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ABSTRACT
As grassroots and social media-based journalism becomes
more widespread, the need to verify information coming from
such channels becomes imperative. In the past, there have
been multiple occasions where forged pictures successfully
passed as original news items, spreading misinformation or
even panic. In this work, we investigate the potential for ap-
plying today’s state of the art in image splicing detection in
the context of images on the Web and images disseminated
through social media. We investigate the alterations social
media platforms apply on images and evaluate their impact on
tampering detection. We further present a real-world dataset
of forged images collected from various Web sources, and at-
tempt to evaluate them using the current state-of-the-art in
splicing detection. We present our results, and discuss their
implications in real-world verification settings.

1. INTRODUCTION

There is inherent power in images, when used to accompany
narratives. News reporters and services have been well aware
of this fact, and have been using photographs to support their
news reports since the birth of photography. Nowadays, fol-
lowing the spread of social media and micro-blogging, and
the introduction of grassroots journalism, a similar trend can
be observed on a massive scale, with laypeople taking the role
of photo reporters and contributing their own news reports.
In the resulting streams of information, false items, often in
the form of tampered or fabricated images, are nowadays a
common phenomenon and often lead to misinformation and
confusion. Thus, from the standpoint of a news agency or
authority following an event unfolding in social media news
streams, there is a profound need for uncovering fake content.

Numerous algorithms have been proposed for tampering
detection in digital images, with applications ranging from
news items confirmation to courtroom evaluation of digital
evidence. However, such algorithms tend to be sensitive to
further alterations in the tampered image, e.g., recompression,
scaling or histogram transformations. Indeed, a common as-
sumption is that the suspect image at hand is the direct output
of the (alleged) tampering process, and not a consecutive re-
save of the image. While this is a reasonable assumption for
a courtroom, where even the original raw camera images may
be formally requested, it is hardly applicable in the context

Fig. 1. Top: analysis of a forgery from an experimental
dataset (VIPP). Bottom: an internet version of a well-known
forgery. The algorithms used for the surfaces are [1] and [2].

of the Web, where it is often difficult to trace an image to its
original source, and users and services often modify an image
before re-posting it. In this context, the breakdown of our fun-
damental assumptions drastically changes the performance of
most detection algorithms (Figure 1).

This paper attempts to assess the real-world performance
of state-of-the-art splicing detection techniques on news-
related photographs appearing on the Web. To this end, we
explore the types of modifications that major social media ser-
vices apply to images posted on them, and proceed to evaluate
the impact of such modifications on tampering detection. We
further present a real-world dataset of known tampered im-
ages that spread on the Web in recent years, to serve as a real-
istic benchmark for the image forensics research community.
We also propose a human-centered evaluation methodology
for tampering localization algorithms, and use it to evaluate a
number of state-of-the-art algorithms on our data. We close
with our conclusions concerning the state of the art in real-
world image tampering detection.

2. RELATED WORK

2.1. Dominant approaches

We can divide tampering detection methods into three broad
categories, by the type of tampering they each detect: splic-
ing, copy-move attack, and resampling/histogram operations.
Image splicing refers to the practice of copying a part of one
image and inserting it into another, so as to give the im-
pression that an additional element was present in a scene.
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Fig. 2. Depiction of the stages between the original forgery
and the forensic analysis in a real-world scenario.

