
Contents lists available at ScienceDirect

Journal of Visual Communication and
Image Representation

journal homepage: www.elsevier.com/locate/jvci

Content-aware detection of JPEG grid inconsistencies for intuitive image
forensics☆

Chryssanthi Iakovidou⁎, Markos Zampoglou, Symeon Papadopoulos, Yiannis Kompatsiaris
Information Technologies Institute, Centre for Research and Technology Hellas, 6km Harilaou-Thermi Rd., 57001 Thessaloniki, Greece

A R T I C L E I N F O

Keyword:
Image forensics
JPEG artifacts
Forgery localization
Splicing

A B S T R A C T

The paper proposes a novel method for detecting indicators of image forgery by locating grid alignment ab-
normalities in JPEG compressed image bitmaps. The method evaluates multiple grid positions with respect to a
fitting function, and areas of lower contribution are identified as grid discontinuities and possibly tampered
areas. An image segmentation step is introduced to differentiate between discontinuities produced by tampering
and those that are attributed to image content, making the output maps easier to interpret by suppressing non-
relevant activations. Our evaluations, on both synthetically produced datasets and real world tampering cases
against seven methods from the literature, highlight the effectiveness of the proposed method in its ability to
produce output maps that are clear and readable, and which can achieve successful detections on cases where
other algorithms fail.

1. Introduction

Digital images have become an integral part of everyday life and,
arguably, one of the most popular ways to convey a message. Exploiting
the natural human tendency to give priority to visual information, di-
gital images are widely utilized as a means to convince audiences, en-
gage users, augment storytelling, and provide evidence in various do-
mains from business and marketing to journalism and law, to name a
few.

Given the proliferation and wide availability of image processing
tools, the authenticity of a digital image cannot be taken for granted. A
doctored image can influence the opinion of viewers and have serious
consequences on peoples’ beliefs and attitudes. To this end, there has
recently been a growing interest in algorithms to verify the authenticity
and integrity of digital images.

Image forgery detection techniques are often categorized into two
classes: (i) active methods, which rely on an embedded digital signature
that is encoded at the source side (e.g., by the capturing device) and
verified at the receiver’s end; (ii) passive (blind) methods, that require
no prior information but instead base their detection on the assumption
that the tampering process may leave invisible but detectable traces on
the image.

Even though active methods can be very reliable, their use is not
possible in situations where content from unknown or untrusted sources

may contain important information [1]. In such cases the assessment of
content authenticity is based on what has come to be referred to as
intrinsic fingerprints, i.e. inherent traces left from various post-processing
operations. The type and salience of traces left by tampering depends
on multiple factors, such as the type of tampering, the image format and
compression parameters.

A recent study on splicing localization1 [2] pointed out a big dis-
crepancy between real-world cases of tampering and the benchmark
datasets that are typically used in academic literature.

Motivated by this finding, in this work we are interested in ex-
tending the arsenal of tampering detection tools by proposing a novel
method. The method aims to be applicable to a wide range of real-world
image forgeries and practical for users with no specialized training in
interpreting forensic maps. The method is based on a technique that
searches for JPEG blocking artifact discontinuities as a sign of possible
forgery, and detects what is arguably one of the most commonly per-
formed tampering schemes: image splicing that breaks the original grid
alignment either due to its placement or due to resampling transfor-
mations (scaling, rotation, etc.) of the spliced area.

The proposed method extends a JPEG grid detection algorithm from
the literature [3] by introducing two novelties:

• a grid alignment confidence measure designed to identify whether
an image block violates the global grid pattern, either due to
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misalignment, distortion, or complete absence of encoding artifacts
(Section 3.2);

• a content-aware filtering step designed to account for grid dis-
continuities caused by the image content, strengthening the
method’s localization ability and overall output interpretability
(Section 3.3).

The proposed method, hereafter referred to as CAGI (Content-Aware
detection of Grid Inconsistencies), is evaluated against several state-of-
the-art algorithms on three publicly available datasets, including both
synthetic and real-world tampering cases. We test its classification
ability, its localization effectiveness, and the readability of the pro-
duced outputs. The experimental results highlight the method’s ro-
bustness over the diverse tampering scenarios and its contribution in
terms of successful localizations of unique cases, i.e. cases that all other
methods failed to detect. Java and MATLAB implementations of CAGI
have been made publicly available as part of our Image Forensics
Toolbox,2 alongside other state-of-the-art algorithms.

2. Related work

Many notable contributions have been made towards tackling di-
verse cases of image manipulation. One category of approaches in-
cludes algorithms based on machine learning, using appropriate fea-
tures extracted from images and trained on samples of tampered and
authentic images [4–7]. Others detect operation-specific traces (such as
re-sampling) [8,9], make use of compression and coding artifacts
[10–12], search for inconsistencies in the image traces produced by the
capturing process [13,14], and search for physical inconsistencies such
as illumination discontinuities [15,16]. A number of surveys present the
evolution of the state-of-the-art through time [17,18,1,19,2]. Here, we
focus on methods for image splicing, organized by the type of trace they
attempt to analyze for detecting forgeries. For each method, a three- or
four-letter abbreviation is also given and used throughout the paper,
following the conventions of [2].

Methods based on JPEG attributes: The method in [10] (BLK) is
probably the most closely related to ours, since it also attempts to detect
forgeries by locating inconsistencies in the JPEG blocking artifact. The
image is filtered based on local derivatives, weak edges are detected,
and their conformance with an aligned ×8 8 grid is measured. A feature
corresponding to the local strength of the blocking pattern is extracted.
The feature’s variations indicate local absence or misalignment of the
grid, which can be considered an indication of tampering. In [11]
(ADQ1), tampering localization is achieved by exploiting the char-
acteristics of double Discrete Cosine Transform (DCT) quantization.
When splicing an object on a JPEG image, the spliced region often loses
its JPEG traces, due to rescaling, rotation, filtering, or other transfor-
mations. Thus, when resaving the forged image, the unspliced part will
exhibit the traces of two compressions, while the spliced part will only
have undergone one. Recently, in [20] a novel approach is proposed,
where convolutional neural networks are used to compute DCT coeffi-
cients and their histograms, and used to separate single from double
compression. Experiments are run on pixel values, noise residuals, and
DCT coefficients estimated from the image, and a window-based ap-
proach is shown to be promising with respect to tampering localization.

Methods based on DCT coefficients: In [21] (DCT), a fast detection
method looks for inconsistencies in JPEG DCT coefficient histograms.
The method in [22] (ADQ2) first estimates the quantization table used
by the first JPEG compression and then attempts to model DCT coef-
ficient histogram periodicities. The method in [23] (ADQ3) performs
Aligned Double Quantization inconsistency detection using SVMs
trained on the distribution of DCT coefficients for various cases of single
vs double quantization. The method in [23] (NADQ) searches for Non-

Aligned Double Quantization traces, that is, cases where the JPEG grid
has been shifted prior to the second compression. Finally, in [24]
(GHO) the image is recompressed at multiple different quantizations
and subtracted from the original, aiming to detect JPEG Ghosts, i.e.
traces left in the image for which past recompressions were performed
at different quality compared to the unspliced image.

