confidence
thresholds that optimized the F1 score. Location matches falling below the confidence thresh-
old were ignored, usually resulting in an FN result. The lm-tags-gazetteer performed best overall
(P@1km 0.36, F1@1km 0.49). It is clear that social tag features are dominant, since the lm-tags

approach is almost as good as the lm-tags-gazetteer approach. All the approaches showed weaker
results when geosocial bias was removed, using 1km2 grid cells with equal post density, showing
there is some bias in the YFCC100m dataset toward popular locations with many Flickr posts. The
random sample dataset results were very similar to the full MediaEval 2016 dataset results, so the
geocoder results are representative despite the small sample size.

4.3 Case Study for Location Analytics over Tweets During a Breaking News Event

We wanted to evaluate our approaches on the real-world problem of location mining from news
content to see if locations with a high mention frequency, extracted from content during a
breaking news event, matched the locations finally reported in news articles via respected news

18Although YFCC comprises 100 million posts, only approximately 40 million of them were usable for training-testing our

geotagging approach. The reason for that is that approximately half of the posts do not carry any geotag information,

whereas an additional 10M posts created by users belong to the test set and were excluded to avoid overfitting.
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Fig. 9. Geotagging benchmark Flickr posts. The lm-tags-gazetteer approach was best overall (P@1km 0.36,

F1@1km 0.49). The lm-tags approach was almost as good, showing tag features were very important. All the

approaches were weaker when testing on the sampled 1km2 grid cells, with the lm-tags-gazetteer approach

performing best (P@1km 0.18, F1@1km 0.30). This shows there is some bias in the full dataset toward popular

locations with many Flickr posts. The random sample results are very similar to full MediaEval 2016 dataset

results, so the geocoder results are representative.

sites. The aim was to provide a qualitative evaluation for the recall of newsworthy locations.
Journalists are under a lot of time pressure, so they are very interested in highly filtered informa-
tion feeds where only pertinent data is presented. Journalists want to look at the most important
locations for a breaking news story and verify the earliest posts about each incident(s) at the event
location(s). Therefore, understanding the recall of newsworthy locations from a top N filtered list
is an important applied use case to evaluate.

We used the Twitter search API to crawl tweets for three news events shortly after they broke.
Events include the November 2015 Paris shootings, March 2016 Brussels airport bombing, and May
2016 Turkish police station bombing. Each of these events had many mainstream news reports, and
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Table 3. Statistics for Twitter Datasets and Ground-Truth Locations Associated with Each News Event

Event
Crawler

Keywords # Tweets

# Ground-
Truth

Locations
Start

Timestamp
End

Timestamp
Paris shootings19

November 13, 2015
Incidents 20:20,
20:25, 20:32, 20:40,
20:36, 20:40 UTC

paris
shootings

62,908 4 (regions)
2 (streets)
5 (places)

20:20 UTC 21:20 UTC

Brussels airport
bombing20

March 22, 2016
Incidents 08:00,
09:11 UTC

brussels
bombing

969,524 3 (regions)
2 (places)

04:00 UTC 10:30 UTC

Turkish police
station bombing21,22

May 8, 2016
Incident 06:00 UTC

turkey
bombing
midyat

57,902 3 (regions) 05:30 UTC 14:00 UTC

the journalist-verified location breakdown associated with specific incidents during each event is
very well documented and is used as the ground truth for the task. The news sites used for our
ground-truth location list were BBC News, CNN, and RT. The dataset statistics can be seen in
Table 3.

We ran all algorithms except the geocoder approach, due to the aforementioned API limitations,
on this dataset and geoparsed every tweet. We then compiled a ranked list of ground-truth loca-
tions for each event, ordered by frequency of mention. Finally, we computed a recall@N metric by
counting the number of ground-truth locations in the top N locations extracted. The idea is to see
how a top N list of trending locations extracted using the proposed methods maps to the location
list used in the journalists’ final news reports.

The results can be seen in Figure 10. We report R@3, R@10, R@20, and R@All as we wanted to
see how coverage varied between different “top N” location sets. The map-database approach was
best overall, with results worse when locations included streets and building names rather than
just region names.

4.4 Failure Analysis

We observed some recurring patterns of location mentions that cause problems for different classes
of algorithms. Table 4 shows a set of common patterns that caused problems for some algorithms.

All approaches could handle poorly formatted location mentions with the exception of Google
Geocoder, which expected a well-formatted address with the primary location followed by a
comma-separated list of super-regions.

The issue of spelling mistakes was addressed by some approaches by using spell checkers at
the phrase extraction stage. With the exception of Google Geocoder API, which has access to a

19http://www.bbc.co.uk/news/world-europe-34818994.
20http://www.bbc.co.uk/news/world-europe-35869985.
21https://www.rt.com/news/345822-mardin-police-station-bomb/.
22http://edition.cnn.com/2016/06/08/europe/turkey-midyat-car-bomb/.
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Fig. 10. Case study results ranking extracted locations mentioned in Twitter posts of breaking news stories.