Copy-moving is the practice of taking a part of an image and
copying it within the same image. This can both be used to
falsely add more information (e.g., make a crowd seem larger)
or remove it (e.g., copy-moving the background over items).
Finally, the third group includes alterations which generally
tend to be well-intended and are rarely used to change an im-
age’s semantic content. With respect to detection, copy-move
forgery detection algorithms are generally based on common
image content search algorithms, by seeking internal repli-
cations of patches or keypoints. Common problems faced
are achieving robustness with respect to transformations of
the replicated patch, and tackling the high computational de-
mands of exhaustive within-image search. A recent survey of
the state-of-the-art can be found in [3]. Splicing detection,
which is the focus of this work, relies on an entirely different
premise: the assumption -and prerequisite- is that the spliced
region essentially carries information that, whilst possibly in-
visible to the eye, is in some significant aspect different than
in the rest of the image. There exist multiple cues that can
be used to make this distinction. One trace left by the image
capturing process are Color Filter Array (CFA) interpolation
patterns, which tend to be camera model-related. Splicing
can destroy CFA interpolation statistics, allowing for accurate
splice localization [4]. A second camera-related characteris-
tic of digital images is sensor noise, as different camera mod-
els and devices tend to introduce differently distributed noise
in images. Inconsistencies in the distribution of local noise
can thus be used to detect splicing [5]. Another large part
of the bibliography attempts to leverage the particularities of
JPEG compression to detect image alterations. Approaches
look for disruptions of the JPEG block patterns [6] or take
advantage of periodic patterns created in DCT coefficient his-
tograms during re-quantization [1, 7]. Another approach is
to detect DCT artifacts caused by non-aligned double JPEG
compression [2], or to seek JPEG Ghosts, i.e. traces of past
JPEG compressions [8]. Finally, certain methods seek dis-
continuities in the spatial features of the spliced image, using
Gray-Level Run Length features [9] or Local Binary Patterns
over the Steerable Pyramid transformed image [10].

2.2. Experimental datasets

Currently, there exist a number of benchmark datasets for
evaluating tampering detection algorithms. Of these, the

Table 1. Image splicing benchmark datasets. Format: the for-
mat of the images contained. Masks: the presence or absence
of ground-truth binary masks giving the location of the splice
(Manual means the masks were manually constructed by us
using the original and spliced images). # images: the number
of authentic and spliced images in the dataset.

Name Format Masks # images
Columbia BMP grayscale No 933/912
Columbia TIFF Uncomp. Yes 183/180Uncomp.
CASIA TIFF Uncomp., No 7491/5123TIDE v2.0 JPEG, BMP

VIPP Synth. JPEG Yes 4800/4800
VIPP Real. JPEG Manual 68/69

dataset of [3] and the CoMoFoD dataset [11] concern Copy-
Move detection, while the Columbia Image Splicing Detec-
tion Evaluation Dataset1, the Columbia Uncompressed Image
Splicing Detection Evaluation Dataset [12], the CASIA Tam-
pered Image Detection Evaluation Database2 and the Visual
Information Processing and Protection Group dataset [13]
concern image splicing. Table 1 helps highlight certain limi-
tations of the aforementioned datasets with respect to the task
of Web image verification. One is that the image format in
most datasets is different from JPEG, which is the prevalent
format on the Web: for example, among the contents of the
Common Crawl corpus3, 87% of identifiable image suffixes
correspond to JPEG (.jpg, .jpeg). With respect to our task,
within the Wild Web dataset we collected for our experiments
using an exhaustive search, described in Paragraph 3.2.2, 95%
of a total of 13,577 forged images were in JPEG format. In
contrast, only the VIPP datasets and a small part of CASIA
v2.0 contain JPEG images. This leaves out a significant part
of the bibliography that takes advantage of the effects of JPEG
compression. Secondly, the absence of ground-truth masks in
some datasets makes it very hard to evaluate algorithms pro-
ducing localized results, which can be a crucial requirement
for human investigators. Finally, a common characteristic of
all datasets is their “neatness”, meaning that the images con-
tained in them have undergone at most two lossy compres-
sions, one as original images, and one following the splice.

3. MULTIMEDIA VERIFICATION IN THE WILD

The tampering detection methods described above cover a
wide variety of phenomena. However, as mentioned above,
they often share one assumption: that the image under ex-
amination has not undergone further alterations following the

1http://www.ee.columbia.edu/ln/dvmm/downloads/
AuthSplicedDataSet/AuthSplicedDataSet.htm

2http://forensics.idealtest.org
3http://commoncrawl.org/



Fig. 3. Examples of different forgeries. Left: original forgery.
Center: post-splice. Right: cropping.

tampering operation. Indeed, it is often assumed that the
forensic algorithm has to decide between the image being ei-
ther a camera original or a tampered and re-saved image. In
practice, any trace of splicing can be erased given a sufficient
number of alterations such as lossy (e.g., JPEG) recompres-
sions, resampling (e.g., scaling) or filtering. However, images
on the Web are likely to undergo one or more such operations
before the forensic investigator has a chance to examine them
(Figure 2). Thus, we are in need of an evaluation framework
that reflects the realities of Web images.