Methods based on CFA interpolation pattern disturbances and noise
patterns: The method in [14] (CFA1) looks for disturbances in the image
Color Filter Array (CFA) interpolation patterns left by the image cap-
turing process by modelling them as mixtures of Gaussian distributions.
The work in [13] presents two algorithms (CFA2 and CFA3) also ex-
ploiting CFA patterns: the first emulates the CFA filtering process and
localizes regions that diverge from the expected result, while the second
isolates image noise using de-noising, and compares noise variance
between interpolated and natural pixels. Finally, notable approaches
based on noise information include the method presented in [25]
(NOI1), where the local image noise is isolated by wavelet filtering and
local variance discrepancies are treated as indicative of tampering, [26]
(NOI2) where the local image noise variance is modeled using the
properties of the kurtosis of frequency sub-band coefficients in natural
images, and [27] (NOI3), where, following extraction of the high-fre-
quency residual using a high-pass filter, the information is modeled
using a co-occurrence descriptor, and inconsistencies in the local sta-
tistical properties of the descriptor are used to detect spliced regions. A
more recent approach [28] uses PCA-based noise level estimation,
coupled with k-means clustering and adaptive block segmentation to
identify splices. Another relevant work is [29], where, besides ana-
lyzing the local noise variance, the local texture inhomogeneity is also
estimated, since it tends to misguide the noise algorithm. The authors
show that by taking the local inhomogeneity into account, tampering
localization performance can be increased. In [30] a different approach
is followed, where an autoencoder is trained over steganalytic residual
noise features, and local patches that do not conform to the learned
model are labeled as tampered. Finally, in [31] a deep network is
trained to extract noise residue information from an image and apply
patch-based classification to localize tampered regions in an image.

Compared to the state-of-the-art, the proposed method (CAGI) aims
to provide a tampering localization solution designed for robustness in
realistic scenarios, while producing output maps that are easy to in-
terpret. We specifically aim to achieve tampering localization for cases
where the history in terms of acquisition, forgery, and post-forgery
transformations of the images is unknown. The algorithm does not re-
quire metadata, JPEG compression parameters, or prior knowledge on
the history of the image, nor does it require that the image is in raw
format taken directly from the camera. It can operate on any file format,
provided it has been compressed as JPEG in its past. The discrimination
of the image areas that are aligned to the dominant grid pattern from
those that break it is conducted through exhaustive search, taking also
into account the contents of the image and their possible interference
with the attempted modeling. This allows filtering out false activations
and leads to overall cleaner outputs.

As will become apparent from the experimental study of Section 5,
CAGI offers a higher level of versatility and overall performance com-
pared to the state-of-the-art.

3. Method description

Blocking artifacts appear as a regular pattern of visible block
boundaries in a JPEG compressed image as a result of DCT coefficient
quantization and the independent processing of the non-overlapping

×8 8 blocks during the DCT. They are prominent in highly compressed
images or images that have undergone multiple re-compressions, and
become more subtle as the compression quality factor (QF) increases.
These artifacts ultimately lead to the formation of a block grid in the
JPEG image bitmap, i.e. a pattern of weak horizontal and vertical edges
recurring every 8 pixels, starting from the upper left corner of the2 https://github.com/MKLab-ITI/image-forensics.
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image.
As a first step, our approach improves upon the grid position esti-

mation approach presented in [3], by adding a secondary level of
analysis which allows us to estimate the grid position more reliably. [3]
proposes estimating a measure K for each candidate grid position, and
picking the position with the highest K. We propose a measure ″K
drawn from the interrelationships between values of K at different
positions, which is much more robust with respect to grid anomalies. To
estimate ″K , we first estimate two intermediate measures: ′K , which
calculates the value differences between values of K at different posi-
tions, and S which analyzes the sign patterns of K. ″K is then calculated
as a combination of ′K and S.

Consecutively, we mark the blocks that do not conform to the de-
tected grid indicated by ″K as tampering candidates. However, the
absence of grid conformance in a region may not necessarily be the
result of tampering. Instead, the visual content of the image may in-
terfere with the grid detection process. Such cases include image areas
that (i) contain strong edges (artifacts appear around high-contrast
edges producing a “halo” effect), (ii) overexposed areas (where the soft
grid pattern completely disappears), (iii) underexposed areas (where
the pattern is noticeably more subtle), and (iv) textured areas con-
taining patterns that resemble a grid. Furthermore, normal sensor noise
introduced during image acquisition or any type of noise embedded in
the image may also hinder the grid detection. Thus, we exploit the maps
calculated during the first step, combining them with other post-pro-
cessing operations, to generate a series of intermediate maps which are
then fused into the final algorithm output.

The following sections provide a detailed description of the various
steps involved in the proposed method.

3.1. Estimation of JPEG grid position

To detect the JPEG block grid, we extend the method proposed by
Fan et al. [3]. The original intention of their work was to determine
whether an image had been previously JPEG compressed and estimate
the previous compression parameters. To do this, the method attempts
to detect whether a JPEG grid pattern appears in the image, aligned at
position (4,4) and repeating every 8 steps. The method evaluates inter-
pixel differences over certain crucial positions in the block –essentially,
the differences of pixel values within a block and across block boundaries.
In [3], the image is split into N non-overlapping ×8 8 pixel blocks and
for each i jblock( , ) the scores ′Z i j( , ) and ″Z i j( , ) are computed using Eq. 1.

′ = − − + ″ = − − +Z i j A B C D Z i j E F G H( , ) | | and ( , ) | | (1)

where A-H refer to pixel positions on a block as depicted in Fig. 1. Then,

two normalized histograms HI and HII are created from the ′Z and ″Z
scores across the image, and a confidence score K is computed using Eq.
(2).

∑= −
=

K H m H m| ( ) ( )|
m

M

I II
1 (2)

where M is the number of histogram bins used in the implementation
(see [3] for further details). Fan et al. [3] empirically found that for
pixel values ranging from 0 to 1, >K 0.25 is an indicator of successful
grid detection. We will be referring to the detected grid position using
the coordinates of pixel A in block(1,1) (Fig. 1). According to this
convention the default Grid Position (GP) for an unchanged JPEG
compressed image should be located at GP (4,4). In case the grid has
been shifted from its original position, e.g. due to image cropping, an
investigation can be conducted by calculating and finding the highest
confidence score K for all possible coordinates of pixel A within the

×8 8 block (the coordinates of pixels B-H change accordingly, keeping
their relative positions).

Fig. 2 provides more insight into the matter by illustrating four
distinct instances (a–d) of the grid localization process. More specifi-
cally, with the correct grid position being at GP (4,4), instance (a) is
expected to produce the highest K score. Indeed, in case (a), as can be
seen in the respective histogram plot, the majority of inner-block
sampled pixels (A-D, HI) have low ′Z scores, while border pixels (E-H,
HII), score higher in terms of ″Z , which maximizes Eq. (2).

In instance (b), all neighbouring pixels are actually sampled from
inner-block regions, completely failing to detect the grid position,
clearly reflected also in the histogram plot. Even though not included in
this example, the same goes for sampling only from border regions (e.g.,
GP (8,4)). Instance (c) depicts a detection attempted at position GP (5,4).
The inner-block and border pixels are somewhat correctly sampled i.e,
pixels A-D are still within the inner-block region of the grid pattern
while the border samples miss the grid intersection point by only one
pixel in the vertical direction and thus partially meet the cross pattern
(Fig. 1c). As a result, the respective histogram plot is very similar to the
one of case (a), but the respective K detection score will be lower. Fi-
nally, instance (d) showcases the symmetrical properties of the applied
computations. A position search for A(8,8), produces an identical plot
as in case (a), only here, HI and HII are inverted, as is the sign of −H HI II .

According to [3], the highest K should reveal the grid position.
However, in our experiments with tampered and untampered

images, K was found to be a poor grid location indicator, mainly be-
cause periodically sampling to detect the pattern could be heavily af-
fected by image content, especially for images of low resolution (small
total number of blocks) or high quality compression (weaker grid pat-
tern) and even more so for tampered images where entire regions are
misaligned with the main grid due to splicing.