The map-database approach was best overall (R@20 0.60–1.00). Both approaches struggled with the Paris

event, where the story involved streets, buildings, and regions as opposed to mostly regions.

comprehensive multilingual spell checker, the use of spell checkers imposes language restrictions
(e.g., English only) as spell checking is highly language dependent. Interestingly, we found that the
option of using machine translation to English and then applying spell checking was not adopted
in the approaches we reviewed. This is probably due to the information loss that would occur
and the fact that it is unnecessary when you have access to multilingual variant names (e.g., via
OpenStreetMap) or social tags in a variety of languages.

Most approaches struggled with street and building names for unpopular locations without
a social media tag. For example, news events can occur in any place, not just tourist spots, so
locations of interest can be buildings or streets in unheard-of locations. The map-database and
lm-tags-gazetteer were most resilient to this as they had access to detailed street and building data
for focus areas (e.g., all of Christchurch’s streets and buildings).

Approaches without additional vocabulary support for stop word lists, place type abbreviations,
and people names consistently returned incorrect global location matches. This was mostly due to
a lack of understanding of the context where the phrases were being used. Approaches using only
gazetteer or linked data lists of locations were vulnerable to this. Google Geocoder was particularly
weak on this point due to its strategy of returning long lists of possible location matches; the
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Table 4. Examples of Failure Patterns

Pattern
(Frequency Seen from

Manual Inspection)

Algorithms That
Had Trouble Example Correct Location

Common terms
mistaken for location
names (very common)

geocoder
ner-gazetteer

This is the end of
my Hurricane
Sandy
live-tweeting day 1

None. Mistaken
location was
Hurricane, UT 84737,
USA

People’s names that
are also location names
(common)

geocoder
linked-data
ner-gazetteer

Webgrrls hosting
company is
flooded by #Sandy

Sandy, UT, USA

Locations without any
context (common)

geocoder
ner-gazetteer

The city has high
winds and flooding
by the coastal lines

City of London,
London, UK

Not in a well-formatted
address (rare)

geocoder Street flooding
#NYC: 48th Ave

48th St., New York, NY,
USA

Spelling mistakes (rare) map-database
linked-data
ner-gazetteer
lm-tags-gazetteer

Earthquake in
ChrristchurchNew
Zealand ghastly

Christchurch, New
Zealand

Saints and people’s
title confused with
place type
abbreviations (rare)

geocoder
linked-data
lm-tags-gazetteer

I agree with St.
Mary on this topic

None. Mistaken
location was 1928 St.
Marys Rd., Moraga, CA
94575, USA

Vernacular names and
abbreviations (very rare

on average but depends

on event)

map-database
linked-data
ner-gazetteer

CHCH hospital
has been
evacuated

Christchurch Hospital,
2 Riccarton Ave.,
Christchurch Central,
Christchurch 8011,
New Zealand

Street names in
unpopular locations
(very rare on average

but depends on event)

linked-data
ner-gazetteer

Anyone have news
of St. Margarets
Girls College
Winchester St
Merivale

Margarets Girls
College, 12 Winchester
St., Canterbury 8014,
New Zealand

intention is really for a human to choose from this list, and it provides little context to allow a
high-precision automated selection.

Last, vernacular names for locations were problematic to all approaches that did not have access
to social media tag data. The map databases like OpenStreetMap have some vernacular names, but
often local nicknames were missing and simply ignored unless they appeared in a social media
tag.

The next section reviews these results in more detail, examining possible causes of some of the
observed patterns we see in the results.

5 DISCUSSION

We performed two quantitative evaluations and one qualitative evaluation to examine the dif-
ferent strengths and weaknesses of our approaches. Each approach had a different strength and
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weakness profile, allowing some interesting insights and indicating that there is potential for a
complementary fusion approach to be developed.

The map-database was strongest for geoparsing. Locations associated with news events can
be anywhere and often include places or regions that are not popularly visited or posted about
on social media sites such as Flickr. We found that approaches relying on linguistic processing
(e.g., part-of-speech patterns, spell checking, name filters, etc.) provided the best recall (R 0.93)
and were very good at extracting location mentions from English posts. We think this is because
even though social media posts have poor grammar, they contain enough linguistic clues to make
effective guesses.

The map-database approach had a consistently high precision (P 0.93–0.99), exhibiting a strong
multilingual performance with the exception of Turkish. The lm-tags approach, using tag set train-
ing data to list many of the popular ways people refer to a location and nonlocation contextual
tags, showed its strength on the Turkish dataset (R 0.54 and up to three times better than other
approaches).