3.1. Reverse-engineering the impact of social media plat-
forms on uploaded images

Twitter is a major content source for journalists. Its real-time
nature and convenient access to its content make it highly
popular for disseminating on-the-spot information and im-
ages of developing news stories. The issue of fake news
images posted on Twitter has been highlighted in the past
[14, 15] and remains open. For the purposes of this work,
it is important to investigate the ways Twitter alters uploaded
images, and their impact on forensic analysis. To this end, we
experimented extensively with PNG and JPEG images, since
these are the most common image types, and found that Twit-
ter follows these rules:

• If the image is larger than 2048× 1024, rescale it to fit
these dimensions whilst retaining the aspect ratio. The
resampling function has been most closely simulated
by a Lanczos-3 kernel.

• If it is in PNG format, and is >3MB, convert to JPEG.

• If it was originally in JPEG format, or was converted to
JPEG, resave it at a quality factor of 75.

We also repeated a similar process for Facebook. Al-
though Facebook is not the usual medium of choice for grass-
roots journalism, its high popularity means that there is a sig-
nificant chance that an image arriving at our hands has passed
through it. The corresponding rules for Facebook are highly
similar to those of Twitter, with the main differences being
that the image limit is 2048 × 2048, and the JPEG quality
factor can vary between 70 and 90 depending on the image.

While the details may differ, the pattern is clear: social
media images are most likely to have undergone one JPEG
recompression, and quite possibly to have also undergone

Fig. 4. Three versions of the same forgery.

rescaling. Either of these operations could be enough to dis-
rupt a forensic algorithm, rendering it practically useless for
social media application. Furthermore, we also know that so-
cial media platforms tend to erase image metadata4, which
can be an invaluable tool for forensic analysis (especially
Exif). Since many blogging and image hosting services also
impose similar alterations on images, we ought to be prepared
to deal with their overall impact.

3.2. Towards a real-world evaluation framework

3.2.1. Emulation of social media-like operations on bench-
mark datasets

We already know that the vast majority of algorithms pro-
posed for forgery detection are, by their definition, not de-
signed to work on images that have been re-compressed or,
even worse, resampled due to scaling. We decided to ex-
perimentally verify this hypothesis by applying such opera-
tions on existing benchmark datasets and evaluating a num-
ber of state-of-the-art algorithms on them. Out of the existing
datasets, we used Columbia Uncompressed, VIPP Synthetic
and VIPP Realistic, since those offered binary masks for eval-
uations. On these datasets, we emulated two scenarios. The
first was the re-compression of the images as JPEG of quality
75 to emulate the conversions applied by Twitter and Face-
book, while the second included both resaving at that quality
and re-scaling at 75% of the original image size. The degree
of degradation of algorithm results on these datasets can give
us an estimate of what to expect from a real-world application
of state-of-the-art algorithms.

3.2.2. The Wild Web tampered image dataset

Besides our emulated datasets, we also created a collection
of actual forged images from the Web, accompanied by man-
ually constructed ground-truth binary masks, and the origi-
nal, untampered sources, wherever those were available. This
“real-world” dataset consists of 82 unique cases of confirmed
forgeries. However, in gathering the dataset, it was often im-
possible to locate the original, first-posted forgery for each
case. Instead, the investigator will often have access to one or
more alternative versions of the same image, which will have
already undergone various transformations. To emulate this