In order to limit the possibility of high K scores being a result of
image content, we propose adding a secondary level of analysis, ex-
amining the interrelations between values of K at different candidate
grid positions. This leads to a new grid confidence measure, namely ″K .
This new confidence measure does not simply rely on the highest re-
ported K score to locate the grid position but includes an additional
verification step based on the expected pattern, arising among all cal-
culated K scores, that should be present at the correct grid location.
Thus, our approach looks for a specific pattern in the values of K instead
of simply taking the location where it is highest. Furthermore, it goes
beyond the values of K to also analyze the symmetry of the histogram
patterns. In its original formulation shown in Eq. (2), it does not matter
which histogram has more values at high bins and which one has more
at the low bins, but only their absolute difference. However, knowing
which term out of ′Z and ″Z has higher values (i.e. samples located at
the boundary) and which one has low values (i.e. samples at non-
boundary positions) is also important for localizing the grid. Thus,
besides calculating the K value at each candidate grid position, we also

(a) (c)

(b)

Fig. 1. (a) Depiction of JPEG ×8 8 grid (bold lines) over image pixels. Pixels
labeled A–D are sampled periodically to represent the inner part of the grid,
while E–H are sampled on grid intersections [3], (b) ×32 32 JPEG image dis-
playing visible grid artifacts, (c) Pixel intensity pattern (cross pattern) max-
imizing ′Z and ″Z (Eq. (1)).
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retain a “sign” for the position, with value 1 if ′Z has more low values
than ″Z (i.e. if A is located in an internal block position and E is
alongside the boundary), and value 0 if the opposite is true.

We then exploit the spatial patterns of K scores and this “sign”, to
locate the grid more robustly without being distracted by potential
isolated local maxima of K. More specifically, the expected pattern
suggests that if the highest K score is found at position i j( , ), then an
equally high K score should be present at position + +i j( 4, 4), and low
scores at positions +i j( 4, ) and +i j( , 4). Furthermore, the K scores of
different GP investigations remain high and positive as long as A-D are
actually part of the inner block, while E-H are at the borders, or high
but with a zero sign, if sampled inversely. If pixels are sampled being all
in the same class (all inner-block or all border pixels), the respective K
scores are expected to be low and their sign uncertain. Fig. 3 demon-
strates this emerging pattern. Fig. 3.a illustrates a grid at position
GP (4,4) and the sampling instance (out of all possible 64) that will

produce the highest K score with the correct sign. Fig. 3d shows the
respective K-score patterns during the grid location investigation. Let-
ters H and L stand for High and Low K scores, respectively. Positions
marked with 1 indicate that the inner pixels A-D are correctly part of
the inner region of the grid and E-H are along grid boundaries. Positions
marked with 0 indicate the opposite. Thus, after we calculate the values
of K and locate the sampling instance that produces the highest one for
a given image, we include an additional step in which we also evaluate
if the rest of the calculated K scores and their signs comply with the
expected pattern. In Fig. 3b and c the grid is shifted by two pixels in
both directions. The grid detection process will locate the grid at
GP (6,6) (Fig. 3c) and the expected K score pattern will be adjusted as
shown in Fig. 3e. Due to the symmetry of the sampling process, how-
ever, the investigation instance at position (2,2) (Fig. 3b) will also
produce the same absolute K score (with an opposite sign), as well as
the same K scores pattern (Fig. 3e).
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Fig. 2. Illustrative examples of four different instances (a–d) evaluated during the grid localization process.

1 2 3 4 5 6 7 8

1 1 0

2 1 0

3 1 0

4 1 1 1 H1 1 1 1 L1

5 1 0

6 1 0

7 1 0

8 0 0 0 L0 0 0 0 H0

1 2 3 4 5 6 7 8

1 0 1

2 0 H0 0 0 0 L0 0 0

3 0 1

4 0 1

5 0 1

6 1 L1 1 1 1 H1 1 1
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a b c

d e

Fig. 3. Visualized bitmap examples of grids at position (a) GP (4,4), and (b,c) GP (6,6), with marked sampling instances that present the highest K scores. Expected K-
score patterns for (d) GP (4,4), and (e) GP (6,6).
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The final grid estimate is based on a combination of K value pat-
terns, expressed by an intermediate confidence score ′K , and sign pat-
terns expressed by a measure S. ′K is calculated based on Eq. (3).

′ =
+ + + − + − +

K i j
K i j K i j K i j K i j

( , )
( , ) ( 4, 4) ( 4, ) ( , 4)

4 (3)

where ′ ∈K [0,1]. The value of ∈K [0,2] is calculated by Eq. (2). The
aim of ′K is to quantify the observed patterns in the values of K.
Leveraging the pattern symmetry of K (without the signs), we may re-
duce the investigation of possible grid positions from 64 (8-by-8
window of positions) to just 16 (4-by-4 window) and identify the actual
position by comparing the sign of ′K i j( , ) to those of the original K i j( , )
and + +K i j( 4, 4).

For the sign patterns, we also evaluate these 16 grid positions with
respect to how well they match the expected pattern (see Fig. 3, where
1 and 0 indicate positive and negative signs, respectively). Starting at
position GP i j( , ) and searching horizontally and vertically, most K signs
should be positive, while for position + +A i j( 4, 4) most should be
negative.

A measure ∈S [0,1] is used to evaluate how well each position fits
this pattern, calculated as the number of positions having the expected
sign given the candidate grid, divided by the total number of positions.

Then, the final confidence score is formulated as the mean of the K
pattern estimate and the sign pattern estimate, as indicated by Eq. (4).

″ = ′ + ∈K K S1
2

( ) [0,1] (4)

″K is a score referring to the total image and its aim is to estimate the
position of the JPEG grid. Once the position of the grid is fixed, we can
also calculate the contribution ″Kblock of each individual ×8 8 block to
the overall ″K score. The calculations for ″Kblock follow that of ″K , only
instead of using the normalized histograms of all sampled pixels of all
blocks to calculate K (i.e. Eq. (2)), we compute individual Kblock scores
for each block n as:

= ′ − ″K n Z n Z n( ) ( ) ( )block (5)

and proceed with the calculations as above, to get the respective
″K n( )block .

″K takes advantage of the lightweight implementation and effec-
tiveness of the K measure and adds an extra level of detection robust-
ness, while ″K n( )block allows the identification of image parts that present
JPEG grid inconsistencies, which is the goal in detecting and localizing
tampering operations. In Fig. 4, for instance, the image blocks a a b1, 2, 1
and b2 present traces of two different grids (black for the original and

orange for the result of misaligned image splicing), while blocks a3 and
b3 carry only the original JPEG artifacts. The individual Kblock scores
would not reveal the inconsistency because the sampled pixels do not
happen to belong to both grids. ″Kblock however, would result in lower
scores for the four tampered blocks compared to the untampered ones,
since the expected pattern will not be equally strong in the respective
Kblock-score pattern and sign evaluations.

3.2. Localizing grid discontinuities

The steps of our approach so far have allowed us to detect the
presence of a JPEG grid, and estimate its alignment –which, granted,
will in most cases be located at position (8,8), but cropping the image
may result in it being shifted. It has provided us also with local esti-
mates of the contribution of each block to the final estimate, as calcu-
lated by Eq. (5), which can be used to localize the forgery.

Consider the following typical case of splicing, in which a host
image is JPEG compressed, an alien region is cut from another JPEG
image, pasted into the host (not aligned with the original grid) and the
composite image is re-compressed as JPEG. At the location where the
tampering took place, the new image bitmap will carry overlapping grid
artifacts.

In the ideal case, where the grids’ positions of the original host
image and the one caused by the final compression are known and can
be detected using ″K , we would only need to plot the heat map of the
contribution of each ×8 8 block to the maximization of ″K for

= =i j4, 4 (standard grid position of JPEG). Blocks ranging sig-
nificantly low would correspond to local inconsistencies in the main
grid pattern, caused by the alien region. Unfortunately this is hardly
ever the case, since the consistency of the blocking artifacts throughout
the host image is easily disturbed from a variety of factors, such as
strong edges, visual texture patterns, over/under exposure, etc.

To moderate the impact of such effects, we exploit all information
gathered during the previous procedure. Besides the heat map of local
block contributions to ″K , we also produce a series of auxiliary maps
aimed to isolate and remove the artifacts produced by such phenomena,
and only keep the regions that we can confidently assume that are
violating the JPEG grid due to tampering.

To produce these masks we exploit: (a) the heat map of the local
″Kblock scores for the best-fitting grid; (b) the heat maps of the local ″Kblock

scores for all other candidate grids; (c) an edge detection map used both
to remove strong edges from the results (as they tend to disrupt false
positives) and to locate soft, widespread edges, (which we use as in-
dicators that the block is suitable for accurate grid estimation); and (d)
a map identifying over- and under-exposed areas, where grid detection
would be impossible anyway, and thus any inconsistencies found there
are unreliable.