When comparing how approaches performed on the problem of geotagging, the lm-tags ap-
proach performed best (F1 0.49). Looking into why this might be, we think that the presence of
specific contextual tags in addition to location name references provided highly discriminating
features, which the lm-tags approach could train upon. Tags such as sporting event names, food
types, and local nicknames reported alongside a location name proved to be good discriminators
between locations with the same name. The results degrade (F1 0.30, down 60% from 0.49) when
posts are uniformly sampled on 1km2 grids, showing that scarcity of tags in unpopular areas does
downgrade performance. This is expected as there is more training data for popular tourist loca-
tions than the more obscure locations rarely posted about. It is also true that locations where no
Flickr posts exist at all are not represented in the YFCC100m dataset. However, the lm-tags ap-
proach clearly outperformed the others, with F1 scores double other approaches, and this shows
the major strength of using tag sets for geotagging.

It would be possible to develop a hybrid approach where entity recognition is used for identifica-
tion of location labels, followed by coarse-grain tag-based geotagging (e.g., get all locations within
a 10km2 cell) and finally a fine-grain map-based entity lookup. This could be a very successful
strategy where text documents are well organized, with good grammar and strong use of case for
proper names, such as formal reports. In these cases, linguistic processing should detect locations
with high precision. Unfortunately, social media posts are rarely well formatted, containing bad
grammar and difficult nontextual content such as emojis and characters for visual expression and
emphasis, so the scope for hybrid success is more limited.

For the qualitative evaluation, on our applied use case of mining breaking news tweets, we found
that the map-database approach was the most robust (R@20 0.64–1.00). The recall errors observed
with the lm-tag-gazetteer approach were mostly due to making a wrong location estimate in the
first part of the method, resulting in a failure to find a matching location label at the next step,
given that only locations from the estimated cells are considered in the matching.

It is clear from the qualitative evaluation that most techniques are weak when extracting street
and building location names compared to strong performance in region name extraction. Ap-
proaches with access to a full map database, as opposed to just a gazetteer with region names,
were strongest. Approaches using social media tags performed well on popular streets and build-
ings but completely missed mentions of place names that were not tagged (e.g., a police sta-
tion in a small region of Turkey). When selecting the best method, it is therefore important
to consider the use case in which location extraction will be applied. Are streets and buildings
needed in addition to regions? Is the area likely to be well tagged via social media? Are focus

ACM Transactions on Information Systems, Vol. 36, No. 4, Article 40. Publication date: June 2018.



Location Extraction from Social Media 40:25

areas known in advance? These questions need to be answered before the best technique can be
recommended.

6 CONCLUSIONS

We present in this article a comprehensive analysis of five best-of-class approaches to location
extraction from social media text. The first, an extension of Middleton et al. (2014), uses a loca-
tion entity matching approach based on the OpenStreetMap database. The second approach, an
extension of Kordopatis et al. (2017), uses a combination of training a language model on a set of
Flickr post tags and a set of gazetteers. For benchmarking, we also evaluated a DBpedia-linked
data matching approach, a gazetteer and named entity matching approach, and an approach based
on Google geocoder lookups of named entities.

We evaluate geoparsing without location disambiguation using a standard geoparse Twitter
benchmark dataset (i.e., more than 6,000 tweets), allowing us to directly compare results across all
five approaches. We found that the map-database entity matching was best overall for English and
Italian (P 0.96–0.99, F1 0.90–0.97). For Turkish, the lm-tags approach was best (F1 0.66).

We then evaluated geotagging by exploring a geotagging problem formulation using the
YFCC100m Flickr dataset (i.e., more than 39 million geotagged Flickr posts). The lm-tags-gazetteer

approach was strongest (F1@1km 0.49) and showed the strength of using tag sets for location
disambiguation. It should be noted, however, that there are locations, especially unpopular or in-
significant locations, where there are no Flickr posts at all, which would represent areas where
approaches using tags alone would fail.

We lastly performed an applied qualitative evaluation where datasets of breaking news tweets
(i.e., more than 1 million tweets) were geoparsed and the results, ranked by top-N mention fre-
quency, were compared to locations published in ground-truth news reports from BBC, CNN,
and RT. The map-database approach was strongest (R@20 0.60+), probably due to the fact
that OpenStreetMap has no variation in coverage between popular and unpopular locations
and was able to successfully identify lesser-known street and suburb names from the news
reports.

There are a few areas where further research might improve on the best-of-class approaches
outlined in this article. The first is to explore other sources of context to social media posts, such
as interconnected datasets from mobile devices and the Internet of Things (IoT). If real-time geop-
arsing is not required, then adaptive lookup and indexing of social media sites with tagged content
could be performed to add user profile context to posts. The last area is the use of location refine-
ment strategies, exploiting available geosemantic context within the text of each post. Sometimes
location mentions come with some geosemantic context such as “5 miles north of London.” This
could be parsed and the spatial location reference adjusted accordingly to improve geotagging
precision.
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