4http://www.embeddedmetadata.org/
social-media-test-procedure.php



scenario, we downloaded all instances of each forgery that
we could locate using Google reverse image search. The col-
lected 13,577 unique images (with exact duplicates removed)
featured a number of variants of each forgery, falling into one
or more categories (Figure 3): a) versions of the same image
at various scales, often at different aspect ratios, b) cropped
versions of the original image, and c) post-splices: water-
marks, frames, or further, generally obvious splices added
over the original forged images. We decided to separate
the obvious post-splices and croppings from the rest of the
dataset, thus keeping 9,666 images that were most likely to
resemble (or be) the forgery originally uploaded by the per-
petrator. Especially for the croppings, the reason was not
only the degrading they cause in detection performance, but
also the difficulties in creating ground-truth binary masks for
them. In the case of rescaling (even at different aspect ratios),
the same binary masks could apply to all instances, follow-
ing a proportionate rescaling of the mask. On the other hand,
each cropping would require its own binary mask, of which
the creation would be a very labour-intensive task. Excep-
tions to this practice were the cases where it was impossible
to deduce which version of a forgery was closer to the original
forgery (Figure 4). In these occasions, each version was kept
in the dataset as a separate case with its own mask. Creating
ground-truth masks was also a challenge, even when the orig-
inals were readily available. In many cases, multiple areas
of the image contained different splices, possibly committed
at different times. In those cases, we created binary masks
for each case, and evaluated them separately. This brought
our dataset to 101 unique masks for evaluation over 92 case
variants of the original 82 cases.

3.2.3. Evaluation protocol

When evaluating tampering detection algorithms over a
dataset, the criteria used for determining success are integral
to the evaluation. While many algorithms return a binary re-
sult for the entire image [9, 10], thus simplifying evaluation at
the cost of localization, many others return a surface, whose
values correspond to local estimates, as in Figure 1. In the
latter case, experimental evaluation requires the existence of a
reference mask, signifying the actual location of the tampered
region. Consecutively, a typical evaluation protocol is to con-
trast values of the surface under the mask with those outside
it. For example, we can estimate the statistical median of
the map values for the pixels/blocks under the mask with the
median of those outside it [13], or evaluate the Kolmogorov-
Smirnov statistic on the two value distributions [8]. While
such protocols have served the research community well in
the past, we consider them inappropriate for our use case for
two reasons. One is their potential for poor localization, in
cases where large areas outside the mask return high values,
but not large enough for classification to be recognized as a
failure (Figure 5). Second and most important is their unreal-

Fig. 5. Evaluation by comparing the medians inside and out-
side the mask (white circle). Due to the uniform background,
the median outside the mask is very low, but from a real-world
perspective this is a largely false output.

Table 2. Algorithm evaluation over our emulated dataset
using a difference-of-medians criterion (top values) and our
evaluation protocol (bottom values). In both approaches, the
first value reflects the detection rate (True Positives) while the
value in parentheses is the false alarm rate (False Negatives).

Dataset [1] [7] [4] [2]a [2]b [5]
Col. U. - - 0.89 (0.05) - - 0.39 (0.04)
Orig. - - 0.66 (0.16) - - 0.12 (0.57)

VIPP S. 0.47 (0.05) 0.51 (0.05) 0.15 (0.05) 0.57 (0.01) 0.28 (0.05) 0.13 (0.05)
Orig. 0.44 (0.27) 0.52 (0.00) 0.01 (0.23) 0.58 (0.09) 0.04 (0.25) 0.04 (0.74)

VIPP R. 0.54 (0.04) 0.58 (0.04) 0.04 (0.04) 0.70 (0.04) 0.28 (0.04) 0.20 (0.04)
Orig. 0.41 (0.46) 0.38 (0.09) 0.09 (0.22) 0.23 (0.30) 0.03 (0.39) 0.04 (0.90)

Col. U. - - 0.05 (0.05) - - 0.09 (0.05)
JPEG - - 0.00 (0.20) - - 0.02 (0.86)

VIPP S. 0.30 (0.04) 0.43 (0.04) 0.17 (0.05) 0.39 (0.05) 0.16 (0.05) 0.10 (0.05)
JPEG 0.26 (0.30) 0.30 (0.10) 0.01 (0.28) 0.23 (0.27) 0.01 (0.29) 0.04 (0.74)