Fig. 5 presents an overview of the method. A series of Heat and Help
Maps are built and combined to produce the final output. In Fig. 5 we
use an image example as input, and visualize the intermediate stages up
to the final output. The input image is taken from the Fontani et al.
Synthetic dataset (Class 4) [32] with the tampered area marked by the
semi-transparent, yellow-outlined rectangle in the initial image.

With respect to information types (a) and (b), for each image block
we calculate the rectified ″Kblock scores for the 16 possible grid co-
ordinates (Eq. (6)), and then compute the mean block response (Eq. (7).

= ″ ″ ∈x H K K xfit( ) [ ]· , [1,16]block i j block i j( , ) ( , )x x x x (6)

∑= ×
=

n xfit ( ) 1
16

fit( )BLK
x 1

16

(7)

where H k[ ] is the Heaviside step function, and i j( , )x x is the pair of co-
ordinates for one of the 16 candidate grid positions within the block.
We thus generate two maps, one containing the mean block responses
for all 16 possible grid alignments, and one for the best-fitting grid

Fig. 4. Example of multiple JPEG grids. Black grid is the original grid and or-
ange grid is introduced by a tampering operation, e.g. splicing. (For inter-
pretation of the references to colour in this figure caption, the reader is referred
to the web version of this article.)
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alignment.
In Fig. 5, the outputs (in the form of heat maps3) for six out of the 16

investigated grids for Eq. (6) are depicted in Figs. 5A1. The upper row
of A1 shows the outputs reporting low ″K while the lower row shows
the higher scoring ″K grid position searches.

It can be seen in this example that, as we move from the least to the
best fitting grid, the tampered region becomes visible as an area of low
response values. In parallel, however, all grids, even the ones with low

″K scores, present strong responses at certain locations where the image
content disrupts the result of Eq. (5), mostly due to the presence of
high-contrast edges. In a similar manner, weak responses can be found
for all grids at under-exposed (dark) image areas and at bright image
regions (upper right corner), where the grid pattern is more subtly
present. The various Heat Maps and Help Maps we have devised are
aimed to remove those effects and only keep the actual tampering trace.
Fig. 5A2 and A3 show the calculated mean responses of all 16 grids per
block and the responses of the best detected grid, respectively. Both
maps have been mean filtered with a small window size to remove
spurious outputs.

One effective way to separate regions where the grid is actually
broken from those where the grid is made undetectable due to content,
is to look at the mean response: if a region has low response for all
alignments, it is most likely due to content and not due to misalignment
to a specific grid. We want to suppress these responses, thus we take the
difference between the mean response and the response of the best
detected grid. This gives us Heat Map A (Fig. 5), where many areas with
undetectable grids are suppressed while areas of grid pattern dis-
continuity are emphasized. The subtraction of A2 from A3 has the ad-
ditional effect of resulting in Heat Map A having high values in can-
didate tampered areas and low values in untampered areas.

A second intermediate map is Heat Map B (depicted in Fig. 5),
aimed to be used later as a weighting factor in characterizing blocks as

tampered or not. It is produced by inverting the best fitting grid map, so
that locations of grid inconsistencies return high responses. In this
sense, Heat Map B contains the base result of the grid inconsistency
detection algorithm.

3.3. Content-aware filtering

While Heat Map A was produced by removing misguiding regions
after identifying those blocks that did not contain a detectable grid in
any alignment, the output is far from easy to interpret. It is evident by
examining the heat map (Fig. 5, Heat Map A) that an inexperienced user
would have difficulty assessing the location of the actual tampering by
inspecting the map. In an effort to produce more reliable and inter-
pretable outputs, we proceed with an extra computational step of
coarse image segmentation based on image content. There are four
types of image content we wish to be able to detect in order to analyze
and filter the initial output:

1. homogeneous areas, i.e. areas where the intensity gradient between
neighboring pixels is near-zero,

2. over/under-exposed areas,
3. areas of high-edge contrast, and
4. areas of soft edges.

With respect to homogeneous areas (point 1), the problem is that,
when JPEG encoding is applied on image parts of near-uniform colors
that span multiple image blocks, the grid pattern is exceptionally weak
or non-existent even for low quality encodings. Thus, we need to de-
termine whether grid discontinuities (including complete absence or
significantly weaker artifacts) are signs of tampering or simply due to
homogeneous areas. To this end we produce a specialized map, de-
picted in Fig. 5 as Help Map 1, in which we mark blocks that score
consistently low (near-zero) over all 16 GP.

Over- and under-exposed blocks (point 2) also make grid detection

Fig. 5. Overview of the proposed method with visualized example results of the intermediate stages and final output.

3 All heat maps in the paper are based on MATLAB’s parula colormap.
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very difficult, and thus might mislead the detection algorithm. These
blocks can be detected by converting the image into the HSV space and
using upper and lower thresholds, respectively, in the Value (V)
channel. In our implementation, we empirically found that mean values
that are higher than 95% of the channel maximum possible value can be
securely classified as over-exposed, while values lower that 5% can be
classified as under-exposed. The result is stored in Help Map 3.

With respect to detecting areas of high-edge contrast and soft edges
(points 3 and 4), the aim is to isolate regions containing “soft” edges,
i.e. edges that are strong enough to create content variance and allow
grid localization, but not so strong as to disrupt the localization algo-
rithm. Regions characterized by soft edges can be considered the most
representative in terms of the grid fitness scores they produce. We need
a representative value to use for the regions that we marked as un-
tampered/unsuitable for detection using the Help Maps. This value
needs to be low enough to allow tampered regions to stand out, but not
so low as to end up highlighting the rest of the image. Localizing re-
gions of soft edges and getting their mean fitness provides a dynamic
way to get such a value, which will allow us to produce output maps
that are not only accurate in terms of localization, but contain enough
contrast between tampered and untampered regions to be easily read-
able by an untrained human investigator.

We employ a novel efficient edge extraction scheme inspired by
[33] that is able to adaptively classify the detected edges as salient or
soft. To ensure consistent computational times and results, the input
image is resized to the largest dimension scaled to 960 pixels (the
smallest is scaled near-proportionately, but ensuring it is a multiple of
8, to allow block-based tiling and filtering).

This step only serves to identify the softly textured portions of the
image, so as to use their average ″K values as a reliable baseline.
Rescaling will not change this property of any image region. Since this
step is not essentially linked to any forensic operation, we do not have
to worry about destroying sensitive traces. Rescaling will not result in
any loss of relevant information, but will save us significant computa-
tion time.

The rescaled image is then tiled into non-overlapping ×8 8 blocks
that are independently processed by a set of 2-dimensional ×8 8 edge
detection kernels. The kernels are an adaptation of the kernel masks
presented in [33]. In our implementation, the kernels are binary masks
consisting of two regions (a dark and a light), defining edges in 12
orientations on °15 increments. For each of these orientations, an ap-
propriate number of instances represents all possible positions (2-pixel
shifts) of the edge within the region of the kernel, resulting in a total of
58 kernels (Fig. 5B1).

Each image block B i j( , ) is then processed by all 58 kernels in order
to calculate an edge confidence score based on Eq. (8).
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8

(8)

where Mw and Mb the number of white and black pixels in the kernel,
respectively, and k i j( , )z is the bitwise NOR for position i j( , ) of kernel

∈k z, [1,58]z .
When all blocks have been processed by all kernels the highest

confidence score is stored for each block. To discriminate block edge
responses into salient or soft, a thresholding step takes place. The image
is divided into six areas (A–F), each of which is further divided into six
sub-regions … … … …a a a b b b f f f( , , , , , , )1 2 6 1 2 6 1 2 6 as illustrated in Fig. 6. To de-
termine a threshold value for each one of the smaller regions (second
level regions), we calculate (i) threshold Timg to be the mean confidence
score over the whole image, (ii) thresholds …T T T( , , , )A B F to be the mean
confidence scores of the tiles belonging to each first level region, and
(iii) … … … …( )T T T T T T, , , , , , ,a a b b f f1 6 1 6 1 6 to be the mean confidence scores of
each second level region. Then, the threshold for each second level
region is selected to be the largest among the one calculated from the
second-level region, the one calculated from the containing first-level

region, and the overall image threshold. For instance, in the case of sub-
region a1, we would set ′ =T T T Tmax( , , )a a A img1 1 .

This thresholding process is important because it evaluates strong
edges, not by an absolute number but locally, taking into account local
image statistics. Applying the thresholding is crucial for the quality of
the output maps, because these maps have scaled value ranges: this
means that, in the absence of high-contrast edges, low-strength edges
would be dominating the output heat map and would falsely indicate
possible forgery. The proposed adaptive thresholding scheme scales the
produced thresholds in relation to the overall contrast of the content
and overcomes the issue.

The bottom part of Fig. 5 illustrates the content-aware filtering part
of the method. Specifically, Fig. 5B2 depicts the color-scaled illustration
of the highest confidence scores Ck per block. Help Map 2, depicts the
example maps resulting after the classification of the blocks as con-
taining soft and strong edges, respectively. The first map presented
under Help Map 3 shows the map of under-exposed blocks and the
second, being flat, informs us that in this particular image no over-
exposed blocks were found.

3.4. Creating the final output map

The final step of the method aims at producing a readable output,
with clear contrast between tampered and untampered regions. To this
end, it utilizes all intermediate information, i.e Heat Maps A,B and Help
Maps 1–3 (Fig. 5). Heat Map A contains the grid discontinuity detection
results with the non-relevant regions suppressed, while Heat Map B
contains the output of the best matching grid discontinuity detection,
and is intended to be used as a weighting factor that will highlight the
non-conforming regions.

In Heat Map A, blocks with high values generally result from over/
under-exposed image regions, homogeneous regions or tampered re-
gions, while blocks with low values are most likely unsuppressed re-
sponses of strong edges. Since the tampered region is expected to ex-
hibit high values, we mark all blocks with values lower than the heat
map mean as non-tampered. Next, we use Help Maps 1 and 3 to also
mark homogeneous and over/under-exposed blocks as non-tampered.
The visualized output of this process is illustrated in Fig. 5C1.

The resulting map is then weighted by Heat Map B (i.e. the inverse
heat map of the best grid) resulting in the heat map depicted in
Fig. 5C2. This map could itself serve as the final output of the algo-
rithm, as the highest values are expected to correspond to the tampered
region. However, the issue remains on what value to assign to the
blocks marked as untampered, so as to create a human-readable map
with an easily visualizable value range where the tampered regions will

Fig. 6. Image partitioning used for the determination of local edge thresholds.
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stand out. Assigning zeros is not an ideal option because heat map vi-
sualizations are always relative in scale. Thus if the original map values
were high, the presence of zeros may result in an output that is almost
binary, with zeroed regions on the one end, and all other blocks, tam-
pered and untampered alike, on the other. To mitigate this issue, at the
final step we replace all marked blocks with the mean value of those
soft edge blocks (Help Map 2) that are not classified as homogeneous
(Help Map 1). We experimentally found this value to serve as a good
approximation to the value range of untampered, non-zeroed regions.
Zeroed and non-zeroed untampered block values are now brought to
roughly the same range (Fig. 5C3), which should make the tampered
region visually stand out in the heat map. The final output map is
produced by mean filtering (Fig. 5C3).

Fig. 7 showcases the importance of the two introduced novelties, (i)
the stronger confidence measure ″K employed to identify whether a
block follows the global grid pattern or violates it, and (ii) the content-
aware filtering stage employed to suppress false activations deriving
from image content. By comparing the outputs produced by the pro-
posed method (fourth row) with those produced when leaving out ei-
ther of the two proposed novelties, i.e. the newly proposed grid align-
ment confidence measure (second row) and the content-aware filtering
step (third row), it becomes clear that the accuracy and quality of the
output maps improves considerably.

3.5. Inverse discontinuity detection

The proposed method, as described in Section 3.2, assumes that the
discontinuities will appear as areas of lower responses, in terms of ″K ,

in relevance to the rest of the image’s responses, during the search for
the best fitting grid. The relative strength of the responses is, however,
very much affected by the compression Quality Factor of the host QF( )h ,
the QF of the alien splice QF( )s and the final compression QF of the
composite image QF( )f .

Consider, for instance, the following scenarios: (i) QFh is high (weak
artifacts), the splicing comes from an image with <QF QFs h and for the
final compression quality, we have > >QF QF QFf h s, and (ii) the host
image is compressed losslessly (QF=100), the splice is JPEG com-
pressed, and the composite image is again saved in lossless format.

In both of these cases, discontinuities will appear as areas of high ″K
response in relevance to the overall low responses calculated in the
image. That is, the algorithm will locate a grid only on the spliced area,
and assign low ″K values to the rest of the image. Due to the inversion
step prior to forming Heat Maps A and B, and combined with the mean
value substitution step of Fig. 5C3, in those cases the algorithm will
most likely not be able to localize the splice. Some algorithms, parti-
cularly ones based on noise or block artifact discontinuities handle this
by shifting the burden of the interpretation to the human analyst. In
such algorithms, the tampered area may appear either as a region of
disproportionately higher or lower response. CAGI, however, has an
integrated post-processing step that both aims to increase detection
accuracy and to produce more human-readable outputs. Thus, it is
necessary to adjust the algorithm to this eventuality and treat this sub-
case in a targeted manner.

In order to account for cases like these, we introduced an additional
branch to the method that produces a complementary output map.
More specifically, at the last stage of the algorithm when extracting the
final output map, instead of filtering (marking as zero) the blocks in
Heat Map A that range under the map’s mean, we now filter those that
range over that value. As before, we also mark the homogeneous and
over/under-exposed blocks and proceed by assigning the mean value of
the soft edge blocks (Help Map 2) that are not classified as homo-
geneous (Help Map 1).

The complementary output produced by this straightforward, in-
verted filtering can be presented to end users along with the original
output. This will allow them to choose the most appropriate result
based on visual inspection. We refer to this output as inv-CAGI.

4. Evaluation

We evaluate CAGI through a number of experiments, which provide
insight into its potential for (i) blind tampering detection and (ii) lo-
calization, also evaluating (iii) the method’s output interpretability and
(iv) robustness against common post-processing operations and in
realistic datasets, where details concerning the image history and ap-
plied transformations are unknown. For all employed datasets and
scenarios we additionally provide results concerning the number of
achieved detections of high confidence and the method’s contribution
in terms of detecting unique cases.

With that said, the proposed method is directly compared to seven
methods from the state-of-the-art (Table 1). With respect to the
methods described in Section 2, ADQ1 was selected to represent ap-
proaches that base their detection on double quantization. ADQ1 has
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Fig. 7. Examples showcasing the contributions of CAGI. First row: input images
where the tampered area is marked with a red outline. Second row: Outputs
maps produced without the newly proposed grid alignment confidence mea-
sure. Third row: Output maps produced without the content-aware filtering step.
Fourth row: Output maps produced by the CAGI method. (For interpretation of
the references to colour in this figure caption, the reader is referred to the web
version of this article.)

Table 1
Overview of the selected state-of-the-art methods.