VIPP R. 0.32 (0.04) 0.36 (0.04) 0.14 (0.04) 0.51 (0.04) 0.17 (0.04) 0.20 (0.04)
JPEG 0.13 (0.44) 0.17 (0.29) 0.00 (0.25) 0.14 (0.46) 0.01 (0.43) 0.02 (0.90)

Col. U. - - 0.03 (0.04) - - 0.11 (0.05)
resamp. - - 0.00 (0.24) - - 0.04 (0.79)
VIPP S. 0.05 (0.05) 0.05 (0.05) 0.05 (0.04) 0.05 (0.05) 0.05 (0.05) 0.06 (0.05)
resamp. 0.00 (0.23) 0.00 (0.00) 0.00 (0.23) 0.00 (0.15) 0.00 (0.29) 0.00 (0.84)
VIPP R. 0.13 (0.04) 0.12 (0.06) 0.03 (0.04) 0.23 (0.04) 0.17 (0.04) 0.23 (0.04)
resamp. 0.00 (0.47) 0.00 (0.00) 0.00 (0.28) 0.03 (0.25) 0.01 (0.47) 0.03 (0.47)

istic concept of a false positive: such protocols can declare a
false positive only when they find significant differences in a
predetermined area in a non-spliced image. From the perspec-
tive of a non- or semi-expert investigator, detection algorithms
ought to return reliable, clearly interpretable results highlight-
ing the forged areas of the image and only those. Any results
whose area does not match the ground truth should be con-
sidered false, and so should non-spliced images returning any
salient map area, anywhere on the image.

In our proposed evaluation approach, the output produced
by each algorithm is first binarized using a method-specific
threshold (i.e. for each algorithm, the possible thresholds re-
flect the meaning and range of the values returned), and then
image morphological processing operations (such as opening
and closing) are applied, to remove noise and retain connected
regions. The resulting binary images are then compared to the
ground truth mask, to evaluate the quality of the match. The
criterion for comparing the mask produced by the algorithm
to the ground truth binary mask is expressed by Equation 1.



E(A,M) =
Σ(A ∩M)2

Σ(A)× Σ(M)
(1)

where A signifies the binary, processed algorithm output, M
is the ground truth mask, and Σ(x) is the area of a binary
mask x. Experimentally, any value of E(A,M) above 0.65
suggests a very good match which is very unlikely to have
resulted by chance. The detection of false positives, on the
other hand, follows a different approach. In contrast to other
protocols, we are not expected to have a binary mask for each
non-spliced image. Instead, following a similar thresholding
and morphological processing step, we expect the algorithm
output not to demonstrate any salient regions. The presence of
such a region is classified as a false positive. While this means
that, essentially, a different criterion is used for true positive
and false positive detection, nonetheless we hold this protocol
to more closely reflect our real-world task requirements.

4. EXPERIMENTAL STUDY

4.1. Tested approaches

We compared a number of well-established, state-of-the-art
algorithms for image forensic analysis. The code for [7, 4, 2]
was provided by the authors, while we further implemented
[1, 5, 8] ourselves. As described in section 2.1, these algo-
rithms cover a variety of phenomena, allowing us to tackle
the tampering detection problem from multiple sides.

4.2. Results

As a preliminary step, we ran the above algorithms on the em-
ulated data set we described in paragraph 3.2.1. For compar-
ison, we present results both using a typical evaluation proto-
col (comparing the median feature values inside and outside
the mask, Table 2, top values) and our thresholding proto-
col (bottom values). For the typical methodology of com-
paring the medians inside and outside the mask, the binary
mask used for the non-spliced images was a parallelogram in
the centre of the image, at 1/16 of the image area, similar to
[13]. For the difference between medians, we chose thresh-
olds that gave FN rates of < 0.05. For our own protocol,
we applied multiple fixed and adaptive thresholds, and a bat-
tery of different morphological operations. For both positive
and negative examples, we kept the best (i.e., closer to ground
truth) result, to reflect the ability of a human inspector to de-
tect the presence or absence of distinctive patterns. We then
evaluated the forensic algorithms on the Wild Web dataset.
The results are presented on Table 3. We present the number
of cases where an algorithm achieved correct detection for
at least one image of each case. The number in parentheses
(“Unique”) indicates the number of cases where a particular
algorithm was the only one to achieve detection for that case.