Acronym Description

DCT [21] Looks for inconsistencies in the JPEG DCT coefficient histograms to detect possible tampering
BLK [10] Identifies possible tampering by locating inconsistencies in the JPEG blocking artifacts
ADQ1 [11] Tampering localization is achieved by exploiting the characteristics of double DCT quantization
NOI1 [25] Models image noise using wavelet filtering and treats localized variances as possible forgeries
NOI2 [26] Models image noise using the properties of the kurtosis of frequency sub-band coefficients in natural images
NOI3 [27] Computes a local co-occurrence map of the quantized high-frequency component of the image and locates inconsistencies in the local statistical properties
CFA1 [14] Models the Color Filter Array interpolation patterns as a mixture of Gaussian distributions and locates tampering based on detected disturbances
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the advantage of being able to operate on images that had been com-
pressed as JPEG, and were then decompressed and stored in PNG,
which is the case in some datasets. In contrast, ADQ2, ADQ3 and NADQ
can only operate using JPEG images as input, since they require specific
information derived from the JPEG file, such as the decompression
rounding residue or the quantization matrix used for the last com-
pression. Since some datasets contain PNG images which carry the
traces of past JPEG compressions but have already been decompressed,
that information is essentially lost and these algorithms cannot work.
Also, GHO is not part of the selected methods because it produces
several output maps per case, requiring thus manual investigation to
trace the changes between the different maps to locate the forgery.
Finally, given the expected limited applicability of methods that search
for disturbances in CFA patterns, only results from CFA1 are presented
as indicative of such methods.

4.1. Datasets

Table 2 lists the employed datasets.
The first dataset employed in this study is the synthetic dataset by

Fontani et al. [32]. This dataset will allow us to test the effectiveness of
the method for controlled scenarios. It contains 4800 original and 4800
tampered images, which were generated by automatically extracting a
fixed-size square from the center of the image and replacing it in the
image, emulating the effects of a splice (e.g. removing the traces of
JPEG compression, or changing the JPEG grid alignment). The tam-
pered images of the dataset are split in four distinct classes, each con-
taining a different type of forgery (Table 3). Thus, depending on the
class, a forgery should theoretically be detectable by different combi-
nations of Non-Aligned JPEG quantization, Aligned JPEG quantization
and JPEG Ghost, while other algorithms may also be able to localize
certain forgeries.

Next, we employ the First IFS-TC Image Forensics Challenge
training set [34], a dataset containing user-submitted forgeries and
their ground-truth masks. The dataset was designed to serve as a rea-
listic benchmark (different types of tampering, unknown image history
and possible post-tampering transformations). While images in this set
are saved as PNG, it is likely most of them were originally in JPEG

format, since they exhibit traces of past compressions (e.g. blocking
artifacts or DCT coefficient histogram periodicities). Therefore, splices
may be detectable using JPEG-based methods.

For the two aforementioned datasets, and despite the fact that the
latter is considered to be a realistic benchmark, we also subject the
images to rescaling (95%, 75%, 50%) and recompressing (90%, 70%)
operations producing in total 5 variants of each original dataset. Since,
tampering traces may disappear after common post-processing opera-
tions like resizing and resaving (which are operations applied auto-
matically in many online image storing and sharing platforms, e.g.
social media), these variants will allow us to conduct deeper experi-
mental analysis of the method robustness.

Finally, we experiment with the Wild Web Dataset [35] that con-
tains 78 cases of real-world forgeries. As the forgeries have been cir-
culating various websites and social media platforms, there exist mul-
tiple versions of each forgery, due to resavings, croppings, and other
transformations. The Wild Web Dataset was formed by collecting a
large number of different versions from each forgery, resulting in a set
of 10,646 images.

The uncontrolled, varying conditions under which the tampered
images in this particular dataset were created, shared and collected will
allow us to gain an additional level of insight concerning the robustness
of the methods, which exceeds the limited tests and variations of post-
processing transformations that we can manually subject the images to.

4.2. Evaluation metrics

Each of the tested methods produces an output map per image, in
the form of a heat map, that can be used to detect forgeries and localize
tampered areas. For tampered images, these output maps should have
significantly distinct value assignments for pixels belonging to un-
tampered image regions compared those belonging to tampered re-
gions, while for authentic images the output maps should ideally be flat.

Tampering detection: For our first test, we evaluate the methods’
ability to correctly classify tampered images based on the value dis-
tribution of the output maps following the methodology proposed in
[35].

More specifically, the datasets provide binary ground truth masks
for all tampered images, while an artificial ground truth mask is used
for each untampered image similar to [24,32], which corresponds to a
block of size 1/4 of each dimension, placed in the image center. The
Kolmogorov-Smirnov (KS) statistic is used to compare the value dis-
tribution for the two regions of the masks (tampered/untampered).

= −KS C u C umax | ( ) ( )|
u

1 2 (9)

where C u( )1 and C u( )2 are the cumulative probability distributions in-
side and outside the mask, respectively. If KS surpasses a threshold, a
positive detection is declared. ROC curves are calculated by shifting the
threshold for each algorithm, and evaluating how many images return
positives in the tampered and untampered subsets. This methodology is
appropriate for datasets that contain both tampered and untampered
images, and sets a baseline against overestimation of a method’s ability
to localize tampering.

Tampering localization and output interpretability: Next we evaluate
the methods, in terms of their localization quality and output read-
ability based on the pixel-wise agreement between the reference mask
and the produced output map of each method. For these tests only
tampered images are evaluated, while the quality of the response is
measured in terms of the achieved F-score (F1). This methodology re-
quires the output maps to be thresholded prior to any evaluation. Since
the range of values of the output maps for each algorithm varies, and in
an effort to be fair, we first normalize all maps in the [0,1] range and
proceed by successively shifting the binarization threshold by 0.05 in-
crements, calculating the achieved F1 score for every step. The locali-
zation performance is presented in the form of F1 curves, while the

Table 2
Benchmark image datasets.

Dataset # Fake/Authentic Format

Fontani et al. synthetic [32] 4800/4800 JPEG
IFS-TC Forensics Challenge

[34]
442/1050 PNG (possible JPEG

history)
Wild Web Dataset [35] 10,646/ 0 JPEG, PNG, GIF, BMP, TIF

Table 3
Fontani et al. [32] synthetic dataset classes.

Class 1
Region is cut from a JPEG image and pasted, breaking the 8x8 grid, into an

uncompressed image; the result is saved as JPEG
Traces: Misaligned JPEG compression

Class 2
Region is taken from an uncompressed image and pasted into a JPEG image; the

result is saved as JPEG
Traces: Double quantization, JPEG ghost

Class 3
Region is cut from a JPEG image and pasted into an uncompressed image in a

position multiple of the ×8 8 grid; result is saved as JPEG
Traces: JPEG ghost

Class 4
Region is cut from a JPEG image and pasted (without respecting the original ×8 8
grid) into a JPEG image; the result is saved as JPEG

Traces: Misaligned JPEG compression, Double quantization, JPEG ghost
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readability of the output maps is related to the range of different bi-
narization thresholds that yield high F1 scores, i.e. of at least 70% of the
recorded maximum F1 score. F1 scores that remain high for a wide
range of binarization thresholds indicate that the two classes (tampered
regions/ untampered regions) have been correctly assigned distinctive
enough values, such that interpreting the output would be easy for both
human inspectors and unsupervised computer systems.

5. Experimental results

This section includes the experimental results per dataset. To keep
the presentation compact and to the point, we focus more on three of
the reference methods that yield overall good results, while producing
some of the most clear tampering localization heat maps. These include
blocking artifact discontinuities (BLK), aligned double quantization
(ADQ1) and SpliceBuster (NOI3). The experimental evaluation and
comparison with the rest of the reference methods will be given more
concisely in Section 5.4, where we discuss the overall performance.
Outputs in the form of heat maps produced by all methods employed in
this paper, on various images from the realistic datasets, are available in
Fig. 16.

5.1. Results on the synthetic dataset by Fontani et al.

The dataset by Fontani et al. is synthetically generated, allowing to
test the effectiveness of methods on different types of forgery. Fig. 8(a)
presents the experimental results using the first evaluation metho-
dology over the whole collection. CAGI is overall one of the best per-
forming methods together with BLK, achieving approximately 70% true
positive rate at a 5% false positive rate.

It should be noted that NOI3, being a representative of noise-based
algorithms, is not the most appropriate algorithm for this dataset. The
Fontani et al. synthetic dataset was created as a means of evaluating
JPEG-based algorithms, thus it deliberately includes forgeries which
exhibit JPEG traces of tampering with minimal impact on content and
noise.