Table 3. Algorithm evaluation over the Wild Web dataset.
[1] [7] [4] [2]a [2]b [5] [8]

Detections 13 12 1 8 5 15 29
(Unique) (4) (1) (0) (1) (2) (6) (10)

In this evaluation, we included one additional algorithm. [8]
is more difficult to evaluate with respect to false positives, as
its output tends to be rather noisy and consists of multiple im-
ages, many of which are bound to contain images that are,
to an extent, salient. In an automatic detection framework,
this method would produce numerous false positives, as some
area is always expected to stand out at some level. On the
other hand, visual inspection (with the semantic awareness of
a human investigator) tends to give very good results, so we
opted to include it separately. However, its localization also
tends to be relatively poor, so we reduced the area matching
threshold to 0.45 - still high enough to discard random find-
ings. For fairness, we did not take the findings from [8] into
account when counting unique hits from the other methods,
while unique findings from [8] are counted against all find-
ings from all other methods. Overall, out of 82 cases, 57 (47
when including [8]) gave no detection, while 25 (35) had at
least one method correctly detect and localize the forgery in
at least one image. However, visual inspection suggests that
even our approach may be overestimating the output, espe-
cially for [8] and [5], with real recognition capabilities being
even below that level.

4.3. Discussion

With respect to our emulation of social media image alter-
ations, the comparison between the two tables offers a number
of interesting observations: First, it becomes clear how sim-
ply comparing the values inside and outside the mask can lead
to a serious underestimation of false positive rates. Secondly,
the specialization of different algorithms in different cases
becomes obvious: [4] seems to work only on the Columbia
dataset (which is to be expected, as CFA patterns are particu-
larly sensitive to JPEG compression), while [2]b and [5] seem
to actually yield very poor results in all cases. Finally, the
degradation due to image recompression and especially re-
sampling is clear: while some algorithms show a degree of
robustness to one recompression, resampling diminishes any
possibility of detection (this becomes clear especially using
our evaluation protocol).

Concerning the new Wild Web dataset, the first important
observation is the low overall rate of detection. Having per-
formed an exhaustive search over all available instances of a
forgery in the real world, the likelihood of achieving correct
detection using any of today’s most successful approaches
was, overall, relatively slim. This can either be attributed to
the fact that the original forgeries are most often lost, and



only resampled versions remain online for us to investigate,
or to the possibility that forgers tend to upload undetectable
versions of their forgeries in the first place, having applied
rescaling, blurring or other methods that make localization
impossible. A second observation is the relative success of
simpler methods against more complex ones. [1], [2]b and
[5] significantly contributed to detection, by accurately local-
izing a number of unique forgeries. Especially the success
of [5], which is a noise-based method, might suggest that, in
real-world situations, differences in image noise might pro-
vide a valuable clue for forgery detection. Similarly, [8],
without overlooking its tendency to generate noisy outputs,
demonstrated high success rates, which we confirmed by vi-
sual inspection. It is possible that such approaches are in the
long run more robust for Web image verification compared to
more complex approaches, which may be more appropriate
for controlled verification settings (such as a courtroom).

5. CONCLUSIONS

We presented an investigation of the performance of state-
of-the-art image tampering detection methods on realistic
Web image verification problems. By reverse-engineering
and reproducing the image transformations applied by two
major social media platforms, we confirmed the theoretical
intuition that such operations can completely diminish the
possibility of successful detection of image forgeries. We
further proceeded to organize and present a real-world dataset
of well-established forgeries, which we tried to detect using
a set of state-of-the-art approaches. While a number of
forgeries were detected, the algorithms we applied failed in
the majority of cases. Overall, our investigation exposed a
performance gap that today’s approaches have to cover before
we can claim to achieve successful forgery detection in the
context of social media and the Web. As an immediate next
step towards bridging this gap, we intend to make our Wild
Web dataset publicly available, in order to foster real-world
oriented research in image forensics.
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