Fig. 9 presents the per-class results for the CAGI, BLK, NOI3 and
ADQ1 methods. In Classes 1 and 4, where the tampered images carry
traces of misaligned JPEG compressions, i.e the principle which CAGI is
designed around, the method demonstrates competitive results and is
only outperformed by ADQ1 in Class 4, where double quantization
traces are also present. Interestingly, however, CAGI also manages to
rank among the best performing methods for the other two classes.

Along with the class of tampering, a second factor comes into play

concerning the robustness of the detection: the QF of the host image in
relation to the final compression QF. The host images of this dataset
were acquired in lossless format and (depending on the class) were
compressed with varying compression qualities QF (40–80)1 . After the
splicing operation, the resulting images are recompressed into JPEG.

In CAGI, discontinuities of the image grid appear as lower re-
sponding areas in the heat map of the best responding grid and the heat
map of the mean response of all tested grids. Class 4, is completely in-
line with CAGI’s design. The misaligned JPEG splice can be generally
traced easily. For Class 1, the localization of the misaligned patch is also
relatively easy to achieve when the host is compressed with a low QF.
However, as the QF of the final compression increases, the area that was
initially uncompressed (host) only gets light artifacts after compression,
while the double pattern within the spliced region is also degraded.
This makes the detection vulnerable to responses derived from content.

CAGI is much more robust for tampered images of Class 2, since it
can rely on artifacts that are already present in the host. The tampered
area has lower responses due to the higher final QF2 compression.
Misses occur only in cases of extreme content-related responses that the
employed content aware process fails to account for.

Class 3 is the most challenging for CAGI. The tampered patch is
aligned to the grid created by the final compression and thus, for lower
QF, both mean and best grid responses will highlight the tampered
region with higher values. The method is this case is producing inversed
maps, compared to what it was designed for. Depending on the QFs and
the image content, this may not be an issue; tampered and untampered
region will only appear inversed in the final output. In many cases,
however, the operations that take place next, implemented with the
intention of suppressing responses corresponding to high frequency
content, may falsely treat the detection as edges. Inversed CAGI (inv-
CAGI), as described in Section 3.5, was implemented to account for
such cases, which are in fact quite common. The curves in Fig. 10 attest
the added value of the inv-CAGI variant of our method.

Moving on to the evaluations of the localization and readability
quality of the maps, Fig. 8(b) presents the mean F1 scores per binar-
izarion step over the whole Fontani et al. collection. The achieved lo-
calization is evaluated by the maximum mean F1 score for each method
(at its respective best performing binarization threshold). CAGI
achieves once more one of the best reported performances.

As discussed before, the interpretability can be evaluated based on
the range of binarization thresholds where the achieved F1 remains
high, as it suggests that the tampered and untampered image regions
are characterized by significantly different values in the output maps.
ADQ1, which produces almost binarized outputs by design, is an
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indicative example of good readability. In the Fontani et al. dataset,
ADQ1 manages to achieve good localization (mostly due to the very
high performances in Classes 2 and 4) making it the best performing
approach in the dataset. CAGI is a close second in terms of readability.
On the other hand, BLK, which was the most competitive method in the

previous evaluation, has significantly lower F1 scores.
Table 4 reports the best localized detections achieved per method.

The detection threshold was set to 0.7 which generally signifies a good
localization and 0.8 which is a near perfect score for most applications.
The search was performed for the best binarization step for each
method. Unique corresponds to the number of detections exclusively
achieved by that method for the given F1 threshold. ADQ1 has the
greatest contribution in this dataset in terms of detection, followed by
CAGI and also DCT and NOI3. Concerning the unique cases, ADQ1 is
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Fig. 9. ROC curves in the Fontani et al. synthetic dataset per class: (a) Class 1, (b) Class 2, (c) Class 3, (d) Class 4.
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Fig. 10. ROC curves in the Fontani et al. synthetic dataset Class 3: inv-CAGI,
BLK, NOI3, ADQ1.

Table 4
Reported detections on Fontani et al. dataset for ⩾F1 0.7score and ⩾F1 0.8score at
each method’s best binarization threshold.

⩾F1 0.7score ⩾F1 0.8score

Method Detections Unique Detections Unique

ADQ1 1810 246 1561 342
BLK 578 29 392 20
CFA1 158 1 133 3
DCT 1114 6 820 7
CAGI 1711 433 1264 279
inv-CAGI 222 0 20 0
NOI1 84 0 48 0
NOI2 21 0 7 0
NOI3 1112 259 849 201
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outperformed by CAGI and NOI3 for the relaxed threshold and followed
closely for the near perfect localizations, indicating that all three
methods could be utilized in a fusion scheme not only to reinforce the
detections’ confidence but also in a complementary fashion. DCT on the
other hand, or even BLK, manage to achieve good detections but do not
contribute with unique cases because their detections are a subset of
other method (i.e., DCT’s detections are mostly common with ADQ1,
and BLK’s with CAGI, NOI3 and ADQ1).

5.2. Results on the first IFS-challenge dataset

The Challenge dataset, being the first attempt to produce a realistic
benchmark, is much harder to tackle by any single method. The per-
formance evaluations presented in Fig. 11(a) are indicative of the above
statement; there are few detections for most algorithms at a 0% false
positive rate, and even when relaxing the threshold, the true positive
detection rate increases slowly. Thus, any contribution in terms of un-
ique detections and/or readable outputs is of great importance in this
dataset.

Fig. 11(b) presents the calculated mean F1 scores on this dataset for
all competing methods. Again, in comparison with the rest of the
methods, CAGI reports one of the highest F1 scores as well as read-
ability quality as it achieves high F1 scores over a wide range of
thresholds.

Table 5 reports the best localized detections achieved per method.
As before, the detection thresholds were set to 0.7 and 0.8 and the search
was performed for the best binarization step for each method. NOI3 has
the greatest contribution in this dataset, followed by CAGI and BLK.

5.3. Results on the Wild Web dataset

As the Wild Web dataset does not contain untampered images, the
evaluations can only be performed based on the pixel-level localization
accuracy on the tampered images.

Fig. 12 reports the mean F1 scores calculated over the whole col-
lection (10,646 images). Even though the values of F1 are very low for
all methods one should take into account the fact that the collection
consists entirely of actual forgeries sourced from the Web. The dataset
is organized into 78 cases of confirmed forgery. For each case, reverse-
image search engines (Google and TinEye) were used to collect as many
near-duplicate instances as possible from the Web. This means that the
number of instances for each case varies. Some cases have as little as 2
instances, while others more than 700. When a case that has many
instances is not detectable by a method, it severely affects the calcu-
lated F1 score. Thus, the F1 curves were created by first averaging the
F1 scores per case so as to minimize the impact that the unbalanced
cases introduce to the calculations. CAGI presents the highest reported
F1 score followed closely by NOI3. CAGI, however, additionally pre-
sents stable high F1 results for a wider range of binarization thresholds.

The performance of methods in the Wild Web set is also evaluated in
terms of achieved detections and contribution with unique cases. As in
[35] a detection is classified as correct when at least for one instance of
a given sub-case the method produces an F1 score higher than a set
threshold. Table 6 reports the correctly localized case detections for
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Fig. 11. Results on the Challenge dataset: (a) ROC curves, (b) F1 score curves.

Table 5
Reported detections on IFS-Challenge dataset for ⩾F1 0.7score and ⩾F1 0.8score

at each method’s best binarization threshold.

⩾F1 0.7score ⩾F1 0.8score

Method Detections Unique Detections Unique

ADQ1 4 1 2 0
BLK 8 0 6 2
CFA1 2 0 1 0
DCT 5 1 1 0
CAGI 16 6 9 2
inv-CAGI 3 0 2 0
NOI1 7 1 4 1
NOI2 3 1 2 1
NOI3 38 28 26 18
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Fig. 12. F1 score curves on the Wild Web dataset.
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⩾F1 0.7score and ⩾F1 0.8score . Detections corresponds to the number of
cases detected by the respective method, Unique corresponds to the
number of cases detected exclusively by that method, and PENS (Perfect
ENsemble Sum) corresponds to a theoretical perfect ensemble, where at
least one method achieved detection (i.e. essentially summing the total
number of cases detected out of the initial 78).

The contribution of overall detections as well as unique detections

for the CAGI method (and its variant inv-CAGI) is clearly highlighted by
the results. Moreover, the results indicate that the detections (i.e. F1
scores exceeding the threshold) remain prominent for a wider range of
thresholds compared to competing methods. This means that in the
output maps of CAGI, the value difference between the tampered and
the untampered area is greater, making the visual output more striking
and easy to interpret by non-experts.

5.4. Analysis of robustness and overall performance

Following the evaluations of the previous sections, we proceed to
investigate the robustness of the methods when images are subjected to
common post-processing operations. To this end we conducted eva-
luations on all metrics using the Fontani et al. and the Challenge da-
tasets while (i) resaving the images at JPEG QF90 and QF70, and (ii)
rescaling the images at 95%, 75% and 50% of their original size and
resaving them losslessly. For brevity, when analysing the tampering
detection robustness we do not present the KS curves for each algo-
rithm, but instead estimate the threshold value for which the algorithm
returns a true negative rate of 95%, and calculate the percentage of true
positives for the same threshold. As for the localization robustness,
again we compactly present the results by reporting the best F1 score
(at the best binarization step), per method. Figs. 13 and 14 summarize
the results on the Fontani et al. and Challenge dataset variants,

Table 6
Reported detections (total and unique) on Wild Web dataset for ⩾F1 0.7score

and ⩾F1 0.8score for each method’s best binarization threshold per case.

⩾F1 0.7score ⩾F1 0.8score

Method Detections Unique Detections Unique

ADQ1 8 1 3 0
BLK 7 0 4 0
CFA1 5 0 1 0
DCT 10 0 5 2
CAGI 19 4 6 0
inv-CAGI 22 3 13 7
NOI1 12 1 4 1
NOI2 6 0 2 0
NOI3 15 1 6 1
PENS 33 21
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original dataset and after recompressions-rescales.

C. Iakovidou et al. Journal of Visual Communication and Image Representation 54 (2018) 155–170

167



respectively.
Based on the results presented in Figs. 13 and 14 it is apparent that

resaves (plots (a) and (c) in both figures) will cause a degree of feature
degradation due to rounding errors for all methods. Both detection and

localization are affected as the JPEG compression quality drops but
algorithms seem to retain their performance relatively well. CAGI in
particular presents very robust results compared to the rest of the
methods when the images have been subject to resaves. On the Fontani
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Fig. 14. Evaluation of robustness on the Challenge dataset: (a–b) KS scores on the original dataset and after recompressions-rescales, (c–d) F1 scores on the original
dataset and after recompressions-rescales..

Table 7
Reported detections (total) for ⩾F1 0.7score on the original datasets and after images were subjected to post-processing operations.

Fontani et al. Challenge

Original Recompress Rescale Original Recompress Rescale

90% 70% 95% 75% 50% 90% 70% 95% 75% 50%

CAGI 1711 1616 918 51 19 17 16 13 7 13 7 7
BLK 578 335 102 0 0 0 8 5 6 3 3 2
NOI3 1112 946 551 15 6 1 38 21 13 34 31 26
ADQ1 1810 989 629 0 0 0 4 3 2 2 2 2

Fig. 15. Summary of results: perfor-
mance of methods in the three data-
sets: KS score (retrieved True
Positives for 5% False Positives rate),
F1 score (maximum reported value);
thres. range (binarization step range
that produces F1 scores >70% of the
respective maximum value).
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et al. dataset it manages to surpass the front-runners (i.e, BLK, for KS
and ADQ1 for F1) and seems to be less affected by the transformation
on the Challenge dataset. On the other hand rescaling operations have a
much stronger impact on the detection and localization performances
for all methods (plots (b) and (d) in both figures). The effect is espe-
cially apparent in the Fontani et al. tests where the original perfor-
mances were high, and less so in the Challenge sets were performances
where modest to begin with. For the KS metric in particular, it should
be noted that since success rates in the more complex Challenge dataset
are at best around 20%, which, given the difference between the masks
used for positive detection and negative detection may be rather close
to random, analysis on the detection robustness can unfortunately not
be reliable.

To better focus on the performance degradation caused by these
transformations, we decided to study only those images that were
correctly detected on the original version (i.e. had tampering

localizations of ⩾F1 0.7score prior to the transformations). Table 7
shows the number of successful detections on these particular images
after they were subjected to transformations, compared to the detec-
tions achieved originally. As can be seen, CAGI is very robust with re-
spect to recompressions. On the other hand, rescaling has a clear ne-
gative impact for all methods and datasets. An exception could be the
case of NOI3 and CAGI for the Challenge dataset, but the limited
number of original detections does not allow us to draw broader con-
clusions.

Moving on the discussion to the overall performance, Fig. 15 sum-
marizes the recorded performance of all methods on the three employed
evaluation criteria; (i) the ability of a method to retrieve true positives
of tampered images at a low level of false positives (KS@0.05); (ii) the
ability to achieve good localization of the tampered region within the
image (F1), and; (iii) the readability of the produced heat map, i.e. a
high distinction of assigned values for pixels belonging to tampered

Fig. 16. Heat maps produced by the methods: Input images in columns 1–4 are taken from the Challenge dataset and columns 5–7 from the Wild Web dataset. For the
proposed method, the outputs shown for input images 1–4 and 6 are produced by CAGI, while for images 5 and 7 they were produced by inv-CAGI. The tampered part
in each case is drawn using a white outline on all heat maps.
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versus untampered regions, expressed as the range of different binar-
ization thresholds that result in high F1 scores (>70% of the respective
maximum F1 score).

At this point some overall remarks concerning the two last criteria
should be made: The proposed method is not only performing among
the top methods concerning the F1 score in all three datasets, but has
also a good (wide) range of possible binarization thresholds that lead to
high F-score for all tested datasets. This attribute is of great importance
since it could be leveraged within an automated binarization process.
For instance, CAGI can be expected to produce close to optimum F1
score (localization) for a threshold of 0.4 or 0.5 and inv-CAGI for higher
values of 0.8 and above. Other methods, e.g. BLK, have ranges that fall
into completely different values in the three datasets, or have limited
binarization levels to choose from (e.g NOI2, NOI3).

Overall, the results of Fig. 15 attest the versatility of the proposed
method. The method manages to maintain high performance in all three
tested metrics across all datasets showcasing a good balance between
detection and localization of forgeries, as well as high readability of its
outputs.

Another advantage of the method is that it does not require para-
meter selection (since a reasonable choice for the binarization threshold
works very well across all dataset). This makes it ideal for use in
practical settings by non-experts. In fact, the method has been in-
tegrated in a web-based image forensics service that has been co-de-
signed and tested in realistic settings by journalists and media experts
[36].

6. Conclusion

The paper presented a novel tampering localization method based
on JPEG blocking artifacts discontinuities for detecting splices. The key
design goals for the method have been high robustness over a variety of
forgery cases, achievement of successful detections in cases where other
algorithms fail, and the generation of “clean” outputs that are easy to
interpret by non-experts.

Experiments were performed on both synthetic datasets and rea-
listic/real tampering cases, and the proposed method was directly
compared to seven state-of-the-art techniques, representing different
classes of forensic analysis. Experimental results across all datasets
demonstrated that the method is robust in terms of localization accu-
racy and readability of the produced outputs. More importantly, since
the reported detections contributed by our method during the experi-
mental evaluation include many unique cases (i.e. where other algo-
rithms fail) we conclude that including it in an ensemble forensics
analysis system would significantly improve its detection performance.
This is a direction we plan to explore in the future.
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